用户名: 密码: 验证码:
钢框架—预制混凝土抗侧力墙装配式结构体系受力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展预制装配式建筑是实现建筑节能减排和建筑产业化的有效途径,钢结构最大优点是可实现预制装配化,其中钢框架的应用最为广泛,但其抗侧刚度小,工程界常通过增设内填式墙体来提高结构的抗侧刚度,传统的抗侧力墙体存在构造复杂、装配化施工不便、维护成本高等缺点。
     为实现抗侧力墙体的预制装配化,降低墙体的承担竖向荷载,同时考虑楼板钢筋穿越问题和解决建筑开门窗洞口的需求,提出了一种新型钢框架—预制混凝土抗侧力墙装配式结构体系(Steel Frame-Prefabricated Concrete Lateral Resistance Wall FabricatedStructural System)(简称SPW体系),本文通过试验研究和理论分析对SPW体系的受力性能和计算理论进行了系统的研究,主要研究内容如下:
     (1)研发SPW体系并开展足尺模型试验研究
     设计和制作了4榀由钢框架与型钢混凝土抗侧力墙、钢筋混凝土抗侧力墙组成的单层单跨足尺模型,对其进行水平低周反复加载试验。对水平荷载作用下结构体系的破坏形式、承载能力、刚度退化、滞回特性、延性及耗能性能进行系统分析,得到墙体的破坏机理、框架与抗侧力墙体的传力路径以及内力分配关系。
     在试验研究的基础上,对SPW体系的抗震性态水平及性能指标的量化进行探索研究,总结分析结构的破坏顺序和破坏形态,提出五个性能水平的失效判别标准,并给出不同性能水平对应的侧移角限值建议。
     (2)揭示SPW体系受力性能的影响因素
     1)分析了抗侧力墙体与框架梁连接界面处的受力特性,对连接界面的抗剪栓钉、锚筋和型钢承担剪力和弯矩作用进行定性、定量分析,得到其分布规律;并对试验模型中的连接件类型提出改进措施,以保证抗侧力墙体与框架梁连接的可靠性。
     2)从弹性刚度、承载能力、滞回曲线、水平剪力和倾覆弯矩的分配关系、塑性耗能等方面,考察框架柱刚度、约束梁刚度、墙体高宽比、墙体边缘构件的含钢率等因素对结构体系协同受力性能的影响,得到各因素的影响规律。
     (3)建立SPW体系的计算理论
     1)建立结构层间抗侧刚度的计算模型,分别推导考虑梁约束效应的墙体和框架柱抗侧刚度计算公式,通过试验数据验证公式的合理性。并将抗侧力墙体简化为“交叉撑杆+竖向杆”的杆系模型,推导刚度等量代换关系,弹性阶段,结构体系可等代为杆系模型进行的内力分析和变形计算。
     2)基于连续化的方法,建立钢框架、约束梁和抗侧力墙体协同工作微分方程,提出为反映结构侧向刚度的重要参数λ,求解结构体系在三种典型水平荷载下的内力、位移计算方法。
     3)根据结构体系的破坏形态,提出不同破坏形态的受剪承载力分析模型和计算简图,建立受剪承载力的计算公式,通过试验数据验证公式的可靠性。
     (4)提出SPW体系合理刚度比的优化设计方法和设计建议
     1)以反应谱理论为基础,建立以基底地震剪力为目标函数,最大层间位移角为约束条件的数学优化模型,采用MATLAB高级语言编写优化程序,对钢框架、约束梁和抗侧力墙体的合理刚度比进行优化分析;并对刚度参数λ的影响因素进行分析,并以表格的形式给出不同抗震设防烈度下的特征周期Tg、刚重比η与λ最优值的关系,可供设计参考。
     2)以弹塑性层间位移的控制为基础,设计了45个钢框架、约束梁和抗侧力墙体不同刚度比的数值模型,其弹性抗侧刚度保持一致,采用弹塑性时程分析的方法,统计得出弹塑性层间位移随刚度参数λ的变化规律,研究表明:①当刚度参数λ为定值情况下,框架刚度CF与约束梁刚度CB的比值对各楼层的层间侧移峰值影响不大;②最大弹塑性层间位移δmax与刚度参数λ有关,在2≤λ≤3之间时,δmax存在最小值点,在此基础上提出刚度参数λ最优值的设计建议。
     本文的研究工作,论证了新型钢框架—预制混凝土抗侧力墙装配式混合结构体系的可行性和合理性,并为实际工程应用提供了试验依据和理论指导。最后,对需进一步研究的课题进行了讨论。
The development of prefabricated buildings is one of the effective approach to realizing the objectiveof energy saving and emission reduction in the architecture field and architectural industrialization ofChina. The prefabricate assembly is the greatest advantage of steel structure, steel frame among which iswidely used. Because of the smaller lateral stiffness of steel frame, an important method to improve thelateral stiffness is adding the infilled wall in steel frame. However, there are several shortcomings of thecomplicated constructed method, inconvenient prefabricate assembly and higher maintenance cost oftraditional lateral resistance wall.
