用户名: 密码: 验证码:
考虑土—结构相互作用下异形柱框架结构隔震性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前异形柱结构在我国有着广泛的应用,但异形柱构件截面形状不规则,纵筋配置也不对称,为提高异形柱结构抗震性能,应用隔震元件是有效途径之一;同时,在结构抗震设计中地基的处理上仍旧是以刚性假设为基础,而土层对地震波的过滤和放大作用是不能忽视的;因此考虑土-结构相互作用下,研究异形柱框架隔震结构的抗震性能具有一定的研究价值和实际意义。
     首先对12根钢筋混凝土异形柱进行低周往复荷载作用下抗震性能数值模拟研究,建立了L形截面、T形截面和十字形截面异形柱并考虑轴压比,柱肢尺寸,配箍率及截面配筋对各构件抗震性能的影响。结果表明异形柱破坏过程中经历的破坏形态、裂缝出现和延性性能与异形柱构件的轴向压力有很大关系,轴压比大的情况下,异形柱构件破坏较快,水平变形小,滞回面积较小即耗能能力差,裂缝也较晚出现;当轴压比小时,反而易出现裂缝,但异形柱构件变形能力较强延性较好,滞回曲线饱满即体现了异形柱构件延性好,耗能能力强,有较好的抗震性能。箍筋用量和截面尺寸的增加可以混凝土提高构件的延性。对3个钢筋混凝土异形柱框架节点进行了抗震性能数值模拟研究,对节点的延性、耗能能力、刚度退化等性能进行了分析;发现异形柱构件节点核心区箍筋在混凝土开裂前应力变化不大,混凝土开裂后失去抗剪能力,箍筋应力有很大增加,说明箍筋承担了大部分剪力,所以有必要在核心区配置相对数量的箍筋以防止节点核心区的提前失效。
     为提高异形柱框架结构的抗震性能,研究了以铅芯橡胶支座为主的隔震元件的吸能耗能机理;铅芯橡胶支座的阻尼力大、耗能能力强,但实验研究表明,当承受较大的水平位移荷载时,铅芯材料由于其塑性性能很难恢复原状,因此考虑在铅芯橡胶支座的基础上复合形状记忆合金材料(Shape Memory Alloy,简称SMA),根据实验研究得出了形状记忆合的超弹性力学性能,通过理论分析证明了形状记忆合金复合铅芯橡胶支座可以增加普通支座的恢复力,提高了支座的耗能能力,从而保证橡胶支座在发生较大剪切变形时仍然能够恢复到原位,达到更好的隔震效果。
     最后通过建立钢筋混凝土异形柱框架隔震结构模型,研究形状记忆合金复合铅芯橡胶支座对结构抗震性能的影响,重点考察了考虑土—结构相互作用该支座的减震性能;通过分析建筑物层间的位移、加速度、速度时程曲线,对比分析建筑物的最大相对位移和最大绝对位移发现:地震波的高频部分被隔震支座和地基土过滤掉,特别是作为地震波传播媒介的地基土,其高频滤波效应不容忽视。同时也说明了在刚性地基条件下对异形柱框架结构地震响应分析,与考虑土—结构相互作用的异形柱框架结构的地震响应是有所差别的:地基土的存在增加了结构的绝对位移,用刚性地基条件假设条件而不考虑土—结构相互作用的的影响而进行异形柱框架结构的抗震设计是偏于安全和保守的。
Shaped column frame structure has a wide range of applications, but on the mechanical properties of the cross-sectional shape of irregular shaped column member, the configuration of the longitudinal reinforcement asymmetric isolation products used in order to improve the seismic performance of special-shaped columns shaped column frame structurehigher value. The same time, the processing of the seismic design of structures foundation is still based on rigid assumptions, soil filtering and amplification of seismic waves can not be ignored; shaped column frame isolated structure considering soil-structure interaction, research the seismic performance of certain research value and practical significance.
