用户名: 密码: 验证码:
钢管RPC短柱静力及抗冲击性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性粉末混凝土(简称RPC)作为绿色高性能混凝土具有超高强度、高韧性、耐久性好、体积稳定性优良的特点,是混凝土未来的发展方向。将其应用于组合结构形成钢管活性粉末混凝土结构构件,对其研究具有重要的理论意义和工程应用价值。本文研究了不同截面形式钢管RPC的轴压性能、粘结滑移与界面粘结损伤性能、尺寸效应模型和钢管RPC的抗冲击性能。主要的研究工作和创新成果如下:
     (1)以统一强度理论和厚壁圆筒理论为基础,推导了圆形、方形和圆端形截面钢管RPC轴压短柱的承载力计算公式。运用势能驻值原理,考虑钢管和RPC之间的套箍效应,推导出钢管RPC柱在轴向压力作用下组合弹性模量的计算式,并进一步分析钢管RPC柱的组合轴压刚度。采用粘结强度和割线模量定义了界面粘结损伤变量,建立了一种基于损伤理论的钢管与RPC的界面粘结损伤模型,揭示了钢管RPC界面粘结的损伤机理。
     (2)基于统一屈服准则和应变梯度塑性理论,推导考虑尺寸效应的厚壁圆筒塑性极限解,得到考虑尺寸效应的外钢管的纵向抗压强度,研究了钢管RPC的尺寸效应规律及不同变形条件下尺寸效应的作用机理。采用Weibull统计尺寸效应模型对核心RPC的抗压强度进行修正,对外钢管采用考虑尺寸效应的厚壁圆筒理论,从而对不同截面形式的钢管RPC轴压短柱提出了考虑界面粘结性能和尺寸效应的轴压承载力计算方法,并探讨了强度理论参数、套箍指标和活性粉末混凝土强度对承载力的影响特性。
     (3)采用三段线近似模拟钢管RPC的粘结滑移本构模型,以便于进行ANSYS数值模拟时弹簧单元的施加。对于钢管RPC粘结滑移数值模拟采用非线性弹簧单元Combination39,分析了该单元的特点以及F D曲线选取的计算方法。非线性弹簧单元分别模拟了钢管与活性粉末混凝土之间法向、纵向切向、环向切向三个方向的作用。利用ANSYS后处理器得到的不同截面形式钢管RPC短柱的轴压承载力和荷载-变形关系曲线,与文献中试验曲线吻合较好,探讨了RPC轴压强度、套箍系数和轴压刚度比对钢管RPC轴压短柱极限承载力的影响。
     (4)采用LS-DYNA软件对RPC短柱和钢管RPC短柱进行分离式霍普金森压杆(简称SHPB)有限元数值模拟。数值分析得到的应力波的波形图、构件的轴向应力时程和轴向应变时程、重构的应力应变曲线均与试验结果基本一致,证明了有限元模型的合理性。基于CEB公式和Malver公式推导钢管RPC试件的动态增长因子计算表达式,给出了三波法和两波法计算试件应变、应力和应变率的基本公式。研究了冲击荷载作用下RPC应变率强化的特性、试件破坏过程以及动态增长因子的响应规律,探讨了活性粉末混凝土强度、钢管壁厚度、套箍系数等因素对钢管RPC构件的抗冲击性能的影响特性。
Reactive powder concrete (RPC) as a green high performance concrete has incomparablesuperior performance in many aspects including super high strength, high toughness, highdurability and excellent volume stability. Reactive powder concrete is the future developmentdirection of the concrete. The application in combination structure will form RPC filled steeltubular structures. In this regard, it is of great theoretical significance and engineeringapplication value to study the RPC filled steel tubular members. In this paper, the bond-slip,interfacial bond damage performance, size effect model and impact resistance properties arestudied for reactive powder concrete filled different cross-section steel tube. The mainresearch work and innovation achievements obtained in this dissertation can be summarizedas follows:
     (1) The axial bearing capacity calculation of reactive powder concrete filled circular,square and round-ended steel tubular short columns were derived based on the unifiedstrength theory and thick-walled cylinder theory. By means of the theorem of the stationaryvalue of potential energy and consideration of confinement effect, the theoretical formulas ofthe composite compressive elastic modulus were decuced. The formulas can actually andreliably describe the elasticity behaviors and the confinement mechanism of the compositecolumn. The composite axial compression stiffness of RPC filled steel tube was furtheranalyzed.