     A new type of fabricated structural system with steel frame-prefabricated concrete lateral resistancewall (SPW system) is adopted to realize the prefabricate assembly, reduce the vertical load of lateralresistance wall, insure the traversing of slab reinforcement and set windows and doors hole. Themechanical behavior and computational theory of this fabricated structure are systematically studied byexperimental research and theoretical analysis. The main contents and conclusions are listed as following:
     Development of new SPW system and experimental study on full scale specimens
     Four full scale specimens composed of steel frame and steel reinforced concrete or reinforcedconcrete lateral resistance wall are designed and tested with cyclic horizontal load. The failure mode,carrying capacity, rigidity degeneration, hysteretic characteristics, ductility and dissipation capacity of thestructural system are systematically analyzed by cyclic horizontal load, the destruction mechanism oflateral resistance wall, force transferring path and internal force distribution relationship are studied.
     Based on the experimental research, seismic performance levels and quantitative index of SPWsystem are analyzed, the failure order and failure modes are investigated. Failure criteria and lateral anglelimitation for the five performance levels are suggested.
     Analysis on effect factors of mechanical behavior for the SPW system
     1. The mechanical behaviors of joint interface between wall and steel beam are studied by the micronumerical model. the distribution relationships of shear force and bending moment among shear stud,anchor bar and cnnection steel are qalitativelynd quantitatively analyzed. The improvement approaches ofconnection type are put forward, which can ensure the reliability of connection between lateral resistancewall and steel beam.
     2. The influence factors and influence law of the rigidity of frame column and beam, the height to width ratio and steel content of edge member for lateral resistance wall on cooperative performance for theSPW system are studied through the perspective of elastic stiffness, carrying capacity, hysteretic curve, thedistribution relationships of shear force and bending moment, the plastic development process anddissipation capacity.
     Establishment of computational theory for the SPW system
     1. The calculational model of inter-story elastic drift stiffness is presented by analysis of the stiffnesscontribution for structural system, the computational formulas of lateral stiffness considering beamconstrained effect for lateral resistance wall and steel frame are established and the rationality is verifiedby test data. The beam-column simplified model with cross bars and vertical bars for lateral resistance wallis proposed and the generation relationships of stiffness are established, by which the internal force anddisplacement can be conveniently calculated.
     2. The differential equations for the cooperative working performance among steel frame, restrainedbeam and lateral resistance wall are established by continuous method, stiffness parameter λ of structuralsystem is put forwards. Three sets of the calculation formulas for the lateral displacement and inner forceare obtained by solving the equations.
     3. The analysis models and calculation diagrams for shear bearing capacity under the differentdamage states are presented based on failure mode of structural system and the rationality is verified bytest data.
     Optimum design method and design suggestion of reasonable stiffness for new SPW system
     1. The optimized mathematical model with base shear force as objective function and the largestinter-storey drift angle as constraint conditions is put forward based on the theory of response spectrum,the optimization programs are writed in high-level language by MATLAB, reasonable stiffness of steelframe, restrained beam and lateral resistance wall along with influence factors of parameter λ are analyzed,design tables of the relationship among characteristic period Tg, the ratio of rigidity-to-gravity η andoptimum value of parameter λ under different seismic fortification intensity are presented, which can beused for reference to designers.
     2. Ninety analytical models with same lateral stiffness and different stiffness ratio among steel frame,restrained beam and lateral resistance wall are designed. The method of elastic-plastic time history analysisis adopted based on the control of elastic-plastic storey displacement, the change laws between parameter λand elastic-plastic storey displacement are obtained by statistical approach, the results show the ratio of frame stiffness CF-restrained beam stiffness CBhas little effect on lateral inter-storey displacement peak asconstant parameter λ value; when parameter λ is between2and3, the lateral inter-storey displacement peakhas the minimum point, and the design suggestion on optimal value for parameter λ is put forward.
     Generall, it is porved that the new type of fabricated mixed structural system (SPW system) withsteel frame-prefabricated concrete lateral resistance wall is feasible and reasonable, the research resultsprovide the test basis and theoretical guidance for real projects. Finally, some issues that need furtherinvestigations are discussed.
引文
[1]李荣.预制装配式钢结构助力民用建筑节能和产业化产业技术创新战略联盟在沪成立[N].中国建设报,2011-8-15(002).
    [2]陈富生,邱国桦,范重.高层建筑钢结构设计(第二版)[M].北京:中国建筑工业出版社,2004
    [3]李国强.多高层建筑钢结构设计[M].北京:中国建筑工业出版社,2004.
    [4]周天华,吴函恒,白亮等.钢框架—预制混凝土抗侧力墙装配式结构体系[J].建筑科学与工程学报,2013,30(3):1-6.
    [5]同济大学,宝钢建筑系统集成有限公司.钢筋桁架叠合楼板试验研究.[R].2013.