     Firstly, analysis of research on the seismic performance of special-shaped column members;12shaped reinforced concrete columns under low cyclic loads seismic performance simulation study, the L-shaped cross-section, the T-shaped cross-section and the cross-sectional shaped columns and consider the axis pressure ratio, column limb size, stirrup ratio and reinforcement section of the seismic performance of various components. The study found that the axial compression ratio of component failure form shaped columns, cracks appear and ductility greater impact. Appeared later shaped columns of large axial compression, the cracks in the specimen, but the specimen deformation is smaller than suddenly, destruction, component hysteresis curve surrounded by smaller, less energy dissipation capacity; When the column axis pressure comparison hour load value of the column cracks, Deformation has better ductility than full hysteresis curve of the column, good ductility and energy dissipation capacity, better seismic performance. Stirrup for concrete and the cross-sectional size of the increase can improve the ductility. Inequiaxial three reinforced concrete shaped column frame node Experimental study of the seismic performance analysis node ductility, energy dissipation capacity, stiffness degradation of performance; found stirrup shaped columns node in the node cracking force The small node cracking stress growth faster, bear the brunt of the shear sudden destruction, in order to avoid node node stirrup should not be too small. Stirrup shaped columns two column limb in the process of node force stress changes.
     In order to improve the seismic performance of the shaped column frame structure, the isolated components suction energy consumption can lead rubber bearings based mechanism; lead rubber bearing damping force, energy dissipation, but experimental studies have shownwithstand greater horizontal displacement load, lead core material because of its plastic properties is difficult to restore the status quo ante, so consider on the basis of lead rubber bearing composite shape memory alloy (shape memory alloy, or SMA), according to the experimentalstudies super-elastic shape memory alloy mechanical properties, proved by theoretical analysis of the shape memory alloy composite lead rubber bearings can increase the resilience of ordinary bearing, improve the energy dissipation capacity of the bearing, thus ensuring the rubber bearingthere is a greater shear deformation will still be able to return to its original position, to achieve better isolation effect.
     Finally, through the establishment of the reinforced concrete columns frame isolated structure model to study the shape memory alloy composite lead rubber bearings for seismic performance, focusing on considering soil-structure interaction damping performance of the bearing and its protective effect; through the analysis of the the buildings layer between the displacement, acceleration, speed time history curve, the maximum relative displacement of the comparative analysis of the building and the maximum absolute displacement found: high-frequency part of the seismic waves is double protection device isolation layer and the soil to filter out foundation soil, especially media as seismic waves, high frequency filtering effect can not be ignored. Also illustrates the rigid foundation under the conditions of the buildings in mining area of the earthquake response analysis, with considering soil-structure interaction, seismic response of buildings in mining area is somewhat different:the increased presence of subsoil structure absolute displacement assumptions rigid foundation conditions, regardless of the soil-structure interaction and mining seismic design of buildings in mining area safer and conservative.
引文
[1]混凝土异形柱结构技术规程(JGJ149-2006)[S].北京:中国建筑工业出版社,2006.
    [2]郭棣.宽肢异形柱的试验研究[D].西安:西安建筑科技大学,2001.
    [3]王丹.钢筋混凝土框架异形柱设计理论研究[D].大连:大连理工大学,2002.
    [4]顾祥林.混凝土结构基本原理[M].上海:同济大学出版社,2004.
    [5]赵国藩,周氐.高等钢筋混凝土结构学[M].北京:机械工业出版社,2005.
    [6]江见鲸,李杰,金伟良.高等混凝土结构理论[M].北京:中国建筑工业出版社,2007.
    [7]邹建文.混凝土构件受剪计算理论及有限元分析[D].武汉:武汉理工大学,2007.
    [8]混凝土结构设计规范(GB50010-2010)[S].北京:中国建筑工业出版社,2010.
    [9]高层建筑混凝土结构技术规程(JGJ3-2010、J186-2010)[S].北京:中国建筑工业出版社,2010.
    [10]王晓林.钢筋混凝土异形柱结构及其构件受力性能分析[D].太原:太原理工大学,2011.
    [11]黄承逵,曲福来,张毅斌.低周反复荷载作用下钢筋混凝土异形柱受力性能试验研究[J].建筑结构,2008,38(11):33-35.