     (2) A unified plastic limit solution with size effect was dericed by using the unified yieldcriterion and a strain gradient plasticity theory. The axial compressive strength of externalsteel pipe with size effect was conducted. The size effect rule and mechanism under differentdeformation conditions was discussed. The amendment of core RPC compressive strengthwas carried out by means of adopting Weibull statistical size effect model. The thick-walledcylinder theory with size effect for external steel pipe was conducted. The calculation formulawith size effect model and interfacial bonding strength is presented for reactive powderconcrete filled different cross-section steel tubular columns subjected to axial compressionbearing capacity. The accuracy of the ultimate capacity formula is effectively improved forRPC filled steel tubular stub columns. A number of parametric studies, including in strengththeory parameter, confinement index and RPC strength are also carried out to investigate theireffects on the analytical solutions.
     (3) The bond-slip constitutive model of RPC filled steel tube was approximatelysimulated by the three section line for appliying spring element in ANSYS numerical simulation. The nonlinear spring element named Combination39was adopted to simulate thebond-slip behavior between steel tube and RPC. Attention is especially paid to F-D curveselection method and characteristics of nonlinear spring element named Combination39.Combination39elements were used to simulate the three directional interactions with normaldirection, longitudinal and ring tangential direction. The axial compression bearing capacityand load-deformation curves of RPC filled different cross-section steel tubular columns weregot to use ANSYS postprocessor. The results indicated that the simulation curves were goodagreement with the trial curves. Parametric studies are carried out to investigate the influenceof RPC strength, confinement index and axial compression stiffness ratio on the ultimate axialcompressive capacity
     (4) The split Hopkinson pressure bar (referred SHPB) numerical simulation for RPCfilled steel tubular short column and RPC short column were conducted by LS-DYNAsoftware. The waveform diagram of stress wave, axial stress versus time, axial strain versustime and and the reconstruction of stress versus strain curves were consistent with theexperimental results which proved the rationality of finite element model. Based on thedynamic mode suggested by CEB and Malver,a calculation expression of dynamic increasefactor was deduced for RPC filled steel tube. The three-wave method and two-wave methodare given to the formula of calculate strain, stress and strain rate. The RPC strain ratehardening characteristics, specimen failure process and response of dynamic increase factorswere studied under impact loading. The effects of RPC strength, steel tube wall thickness,confinement index and other coefficients on the impact resistance are discussed through thenumerical analysis.
引文
[1]蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2003