    [6] Xiangdong Tong, Arturo E.Sehultz, Jerome F.Hajjar, Carol K.Shield. Seismic Behvaior of CompositeSteel Frame-Reinforced Concrete Infill Wall Structural System [R]. A Report from the NationalScience Foundation, US-Japan Cooperative Research Program, Phase5, Composite and HybridStructures. April,2001.
    [7] Xiangdong Tong. Seismic Behavior of Composite Steel Frame-reinforced Concrete Infill WallStructural System [D]. Doctor Thesis, Department of Civil Engineering, University of Minnesota,Minneapolis, Minnesota, April,2001:1-11.
    [8] Liauw T. C., Kwan K. H. Plastic Theory of Non-Integral Infilled Frames [C]. Proceedings of theInstitution of Civil Engineering, V.75, Sept.1983, P379-396
    [9] Liauw T. C., Kwan K. H. Plastic Theory of Infilled Frames with Finite interface Shear Strength [C].Proceedings of the Institution of Civil Engineering, V.75, De.1983, P707-723
    [10] Ruey-Shyang Ju, Hung-Jen Lee, Cheng-Cheng Chen, Chi-Chun Tao. Experimental study onseparating reinforced concrete infill walls from steel moment frames [J]. Journal of ConstructionalSteel Research,2012,71:119-128.
    [11]彭晓彤,顾强,林晨.半刚性节点钢框架内填钢筋混凝土剪力墙结构试验研究[J].土木工程学报,2008,41(1):64-69.
    [12]彭晓彤,顾强,林晨.半刚性节点钢框架内填钢筋混凝土剪力墙结构滞回性能分析[J].建筑结构学报,2009,30(1):48-54.
    [13]方有珍,顾强,申林.半刚接钢框架(柱弱轴)-内填剪力墙结构滞回性能试验研究[J].建筑结构学报,2008,29(2):51-62.
    [14]孙国华,顾强,方有珍等.半刚接钢框架内填RC墙结构滞回性能试验—整体性能分析[J].土木工程学报,2010,43(1):35-46.
    [15]彭晓彤,顾强.钢框架内填钢筋混凝土剪力墙混合结构破坏机理及塑性分析[J].工程力学,2011,28(8):56-61.
    [16]方有珍.半刚接钢框架(柱弱轴)-内填RC剪力墙结构的滞回性能[D].西安:西安建筑科技大学博士学位论文,2006.
    [17]孙国华.半刚接钢框架内填RC墙结构滞回性能研究[D].北京:北京工业大学博士学位论文,2010.
    [18]刘欠,朱群红,赵伟.钢框架内填预制钢筋混凝土剪力墙试验研究[J].建筑结构,2011,41(增刊):264-268.
    [19]赵伟,童根树,杨强跃.钢框架内填预制带竖缝钢筋混凝土剪力墙抗震性能试验研究[J].建筑结构学报,2012,33(7):140-146.
    [20]赵伟,童根树,周观根等.钢框架内填预制钢筋混凝土剪力墙试验研究[J].土木建筑与环境工程,2013,35(1):63-69.
    [21]孙国华,顾强,何若全等.半刚接钢框架内填暗竖缝钢筋混凝土剪力墙结构滞回性能试验研究[J].建筑结构学报,2010,31(9):16-26.
    [22]张庆江,郁银泉,李慧成.钢框架内填开洞RC剪力墙结构的有限元分析及简化计算模型探讨[J].建筑结构,2009,39(增刊):493-495.
    [23]郭彦林,董全利.钢板剪力墙的发展与研究现状[J].钢结构,2005,20(1):1-6.
    [24]郭彦林,周明.钢板剪力墙的分类及性能[J].建筑科学与工程学报,2009,26(3):1-12.
    [25] Mohamed Elgaaly. Thin steel plate shear walls behavior and analysis[J]. Thin-Walled Structures.1998(32):151–180
    [26] Qiuhong Zhao, Abolhassan Astaneh-Asl M. Cyclic Behavior of Traditional and Innovative CompositeShear Walls[J]. Journal of Structural Engineering,2004,130(2):271-284
    [27] Toko Hitaka, Chiaki Matsui, Junichi Sakai. Cyclic Tests on Steel and Concrete-Filled Tube Frameswith Slitwalls[J]. Earthquake Engineering and Structural Dynamics.2007(36):707-727
    [28] Darren Vian, Michel Bruneau, Ronny Purba.Special Perforated Steel Plate Shear Walls with reducedBeam Section Anchor Beams. II: Analysis and Design Recommendations [J]. Journal of StructuralEngineering.2009(3):221-228
    [29] M.M. Alinia, M. Dastfan.Special Behaviour of Thin Steel Plate Shear Walls Regarding FrameMembers [J]. Journal of Constructional Steel Research,2006(62):730-738
    [30] M.M. Alinia, M. Dastfan. Cyclic Behaviour, Deformability and Rigidity of Stiffened Steel ShearPanels[J], Journal of Constructional Steel Research,2007(63):554-563
    [31] Xiaoyan Deng, Mehdi Dastfan, Robert G. Driver. Behavior of Steel Plate Shear Walls with CompositeColumns [C]. Proceedings of the2008Structures Congress. Vancouver, BC, Canada,2008:1-10
    [32] Takahash T., Takemoto Y. Experimental Study on Thin Steel Shear Walls and Particular Bracingsunder Alternative Horizontal Load [C].Proceedings of International Association for Bridge andStructural Engineering. Lisbon: IABSE Symposium,1973:185-191.