    [12]丁小艳.L形截面宽肢柱低周反复荷载受剪性能试验研究[D].天津:天津大学,2007.
    [13]曹灿.钢筋混凝土异形柱结构设计研究与工程应用[D].合肥:合肥工业大学,2010.
    [14]赵艳静.钢筋混凝土异形柱结构体系理论与试验研究[D].天津:天津大学,2004.
    [15]王丹,黄承逵,刘明.L、T十字形柱受剪承载力研究[J]China Academic Journal Electronic Publishing House,2003.
    [16]李杰,吴建营,周德源,聂礼鹏.L形和Z形宽肢异形柱低周反复荷载试验研究[J].建筑结构学报,2002,23(1):9-15.
    [17]黄承逵,曲福来,徐士瞍.钢筋混凝土不等肢异形柱抗剪承载力研究[J].工程力学,2009,26(5):197-201.
    [18]王铁成,陈向上.宽肢异形柱受剪承载力试验研究[J].第19届全国结构工程学术会议论文集第二册,2010,197-202.
    [19]王铁成,计飞翔,杜琛.L形宽肢异形柱受剪性能试验研究[J].第16届全国结构工程学术会议论文集第二册,2007,170-175.
    [20]王丹,黄承逵,刘明.异形柱斜向受剪承载力的试验研究[J].建筑与结构设计,2006,57-60.
    [21]李其谦,张学辉,郑世夺.T形和L形柱低剪跨比正反向受剪特性研究[J].河北科技大学学报,2011,32(1):83-87.
    [22]李永华,桂国庆,梁安宁,李思明.不等肢混凝土异形柱轴压比与配箍特征值关系研究[J].工程力学,2008,25(7):153-158.
    [23]孙华伟.宽肢异形醉斜截面极限承载能力分析[D].西安:西安建筑科技大学,2011.
    [24]梁安宁.钢筋砼不等肢异形柱的延性性能分析研究[D].南昌:南昌大学,2005.
    [25]苏小卒,张荣,王磊,陶湘华.钢筋混凝土异形柱的抗震性能的试验研究[J].结构工程师,2007,23(3):58-64.
    [26]李文清.钢筋混凝土异形柱结构抗震设计研究[D].天津:天津大学,2003.
    [27]朱琪.钢筋混凝土异形柱的延性分析[D].合肥:合肥工业大学,2007.
    [28]范鹏.钢筋混凝土十字形截面柱抗震性能试验研究[D].天津:津大学,2011.
    [29]陈伟.钢筋混凝土不等肢异形柱的延性性能研究[D].成都:四川大学,2005.
    [30]胡洪伟.带暗柱异形柱和不等肢异形柱的延性性能分析[D].成都:四川大学,2003.
    [31]唐静.钢筋混凝土异形柱构件抗震性能影响因素分析及结构破坏形态初探[D].重庆:重庆大学,2010.
    [32]曹万林,庞国新,卢立炜,周明杰,吴二军.较小剪跨比带暗柱T形柱抗震性能试验研究[J].地震工程与工程振动,1999,19(4):61-66.
    [33]曹万林,庞国新,胡国振,周明杰,卢立炜.较小剪跨比带暗柱L形柱抗震性能试验研究[J].世界地震工程,2000,16(2):41-46.
    [34]林海.混凝土异形柱框架抗震性能试验与理论研究[D].天津大学,硕士学位论文,2006.
    [35]刘承文.箍筋约束对钢筋混凝土柱抗震性能影响的试验研究[D].重庆:重庆大学,2010.
    [36]罗佳.变轴力作用下钢筋混凝土L形柱抗震性能研究[D].重庆:重庆大学.2006.
    [37]曲福来.钢筋混凝土不等肢异形柱抗震性能试验研究[D].大连:大连理工大学,2008.
    [38]曹万林,胡国振,崔立长,周明杰,郝春森,曲英华.钢筋混凝土带暗柱异形柱抗震性能试验及分析[J].建筑结构学报,2002,23(1):16-20.