    [2]韩林海.钢管混凝土结构-理论与实践[M].北京:科学出版社,2004
    [3]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001
    [4]钟善桐.钢管混凝土结构(第3版)[M].北京:清华大学出版社,2003
    [5] Ji T, Chen C Y, Zhuang Y Z. Evaluation method for cracking resistant behavior ofreactive powder concrete[J]. Construction and Building Materials,2012,28:45-49
    [6] Tai Y S. Uniaxial compression tests at various loading rates for reactive powderconcrete[J]. Theoretical and Applied Fracture Mechanics,2009,52:14-21
    [7]吴中伟.绿色高性能混凝土与科技创新[J].建筑材料学报,1998,1(1):1-7
    [8]谭克锋,蒲心诚,蔡绍怀.钢管超高强混凝土的性能与极限承载力的研究[J].建筑结构学报,1999,20(1):10-15
    [9] Park S M, Chol B G, Tae Y K.按experimental study on behavior of steel-tubecolumn filled with reinforced concrete connected to H-beam[C]. Proceedings of FifthPacific Structutal Steel Conference,1998:937-942
    [10]杨吴生.钢管活性粉末混凝土力学性能极其极限承载力研究[D].长沙:湖南大学,2003
    [11] Pierre Y B, Marco C. Precast, prestressed pedestrain bridge-world's first reactivepowder concrete structure[J]. PCI Journal,1999,44(5):60-71
    [12] Etienne D, Causse M, Behoul M. Design and building seoul peace footbridge[J].Third International arch Bridge Conference,2009,9:865-876
    [13] Richard P, Cheyrezy M H. Composition of reactive powder concrete[J]. Cement andConcrete Research,1995,25(7):1501-1511
    [14]陈肇元.钢管混凝土短柱作为防护结构构件的性能[M].北京:清华大学出版社,1986
    [15]蔡绍怀,焦占拴.钢管混凝土短柱的基本性能和强度计算[J].建筑结构学报,1984,5(6):13-29
    [16]钟善桐,何若全.钢管混凝土轴心受压长柱承载力的研究[J].哈尔滨建筑工程学院学报,1983,16(1):1-13
    [17] Johansson M, Gylltoft K. Structural behavior of slender circular steel-concretecomposite columns under various means of load application[J]. Steel and CompositeStructures,2001,1(4):393-410
    [18] Bradford M A, Loh H Y, Uy B. Slenderness limits for filled circular steel tubes[J].Journal of Constructional Steel Research,2002,58(2):243-252
    [19]丁发兴.圆钢管混凝土结构受力性能与设计方法研究[D].长沙:中南大学,2006
    [20] Gupta P K, Sarda S M, Kumar M S. Experimental and computational study ofconcrete filled steel tubular columns under axial loads[J]. Journal of ConstructionalSteel Research,2007,63(2):182-193
    [21] Zhou X Y, Cao G H, He R. Study on long-term behavior and ultimate strength ofCFST columns[C]. Proceedings of Ninth International Conference of ChineseTransportation Professionals,2009:2239-2248
    [22]梁本亮,刘建新.圆钢管混凝土短柱轴压极限承载力分析[J].上海交通大学学报,2010,44(6):749-754
    [23]肖岩,黄叙.圆钢管混凝土轴压短柱弹塑性全过程分析[J].建筑结构学报,2011,32(12):195-181
    [24] Dundu M. Compressive strength of circular concrete filled steel tube columns[J].Thin-Walled Structures,2012,56(7):62-70
    [25] Farid A, Mohammad A, Suliman A. Experimental and numerical investigations of thecompressive behavior of concrete filled steel tubes (CFSTs)[J]. Journal ofConstructional Steel Research,2013,80(1):429-439
    [26] Gupta L M, Parlewar P M. An investigation of concrete-filled steel box columns[J].Journal of Structural Engineering,2001,28(1):33-38
    [27] Mursi M, Uy B. Strength of concrete filled steel box columns incorporatinginteraction buckling[J]. Journal of Structural Engineering,2003,129(5):626-639