    [33] Timler P.A., Kulak G.L.. Experimental Study of Steel Plate Shear Walls [R]. Canada: University ofAlberta,1983:16-38.
    [34] Tromposch E.W., Kulak G.L. Cyclic and Static Behavior of Thin Panel Steel Plate Shear Walls [R].Canada: University of Alberta,1987:22-41.
    [35] Narayanan R., Roberts T.M.. Structures Subjected to Repeated Loading-Stability and Strength [M].England: Taylor&Francis Group,1991:237-246.
    [36] Kulak G.L. Behaviour of Steel Plate Shear Walls [C].Proceedings of the AISC EngineeringSymposium on Structural Engineering. US: AISC,1993:111-119.
    [37] Robert T.M., Sabouri-Ghomi S. Hysteretic Characteristics of Unstiffened Plate Shear Panels [J].Thin-Walled Structures,1991,12:145-162.
    [38] Robert T.M., Sabouri-Ghomi S. Hysteretic Characteristics of Unstiffened Perforated Steel Plate ShearPanels [J]. Thin-Walled Structures,1992,14:139-151.
    [39] Xue M., Lu W.. Interaction of Infilled Steel Shear Wall Panels with Surrounding Frame Members [C].Proceedings of Structure Stability Research Council, Bethlehem: Lehigh University,1994:339-354.
    [40] Xue M., Lu W.. Monotonic and Cyclic Behavior of Infilled Steel Shear Panels [C]. Proceedings of the17th Czech and Slovak International Conference on Steel Structures and Bridges. Bratislava: SlovakTechnical University,1994:121-136.
    [41] Elgaaly M., Liu Y., Chen R. Analysis of Thin Steel Plate Shear Walls [J]. Journal of StructuralEngineering ASCE,1997,123(1):1487-1496.
    [42] Elgaaly M. Thin Steel Plate Shear Walls Behavior and Analysis[J]. Thin-Walled Structures,1998,32:151-158.
    [43] Berman J W., Bruneau M. Plastic Analysis and Design of Steel Plate Shear Wall [J]. Journal ofStructural Engineering ASCE,2003,129(11):1448-1456.
    [44] Park H.G., Kwack J.H., Jeon S.W. Framed Steel Plate Wall Behavior under Cyclic Lateral Loading [J].Journal of Structural Engineering ASCE,2007,133(3):378-388.
    [45] Choi I.R., Park H.G.. Ductility and Energy Dissipation Capacity of Shear-Dominated Steel Plate Walls[J]. Journal of Structural Engineering ASCE,2008,134(9):1495-1507.
    [46] JGJ99-98,《高层民用建筑钢结构技术规程》[S].北京:中国建筑工业出版社,1998.
    [47]陈国栋,郭彦林.非加劲板抗剪极限承载力[J].工程力学,2003,20(4):49-54.
    [48]陈国栋,郭彦林.十字加劲钢板剪力墙的抗剪极限承载力[J].工程力学,2004,25(1):71-78.
    [49]陈国栋,郭彦林,范珍,韩艳.钢板剪力墙低周反复荷载试验研究[J].建筑结构学报,2004,25(2):19-38.
    [50]郭彦林,陈国栋,缪友武.加劲钢板剪力墙弹性抗剪屈曲性能研究[J].工程力学,2006,23(2):84-91.
    [51]缪友武.两侧开缝钢板剪力墙结构性能研究[D].北京:清华大学硕士论文,2004.
    [52]郭彦林,缪友武等.全加劲两侧开缝钢板剪力墙弹性屈曲研究[J].建筑钢结构进展,2007,9(3):58-62.
    [53]苏磊.带缝钢板墙结构分析与试验研究[D].武汉:武汉理工大学硕士学位论文,2004.
    [54]曹志亮.带缝钢板墙稳定性分析[D].武汉:武汉理工大学硕士学位论文,2004.
    [55]温沛钢.带缝钢板剪力墙的理论分析与试验研究[D].广州:华南理工大学硕士学位论文,2004.
    [56]方礼凯.开孔和未开孔钢板剪力墙抗剪性能研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2005.
    [57]钟玉柏.钢板剪力墙和开缝钢板剪力墙抗剪静力性能研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2005.
    [58]王迎春,郝际平,李峰等.钢板剪力墙力学性能研究[J].西安建筑科技大学学报,2007,39(2):181-186.