    [39]郭凯杰.钢筋混凝土异形柱的延性性能研究[D].西安:西安建筑科技大学,2006.
    [40]辛立民.钢筋混凝土异形柱结构抗震性能试验研究与弹塑性时程分析[D].天津:天津大学,2007.
    [41]王铁成,张学辉.异形柱框架抗震性能试验分析[J].四川建筑科学研究,2006,32(5):150-160.
    [42]王铁成,王秀芬,王天柱,戎贤.异形柱框架延性及耗能能力分析[J].2008,37(1):104-108.
    [43]王秀芬,王铁成.混凝土异形柱框架抗震性能的试验研究[J].工业建筑,2010,40(5):28-32.
    [44]陈开凤,张新培,雷昌祥.厚壁异形柱最不利荷载角的研究[J].建筑结构,2006,36(2):45-47.
    [45]周建中,陆春阳,苏益声,赵鸿铁.钢筋砼不等肢L形异形柱承载力的理论研究[J].西安建筑科技大学学报,2001,33(2):116-120.
    [46]张新培,陈伟.钢筋混凝土不等肢异形柱轴压比限值的研究[J].世界地震工程,2007,23(4):216-220.
    [47]Sheikn, Shami A. and Uzumeri,S.M.,Analytical Model for Concrete Confinement in Tied Columns, Asce,V.108, ST12,DEC.1982:2702-2723.
    [48]陈寿梁,地震区建筑用钢探讨[J]工程抗震,1986,2期:4-8
    [49]刘君.汶川大地震与信息公开[J].新长征,2008(8):20-22.
    [50]丰定国.工程结构抗震[M].北京:清华大学出版社,2002
    [51]彭刚,张国栋.土木工程结构振动控制[M].武汉:武汉理工大学出版社,2002.
    [52]周福霖,工程结构减震控制,北京:地震出版社,1997.38-115.
    [53]周锡元,韩淼,马东辉等, 叠层钢板橡胶垫的稳定性分析与强度验算, 砌体结构隔震减震方法及工程应用研究论文报告选编,中国减震科学研究院工程抗震所,1996.24-35.
    [54]庄鹏,薛素铎等, 新型SMA-橡胶支座的研制及在网壳结构中的隔震分析, 北京工业大学学报,2004,30(2):176-179.
    [55]叠层橡胶支座隔震技术规程,中国工程建设标准化协会,2001.36-38.
    [56]高小旺,龚思礼,苏经宇等,建筑抗震设计规范理解与应用,北京:中国建筑工业出版社,2002(4):335-336.
    [57]Japan Society of Seismic Isolation. A Standard for Lead Rubber Bea-rings (Draft),1996,83-97.
    [58]高小旺,龚思礼,苏经宇等编,建筑抗震设计规范理解与应用,北京:中国建筑工业出版社,2002(4):336-338.
    [59]欧进萍,结构振动控制-主动、半主动和智能控制,北京:科学出版社,2003(11):395-416.
    [60]周庆文,周福霖, 叠层橡胶垫隔震性能及设计,工业建筑,2000(8):23-25.
    [61]刘季,周云, 耗能减震新技术研究, 全国第三届结构减震控制学术研讨会,广州,1995.8,231-235.
    [62]吴仕元等, 汕头金凤坛隔震楼工程技术分析,全国第三届结构减震控制学术研讨会,广州,1995.8,256-261.
    [63]洗巧玲,周福霖,王伟, 橡胶垫隔震框架结构试验研究,世界地震工程,1996(2):23-28.
    [64]刘文光,李峥嵘,周福霖等, 低硬度橡胶隔震支座基本力学性能及恢复力特性,地震工程与工程振动,2002(3):138-144.
    [65]魏陆顺,刘文光,周福霖,林佳,庄学真,隔震橡胶支座试验技术探讨,广州大学学报,2003(6):560-568.
    [66]Zhou F. L. "Seismic Isolation of Civil Building in P. R. China". Progress in Structural Engineering and Materials.2002,3(3):132-137.