    [28] Mursi M, Uy B. Strength of slender concrete filled high strength steel box columns[J].Journal of Constructional Steel Research,2004,60(12):1825-1848
    [29]张素梅,郭兰慧,叶再利,等.方钢管高强混凝土轴压短柱的试验研究[J].哈尔滨工业大学学报,2004,36(12):1610-1614
    [30]张耀春,王秋萍,毛小勇,等.薄壁钢管混凝土短柱轴压力学性能试验研究[J].建筑结构,2005,35(1):22-27
    [31]卢方伟,李四平,孙国钧.方钢管混凝土轴压短柱的非线性有限元分析[J].工程力学,2007,24(3):110-114
    [32]钱稼茹,江枣.钢管混凝土组合柱轴向受压承载力计算方法[J].工程力学,2011,28(4):49-57
    [33]梁禧.方钢管高强混凝土轴压短柱非线性有限元分析[D].石家庄:河北农业大学,2011
    [34] Wu B, Zhao X Y, Zhang J S. Cyclic behavior of thin-walled square steeltubularcolumns filled with demolished concrete lumps and fresh concrete[J]. Journal ofConstructional Steel Research,2012,77(5):69-81
    [35] Wang Y Y, Yang Y L, Zhang S M. Static behaviors of reinforcement-stiffened squareconcrete-filled steel tubular columns[J]. Thin-walled Structures,2012,58(9):18-31
    [36]蔡崇华,谢建雄,卢哲安,等.微膨胀圆端形钢管混凝土力学性能研究[J].建材世界,2009,30(2):148-151
    [37]李彬,李新,周丹,等.圆端形钢管混凝土双肢塔柱受力性能试验研究[J].建材世界,2009,30(3):31-34
    [38]王二磊.圆端形钢管混凝土受压力学性能与可靠度研究[D].武汉:武汉理工大学,2012
    [39]马小春.圆端形钢管混凝土轴压试验研究[D].武汉:武汉理工大学,2012
    [40]李刚.新型钢-混凝土组合结构力学性能研究[D].长沙:中南大学,2012
    [41] Tan K H, Bhowmik T, Balendra T. Confinement model for FRP-bondedcapsule-shaped concrete columns[J]. Engineering Structures,2013,51(6):51-59
    [42]林震宇,张静,吴炎海,等.钢管RPC短柱轴向受压试验研究[J].福建建筑,2003,21(3):28-31
    [43]林震宇.圆钢管RPC轴压柱受力性能研究[D].福州:福州大学,2004
    [44]姚良云.圆钢管RPC短柱偏压及长柱轴压受力性能研究[D].福州:福州大学,2004
    [45]曾建仙.圆钢管RPC偏压长柱的受力性能研究[D].福州:福州大学,2005
    [46]冯建文.钢管活性粉末混凝土柱的力学性能研究[D].北京:清华大学,2008
    [47]吴捧捧.自密实钢管RPC柱基本力学性能研究[D].北京:北京交通大学,2010
    [48] Tian Z M, Wu P A, Jia J W. Dynamic response of RPC-filled steel tubular columnswith high load carrying capacity under axial impact loading[J]. Transactions ofTianjin University,2008,14(6):441-449
    [49]田志敏,吴平安,杜修力.钢管RPC短柱的抗轴向冲击性能[J].北京工业大学学报,2010,36(4):482-489
    [50] Yan Z G, Huang Y, An M Z. Axial compression experimental research of RPC filledsteel tube columns[J]. Advanced Materials Research,2010:198-202
    [51] Luo H, Yan Z G, An M Z. Finite Element Analysis of RPC-filled steel tube stubcolumns[J]. Advanced Materials Research,2011:1906-1909
    [52]李占辉.圆钢管约束下活性粉末混凝土本构模型有限元分析[D].北京:北京交通大学,2012
    [53]季文玉,罗华,杨国静.钢管活性粉末混凝土长柱轴压性能试验研究[J].中国铁道科学,2014,35(1):28-33
    [54] Roeder C W, Cameron B, Brown C B. Composite action in concrete filled tubes[J].Journal of Structural Engineering,1999,125(5):477-484
    [55] Giakoumelis G, Lam D. Axial capacity of circular concrete-filled tube columns[J].Journal of Constructional Steel Research,2004,60(7):1049-1068
    [56] Lam D, Williams C A. Experimental study on concrete filled square hollowsections[J]. Steel and Composite Structures,2004,4(2):95-112
    [57] Fam A, Qie F S, Rizkalla S. Concrete-filled steel tubes subjected to axial compressionand lateral cyclic loads[J]. Journal of Structural Engineering,2004,130(4):631-640
    [58] Georgios G, Dennis L. Axial capacity of circular concrete-filled tube columns[J].Journal of Constructional Steel Research,2004,60(7):1049-1068
    [59]王铁成,郝贵强,申鑫,等.钢管与混凝土粘结性能的试验与理论分析[J].工业建筑,2008,38(5):96-104