    [59]王迎春,郝际平,曹春华.薄钢板墙的简化拉力条模型分析[C].中国钢结构协会第五次全国会员代表大会暨学术年会论文集,2007,78-80.
    [60]董全利.防屈曲钢板剪力墙结构性能与设计方法研究[D].北京:清华大学博士学位论文,2007.
    [61]郭彦林,董全利,周明.防屈曲钢板剪力墙弹性性能及混凝土盖板约束刚度研究[J].建筑结构学报,2009,30(1):40-47.
    [62]郭彦林,董全利,周明.防屈曲钢板剪力墙滞回性能的理论与试验研究[J].建筑结构学报,2009,30(1):31-39.
    [63]邵建华.抗弯钢框架-钢板剪力墙的结构影响系数与位移放大系数研究[D].南京:河海大学博士学位论文,2008.
    [64]邵建华,顾强,申永康.多层多跨钢板剪力墙水平极限承载力分析[J].重庆建筑大学学报,2008,30(2):71-74.
    [65]邵建华,顾强,申永康.多层钢板剪力墙水平荷载作用下结构性能的有限元分析[J].工程力学,2008,25(6):140-145.
    [66]邵建华,顾强,申永康.钢板剪力墙抗震性能的有限元分析[J].华南理工大学学报,2008,36(l):128-133.
    [67]邵建华,顾强,申永康.基于等效拉杆模型的钢板剪力墙有限元分析[J].武汉理工大学学报,2008,30(1):75-78.
    [68]蒋路,陈以一,汪文辉等.足尺带缝钢板剪力墙低周往复加载试验研究Ⅰ[J].建筑结构学报,2009,30(5):57-64.
    [69]蒋路,陈以一,卞宗舒等.足尺带缝钢板剪力墙低周往复加载试验研究Ⅱ[J].建筑结构学报,2009,30(5):65-71.
    [70]陈以一,蒋路.带缝钢板剪力墙的承载力和开缝参数研究[J].建筑科学与工程学报,2010,27(3):109-114.
    [71]蒋路,陈以一,王伟栋.带缝钢板剪力墙弹性抗侧刚度及简化模型研究[J].建筑科学与工程学报,2010,27(3):115-120.
    [72]蒋路.带缝钢板剪力墙应用技术分析[J].建筑科学与工程学报,2010,27(3):115-120.
    [73]马欣伯.两边连接钢板剪力墙及组合剪力墙抗震性能研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009.
    [74]郭兰慧,马欣伯,张素梅.两边连接开缝钢板剪力墙的试验研究[J].工程力学,2012,29(3):133-141.
    [75]郭宏超.半刚性框架-钢板剪力墙结构抗震性能研究[D].西安:西安建筑科技大学博士学位论文,2011.
    [76]郭宏超,郝际平.半刚接钢框架-斜加劲钢板剪力墙结构体系抗震性能试验研究[J].西安建筑科技大学学报(自然科学版),2011,43(5):631-637.
    [77]郭兰慧,李然,范峰等.钢管混凝土框架-钢板剪力墙结构滞回性能研究[J].土木工程学报,2012,45(12):69-78.
    [78] A. Astaneh-Asl. Seismic behavior and design of composite steel plate shear walls[R]. Steel TipsReport. Structural Steel Educational Council, Moraga, CA,2002.
    [79] Q.H. Zhao, A. Astaneh-Asl. Cyclic behavior of traditional and innovative composite shear wall[J].Journal of Structural Engineering, ASCE,2004:271~283.
    [80] Qiuhong Zhao. Experimental and analytical studies of cyclic behavior of steel and composite shearwall systems[D]. Dissertation for the Degree of Doctor of Philosophy. University of California,Berkeley,2006.
    [81] T. Hitaka, C. Matsui. Experimental study on steel shear wall with slits[J]. Journal ofStructural.Engineering,2003:586~595.
    [82] Toko Hitaka, Chiaki Matsui. Strength and behavior of steel-concrete composite bearing wall[C].Proceedings of3rdInternational Conference on Steel and Composite Structures.ASCCS,1997.
    [83]董全利.防屈曲钢板剪力墙结构性能与设计方法研究[D].北京:清华大学博士学位论文.2007.
    [84]郭彦林,周明.两层单跨钢板墙的比较试验研究及其简化分析模型[C].第六届全国土木工程研究生学术论坛.清华大学,2008.
    [85]高辉.组合钢板剪力墙试验研究与理论分析[D].上海:同济大学硕士学位论文.2007.
    [86]高辉,孙飞飞,李国强.组合钢板剪力墙简化计算模型[C].工业建筑,第七届全国现代结构工程学术研讨会,2007(增刊):588-594.
    [87]郭兰慧,戎芹,马欣伯等.两边连接钢板-混凝土组合剪力墙抗震性能试验研究及有限元分析[J].建筑结构学报,2012,33(6):59-68.
    [88]马欣伯,郭兰慧,张素梅.两边连接钢板混凝土组合剪力墙简化分析模型[J].西安建筑科技大学学报(自然科学版),2009,41(3):352-357.