    [67]施卫星,李正升,一种叠层橡胶支座动态性能试验研究,同济大学学报,1999(4):417-421.
    [68]张荫,姚谦峰,自阻尼叠层橡胶隔震支座力学性能试验研究及刚度分析,工业建筑,2003(9):44-47.
    [69]张荫,姚谦峰,自阻尼叠层橡胶隔震支座阻尼特性及恢复力模型,西安建筑科技大学学报,2003(2):120-126.
    [70]刁传苏,橡胶支座力学性能指标自动测试系统的研究,工程建设与档案,2002(2):142-144.
    [71]王东平,张燕,屈成军,叠层橡胶隔震支座的研制,特种橡胶制品,2000(3):25-28.
    [72]潘开名,刘斌,刘之洋等,叠层橡胶支座隔震结构地基-构动力相互作用分析,东北大学学报,2002(1):71-74.
    [73]张志强,陈守明,韩绪年等,叠层隔震橡胶支座的研制,橡胶工业,1998(9):545-549.
    [74]王亚勇,王理,不同阻尼比长周期抗震设计反应谱,工程抗震,1990(3):21-26.
    [75]谢宁,国内叠层橡胶基础隔震的研究和应用,云南工业大学学报,1996(4):4-7.
    [76]朱宏平,唐家祥,叠层橡胶隔震支座的振动传递特性,工程力学,1995,12(4):109-114.
    [77]张燕,叠层隔震橡胶支座性能的影响因素,橡胶工业,2000(47):348-352.
    [78]赵斌,梅占馨,叠层橡胶支座的水平极限承载特性,世界地震工程1998(4):81-85.
    [79]刘文光,周福霖,庄学真等,铅芯夹层橡胶隔震垫基本力学性能研究,地震工程与工程振动,1999(1):93-99.
    [80]王建强,王利娟,铅芯叠层橡胶支座恢复力模型研究,世界地震工程2005(2):151-156.
    [81]李宏男,李忠献,祁皑等,结构振动与控制,北京:中国建筑工业出版社,2005.380-391.
    [82]李杰,李国强,地震工程学导论,北京:地震出版社,1992.96-154.
    [83]唐家祥,刘再华,建筑结构基础隔震,武汉:华中理工大学出版社,1993.47-89.
    [84]舟久保,熙康,形状记忆合金,北京:机械工业出版社,1987.143-162.
    [85]Brinson L C, Lammering R. Finite element analysis of the behabvior of shape memory alloys and their applications. Int. J. Solids Struct.1993,30 (23):3261-3280.
    [86]杨杰,吴月华,形状记忆合金及其工程应用,合肥:中国科学技术大学出版社,1993.1-3.
    [87]王社良,形状记忆合金在结构控制中的应用,西安:陕西科学技术出版社,2000.17-24.
    [88]杜善义,冷劲松,王殿富,智能材料系统和结构,北京:科学出版社,2001.1-11.
    [89]徐祖耀,形状记忆材料,上海:上海交通大学出版社,2000.1-15.
    [90]T Takagi, A concept of Intelligent Materials, U. S.-Japan Workshop on Smart/Intelligent Materials Systems, Technomic Publishing Company Inc,1990:3-10.
    [91]CA Rogers, The Intelligent Material System Concept, U.S.-Japan Workshop on Smart/Intelligent Materials Systems, Technomic Publishing Company Inc,1990:330-331.
    [92]Reginald DesRoches. Seismic Mitigation of Bridges Using Smart Restrainers. Part of the SPIE Conference on Smart Systems for Bridges, Structures, and Highways, Newport Beach, California.1999.3.
    [93]Boyd J G, Lagoudas D C. Thermomechanical response of shape memory composites. J. Intell. Mater.syst. and Struct.,1994,5(3):382-390.
    [94]Berveiller M. et al. Thermomechanical constitutive equations for shape memory alloys. J. Phys. IV,1 Colloque,1991, C.4
    [95]Yang J N, Akbarpour A, Ghaemmmahami P. New control algorithms for for structural; control. J. Eng. Mech., ASCE,1987,103(12):1369-1386.