    [89]郭震,袁迎曙.三边约束组合钢板剪力墙单元抗震性能试验研究[J].建筑结构学报,2012,33(5):118-149.
    [90]郭震,袁迎曙.钢框架短肢组合钢板剪力墙抗震性能试验研究[J].华南理工大学学报(自然科学版),2011,39(6):155-160.
    [91]丁玉坤,张耀春,赵俊贤.人字形无黏结内藏钢板支撑剪力墙拟静力试验研究[J].土木工程学报,2008,41(11):23-30.
    [92]张耀春,丁玉坤,赵俊贤.单斜无黏结内藏钢板支撑剪力墙滞回性能的试验研究[J].土木工程学报,2009,42(7):50-57.
    [93]丁玉坤,张耀春.无黏结内藏钢板支撑剪力墙滞回性能的数值模拟[J].土木工程学报,2009,42(5):47-54.
    [94]丁玉坤,张耀春.钢框架-无黏结内藏钢板支撑剪力墙双重体系抗震性能分析[J].土木工程学报,2011,43(增刊):385-391.
    [95]曹万林,张建伟,陶军平等.内藏桁架的混凝土组合低剪力墙试验[J].东南大学学报,2007,37(2):195-200.
    [96]郑同亮,曹万林,张建伟,等.内藏钢桁架混凝土组合高剪力墙抗震性能试验研究[J].世界地震工程,2006,22(2):77-83.
    [97]曹万林,张建伟,张静娜等.内藏桁架混凝土组合中高剪力墙抗震性能试验研究[J].北京工业大学学报,2008,34(6):720-725.
    [98]杨亚彬.圆钢管混凝土边框内藏钢桁架剪力墙抗震试验与理论研究[D].北京:北京工业大学博士学位论文.2011.
    [99]张文江.钢管混凝土边框内藏钢板组合剪力墙抗震性能试验与理论研究[D].北京:北京工业大学博士学位论文.2012.
    [100] Ned M Cleland. Design for lateral force resistance with precast concrete shear walls[J]. PCI Journal,1997(5):44-64.
    [101] Hiroshi Muguruma, Minehiro Nishiyarna, Furmio Watanabe. Lessons Learned from the KobeEarthquake-a Japanese perspective[J]. PCI Journal,1995(4):28-42.
    [102] Mochizuki S. Experiment on slip strength of horizontal joint of precast concrete multi story shearwalls[C]. Eleven world conference on earthquake engineering,1996,194:1-8.
    [103] Yahya Kurama, Richard Sause, Stephen Pessiki. Lateral Load Behavior and Seismic Design ofUnbonded Post-Tensioned Precast Concrete Walls [J]. ACI Structural Journal,1999,96(4):622-633.
    [104] Khaled A. Soudki, Sami H.. Rizkalla. Horizontal connection for precast concrete shear wallssubjected to cyclic deformations part1: mild steel connections[J]. PCI Journal,1995(4):78-96.
    [105] Khaled A. Soudki, Sami H.. Rizkalla, Bob Daiki W. Horizontal connection for precast concrete shearwalls subjected to cyclic deformations part2: prestressed connections[J]. PCI Journal,1995(5):1-46.
    [106] Chakrabarti S.C., Nayak G.C, Paul D.K. Shear characteristics of cast-in place vertial joints instory-high precast wall assembly[J]. ACI Structural Journal,1988,85(1):30-45.
    [107]陈建伟,苏幼坡.预制装配式剪力墙结构及其连接技术[J].世界地震工程,2013,29(1):38-48.
    [108]尹之潜,朱玉莲,杨淑文等.高层装配式大板结构模拟地震试验[J].土木工程学报,1996,29(3):57-64.
    [109]姜洪斌.预制混凝土剪力墙结构技术的研究与应用[J].住宅产业,2010,9:22-27.
    [110]姜洪斌,陈再现,张家齐等.预制钢筋混凝土剪力墙结构拟静力试验研究[J].建筑结构学报,2011,32(6):34-40.
    [111]陈再现,姜洪斌,张家齐等.预制钢筋混凝土剪力墙结构拟动力子结构试验研究[J].建筑结构学报,2011,32(6):41-50.
    [112]张家齐.预制混凝土剪力墙足尺子结构抗震性能试验研究[D].哈尔滨:哈尔滨工业大学硕士学位论文.2011.
    [113]陈锦石,郭正兴.全预制装配整体式剪力墙结构体系空间模型抗震性能研究[J].施工技术,2012,41(364):87-98.
    [114]陈耀钢,郭正兴,董年才等.全预制装配整体式剪力墙结构构件工厂化生产技术[J].施工技术,2011,40(342):6-9.
    [115]陆建忠,郭正兴,董年才等.全预制装配整体式剪力墙结构抗震性能研究[J].施工技术,2011,40(342):16-19.
    [116]钱稼茹,彭媛媛,张景明等.竖向钢筋套筒浆锚连接的预制剪力墙抗震性能试验[J].建筑结构,2011,41(2):1-6.
    [117]钱稼茹,彭媛媛,秦珩等.竖向钢筋留洞浆锚间接搭接的预制剪力墙抗震性能试验[J].建筑结构,2011,41(2):7-11.
    [118]张微敬,钱稼茹,陈康等.竖向分布钢筋单排连接的预制剪力墙抗震性能试验[J].建筑结构,2011,41(2):12-16.
    [119]张微敬,钱稼茹,于检生等.竖向分布钢筋单排间接搭接的带现浇暗柱预制剪力墙抗震性能试验[J].土木工程学报,2012,45(10):89-97.
    [120]叶献国,张丽军,王德才等.预制叠合板式混凝土剪力墙水平承载力实验研究[J].合肥工业大学学报(自然科学版),2009,32(8):1215-1218.
    [121]连星,叶献国,王德才等.叠合板式剪力墙的抗震性能试验分析[J].合肥工业大学学报(自然科学版),2009,32(8):1219-1223.
    [122]连星.叠合板式剪力墙的抗震性能试验分析及理论研究[D].合肥:合肥工业大学博士学位论文.2009.
    [123] GB50011-2010,《建筑抗震设计规范》[S].北京:中国建筑工业出版社,2010.
    [124] JGJ101-96,《建筑抗震试验方法规程》[S].北京:中国建筑工业出版社,1997.
    [125] GB/T228.1-2010,《金属材料拉伸试验第一部分:室温试验方法》[S].北京:中国标准出版社,2010.
    [126] GB/T2975-1998,《钢及钢材产品力学性能试验取样位置及试样制备》[S].北京:中国标准出版社,1998.
    [127] GB/T50081-2002,《混凝土力学性能试验方法标准》[S].北京:中国标准出版社,2003.
    [128] GB50010-2010,《混凝土结构设计规范》[S].北京:中国建筑工业出版社,2010.
    [129]郝际平,郭宏超,解崎等.半刚性连接钢框架-钢板剪力墙结构抗震性能试验研究[J].建筑结构学报,2011,32(2):33-40.
    [130] FEMA356/November2000, Prestandard and commentary for the seismic rehabilitation of buildings[S]. Washington DC: Federal Emergency Management Agency,2000.
    [131]李兵,李宏男.钢筋混凝土剪力墙弹塑性分析方法[J].地震工程与工程震动,2004,24(1):76-81.
    [132]宋玉普,赵国藩.钢筋混凝土结构分析中的有限单元法[M].大连:大连理工大学出版社,1993.
    [133]李康宁,洪亮.结构三维弹塑性分析方法及计算机程序CANNY[J].四川建筑科学研究,2001,27(4):1-6.
    [134] Andreas Stavridis, P.B. Shing. Finite-Element Modeling of Nonlinear Behavior of Masonry-InfilledRC Frames[J].Journal of Structural Engineering,2010,136(6):285-295.
    [135]李杰,李奎明.钢筋混凝土短肢剪力墙结构非线性分析研究[J].建筑结构学报,2009,30(1):23-30.
    [136] ABAQUS Analysis User’s Manual, Version6.10. USA: ABAQUS, Inc., Dassault Systèmes,2009
    [137]陆新征,叶列平,缪志伟.建筑抗震弹塑性分析—原理、模型与在ABAQUS,MSC.MARC和SAP2000上的实践[M].北京:中国建筑工业出版社,2009.
    [138] Hillerborg A., M. Modeer, P.E. Petersson. Analysis of Crack Formation and Crack Growth inConcrete by Means of Fracture Mechanics and Finite Elements[J]. Cement and ConcreteResearch,1976,66(3):773-782.
    [139] Lee, J., G. L. Fenves. Plastic-Damage Model for Cyclic Loading of Concrete Structures[J]. Journal ofEngineering Mechanics,1998,124(8):892-900.
    [140] Lubliner, J., J. Oliver., S. Oller. A Plastic-Damage Model for Concrete [J]. International Journal ofSolids and Structures,1989,25(2):299-329.
    [141]庄茁,蒋持平.工程断裂与损伤[M].北京:机械工业出版社,2004.
    [142]范天佑.断裂力学基础[M].南京:江苏科学技术出版社,1978.
    [143] Griffith A. A.. The phenomena of Rupture and Flow in Solids [J]. Philosophical Transactions SeriesA,1920,221:163-198.
    [144] Rice J. R.. A path independent Integral and the Approximate Analysis of Strain Concentration forNotches and Cracks [J]. Journal of Applied Mechanics,1968,35:379-386.
    [145] Rice J. R., Rosengren G. F.. Plate Strain Deformation near a Crack Tip in a Power Law HardeningMaterial [J]. Journal of the Mechanics and Physics of Solids,1968,16:1-12.
    [146] Dowling, N. E., Begley, J. A.. Fatigue crack growth during gross plasticity and J-integral [J]. ASTMSTP590,1976:82-103.