    [96]崔迪,李宏男,宋钢兵,形状记忆合金在土木工程中的研究与应用进展,防灾减灾工程学报.2005,25(1):90-94.
    [97]王社良,沈亚鹏,形状记忆合金的力学特性及其工程应用,工业建筑,1998(3):32-35.
    [98]王社良,苏三庆,形状记忆合金的超弹性恢复力模型及其结构抗震控,工业建筑.1999,29(3):49-52.
    [99]王社良,惠宽堂,朱军强等,SMA阻尼隔震性能研究,防震减灾工程研究与进展,2005(11):251-254.
    [100]王社良,惠宽堂,朱军强等,设有形状记忆合金RCD阻尼器隔震结构的地震反应分析,防震减灾工程研究与进展,20051(1):236-239.
    [101]李忠献,陈海泉,刘建涛,应用SMA复合橡胶支座的桥梁隔震,地震工程与工程振动,2002,22(2):143-148.
    [102]陈海泉,李忠献,李延涛,应用形状记忆合金的高层建筑结构智能隔震, 天津大学学报,2002(6):761-766.
    [103]陈海泉,刘建涛,李忠献,应用形状记忆合金的桥梁结构振动控制研究及发展,世界地震工程,2002(2):85-90.
    [104]丁阳,张向荣,李忠献,应用SMA复合橡胶支座的大跨度空间结构隔震研究,沈阳建筑大学学报,2005(5):438-443.
    [105]刘海卿.SMA绞线-叠层橡胶复合支座的研制及其隔震性能试验研究[D].天津:天津大学,2006.
    [106]刘海卿,李忠献.应用SMA—叠层橡胶复合支座的建筑结构隔震[J].自然灾害学报,2006,15(3):86-90.
    [107]刘海卿,李忠献,陈海泉.基于SMA复合橡胶支座的建筑结构自适应隔震[J].振动工程学报,2004.8(增刊):1061-1063.
    [108]薛素铎,庄鹏,李彬双,SMA-橡胶支座的力学性能试验研究,世界地震工程,2005,21(4):10-15.
    [109]崔迪,李宏男,宋钢兵,形状记忆合金在土木工程中的研究与应用进展,防灾减灾工程学报.2005,25(1):86-89.
    [110]K. Otsuka, C. M. Wayman. Shape Memory Materials [M]. Cambridge:Cambridge University Press,1998
    [111]Z. Farhat, C. Zhang. On the deformation of superelastic TiNi alloy [J]. Tribol Lett,2009,9
    [112]F. J. Gil, J. A. Planell, C. Libenson. Differences in the pseudoelasticity behaviour of Nickel-Titanium orthodontic wires [J]. Journal of Materials Science: Materials in Medicine,1993,4:281-284
    [113]杨杰,吴月华,形状记忆合金及其工程应用,合肥:中国科学技术大学出版社,1993.3-9.
    [114]Tanka K,Sato Y.Phenomenological description of the mechanical behaviour of shape.memory alloys.Trans of JSME,1992,53 (491):1368-1373
    [115]SUN Q P, Hwang H C. Micromechanics modeling for the constitutive behavior of polycrystalline shape memory alloy. J of Mech. Phys.Solids,1993,41(1):1-17.
    [116]Bertram A. Thermo-Mechanical constitutive equations for the description of shape memory effects in alloys. Nuclear Engineening&Design,1982,74:173-182
    [117]Graesser, Cozzarelli. Shape-Memory Alloys as New Materials For a seismic Isolation. J. of Engineering Mechanics.1991,11-43.
    [118]Graesser E J, Cozaarelli F A. Shape memory alloys as a new material for aseismic isolation. J. Eng. Mech., ASCE,1991,117(11):2590-2608.
    [119]刘海卿,陈晓波,王学庆SMA绞线-叠层橡胶复合支座结构的动力反应[J].自然灾害学报,2007(5):1004-4574
    [120]吴军,钢筋混凝土巨—子型控制结构体系抗震性能数值分析[学位论文],西北工业大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700