    [147] Rabotnov Y. N.. On the equations of state for creep [J]. In: Progress in Applied Mechanics,1963:307-315.
    [148] Lemaitre J.. Evaluation of dissipation and damage in metals submitted to dynamic loading [J]. In:Proceeding of ICM-1, Kyoto,1971.
    [149] Johnson G. R., W. H. Cook. Fracture Characteristics of Three Metals Subjected to Various Strains,Strain rates, Temperatures and Pressures [J]. Engineering Fracture Mechanics,1985,21(1):31-48.
    [150] Keeler S. P., W. A. Backofen. Plastic Instability and Fracture in Sheets Stretched over Rigid Punches[J]. ASM Transactions Quarterly,1964,56:25-48.
    [151] Müschenborn W., H. Sonne. Influence of the Strain Path on the Forming Limits of Sheet Metal [J].Archiv fur das Eisenhüttenwesen,1975,46(9):597-602.
    [152] Hancock J. W., Mackenzie A. C. On the mechanisms of ductile failure in high-strength steelssubjected to multi-axialstress-states [J]. Journal of the Mechanics and Physics of Solids,1976,24:147-169.
    [153] Mirza M. S., Barton D. C.The effect of stress triaxiality and strain-rate on the fracture characteristicsof ductile metals [J]. J Mater Sci,1996,31.
    [154] Wierzbicki T., Xue L. On the effect of the third invariant of the stress deviator on ductile fracture [R].USA, Impact and Crashworthiness Lab Report#136,2005, International Journal of Fracture,submitted for publication.
    [155] Xue L.. Damage accumulation and fracture initiation in uncracked ductile solids under triaxialloading—Part I:Pressure sensitivity and Lode dependence[R].USA, Impact and Crashworthiness LabReport#138,2005, submitted for publication.
    [156] Yingbin Bao, Tomasz Wierzbicki. On fracture locus in the equivalent strain and stress triaxialityspace [J]. International Journal of Mechanical Science,2002,46:81-89.
    [157] Y. W. Lee, T. Wierzbicki. Quick Fracture Calibration for Industrial Use[R], USA, Impact andCrashworthiness Laboratory, Massachusetts Institute of Technology,2004., Report No.115.
    [158]卢庆华.地震载荷下钢结构焊接接头断裂行为的研究及评估[D].天津:天津大学硕士学位论文,2003.
    [159] Habbitt, Karlsson and Sorensen Inc. ABAQUS Analysis User’s Manual Version6.8[M]. Providence,RI, USA,2006.
    [160]熊俊.强震作用下钢框架焊接节点损伤性能和计算模型研究[D].北京:清华大学博士学位论文,2011.
    [161]杨勇.型钢混凝土粘结滑移基本理论及应用研究[D].西安:西安建筑科技大学博士学位论文,2003.
    [162]董宇光.型钢与混凝土粘结—滑移关系及型钢混凝土剪力墙抗震性能研究[D].上海:同济大学博士学位论文,2006.
    [163]李俊华,李玉顺,王建民等.型钢混凝土柱粘结滑移本构关系与粘结滑移恢复力模型[J].土木工程学报,2010,43(3):46-52.
    [164]于澎涛.三维结构弹塑性分析软件CANNY的研究及应用[D].哈尔滨:中国地震局工程力学研究所硕士学位论文,2010.
    [165]白亮.型钢高性能混凝土剪力墙抗震性能及性能设计理论研究[D].西安:西安建筑科技大学博士学位论文,2009.
    [166]石永久,王萌,王元清.循环荷载作用下结构钢材本构关系试验研究[J].建筑材料学报,2012,15(3):293-300.
    [167]石永久,王萌,王元清.结构钢材循环荷载下的本构模型研究[J].工程力学,2012,29(2):92-98.
    [168] Xiangdong Tong, J F Hajjar, Arturo E Schultz, Carol K Shield. Cyclic Behavior of Steel FrameStructures with Composite Reinforced Concrete Infill Walls and Partially-restrained Connections [J].Journal of Constructional Steel Research,2005,61:531-552.
    [169]杨勇,赵鸿铁,薛建阳.型钢混凝土粘结滑移力学性能研究综述分析—国内外型钢混凝土粘结滑移研究现状[J].西安建筑科技大学学报(自然科学版),2002,34(2):103-108.
    [170] European Convention for Constructional Steelworks (ECCS). Recommended Testing Procedures forAssessing the Behaviour of Structural Elements under Cyclic Loads [R]. Technical Committee1,TWG1.3-Seismic Design, No.4,1986.
    [171]方鄂华,钱稼茹,叶列平.高层建筑结构设计[M].北京:中国建筑工业出版社,2003.
    [172]东南大学,同济大学,天津大学合编.混凝土结构(中册)混凝土结构与砌体结构设计[M].北京:中国建筑工业出版社,2008.
    [173] GB50017-2003,《钢结构设计规范》[S].北京:中国计划出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700