    [60]闫志刚,安明喆,吴捧捧,等.钢管活性粉末混凝土界面粘结强度试验研究[J].中国铁道科学,2009,30(6):7-11
    [61]闫志刚,罗华,安明喆.钢管活性粉末混凝土柱界面黏结性能研究[J].土木工程学报,2010,43(8):57-62
    [62]康希良,程耀芳,涂昀,等.钢管混凝土粘结-滑移性能试验研究及数值分析[J].工程力学,2010,27(9):102-106
    [63]康希良,程耀芳,张丽,等.钢管混凝土粘结-滑移本构关系理论分析[J].工程力学,2009,26(10):74-78
    [64]刘永健,刘君平,池建军.钢管混凝土界面抗剪粘结滑移力学性能试验[J].广西大学学报(自然科学版),2010,35(1):17-24
    [65]任少华,赵鸿铁,薛建阳.方钢管混凝土粘结强度试验研究[J].建筑结构,2011,41(6):68-70
    [66]刘雪锋,涂光亚,易壮鹏.钢管与核心混凝土之间的粘结单元及其应用[J].中外公路,2012,32(6):184-187
    [67] Xue J Q, Bruno B, Chen B C. Effects of debonding on circular CFST stub columns[J].Journal of Constructional Steel Research,2012,69(1):64-76
    [68] Qu X S, Chen Z H, Nethercot D A, et al. Load-reversed push-out tests on rectangularCFST columns[J]. Journal of Constructional Steel Research,2013,81(1):35-43
    [69] Sakino K, Nakahara H, Morino S, et al. Behavior of centrally loaded concrete-filledsteel-tube short columns[J]. Journal oI Structural Engineering,2004,130(2):180-188
    [70]宋中南,石云兴.混凝土高强化对其尺寸效应的影响[J].混凝土2003,25(8):17-19
    [71]李家康.高强混凝土立方抗压强度的尺寸效应[J].建筑材料学报,2004,7(1):81-84
    [72]黄煜镔,钱觉时.高强及超高强混凝土的脆性与强度尺寸效应[J].工业建筑,2005,35(1):15-17
    [73]吴寒亮,王元丰.钢管混凝土柱的尺寸效应研究[J].哈尔滨工业大学学报,2007,39(2):22-25
    [74]杜修力,张建伟,符佳,等.钢筋混凝土构件的尺寸效应研究进展及展望[J].建筑科学与工程学报,2009,26(3):14-19
    [75]杜修力,符佳,张建伟.钢筋混凝土柱轴压性能尺寸效应的大比尺试验研究[J].土木工程学报,2010,43(2):1-8
    [76]杜修力,符佳,张建伟,等.钢筋高强混凝土柱轴压性能尺寸效应试验[J].北京工业大学学报,2012,38(10):1491-1497
    [77]冯磊,刘红彬,彭培火,等.高强与活性粉末混凝土尺寸效应的分析[J].四川建筑科学研究,2010,36(3):191-197
    [78]刘数华,阎培渝,冯建文.超高强混凝土RPC强度的尺寸效应[J].公路,2011,56(3):123-127
    [79]高志扬,许力,何林,等.高强混凝土抗压强度尺寸效应综述[J].混凝土,2011,33(5):33-35
    [80]郭正凯,文恒武,文驰.高强混凝土抗压强度试件尺寸效应的应用研究[J].工程质量,2013,31(6):25-27
    [81]陆新征,张万开,李易,等.方钢管混凝土短柱轴压承载力尺寸效应[J].沈阳建筑大学学报(自然科学版),2012,28(6):974-980
    [82] Yamamoto T, Kawaguchi J, Morino S, et al. Experimental study on the effect of crosssectional size and shape on compressive characteristics of concrete filled square steeltube short columns[J]. Journal of Structural and Construction Engineering,2013,78(685):597-605
    [83]吴炎海,林震宇.钢管活性粉末混凝土轴压短柱受力性能试验研究[J].中国公路学报,2005,18(1):57-62
    [84]林震宇,吴炎海,沈祖炎.圆钢管活性粉末混凝土轴压力学性能研究[J].建筑结构学报,2005,26(4):52-57
    [85]田志敏,张想柏,冯建文,等.钢管超高性能RPC短柱的轴压特性研究[J].地震工程与工程振动,2008,28(1):99-108
    [86] Yu M H. Unified Strength Theory and Its Applications[M]. Berlin: Springer Press,2004
    [87]俞茂宏,杨松岩,刘春阳,等.统一平面应变滑移线场理论[J].土木工程学报,1997,30(2):14-26
    [88]徐秉业,刘信声.应用弹塑性力学[M].北京:清华大学出版社,1995
    [89]赵均海,张永强,李建春.用统一强度理论和统一滑移线场理论求解某些塑性平面应变问题[J].机械工程学报,1999,35(6):61-65
    [90]中国工程建设标准化协会标准. CECS28:90.钢管混凝土结构设计与施工规程[S].中国计划出版社,1992
    [91] Architectural Institute of Japan(AIJ). Recommendations for design and concrete filledsteel tubular structures[S].1997
    [92]谢肖礼,彭文立,秦荣.圣维南原理在钢管混凝土拱桥分析中的应用[J].中国公路学报,2001,14(2):33-35
    [93]董三升,张玉芬,赵均海.复式空心钢管混凝土组合轴压弹性模量分析[J].工程力学,2012,29(6):211-217
    [94]徐芝纶.弹性力学[M].第4版.北京:高等教育出版社,2006
    [95]黄平明,张征文.内填式钢管混凝土构件受箍机理分析[J].西安公路交通大学学报,2001,21(4):43-45
    [96]吴炎海,林震宇,孙士平.活性粉末混凝土基本力学性能试验研究[J].山东建筑工程学院学报,2004,19(3):7-11
    [97]余自若,秦鑫,安明喆.活性粉末混凝土的常规三轴压缩性能试验研究[J].中国铁道科学,2012,33(2):38-42
    [98]张静.钢管活性粉末混凝土短柱轴压受力性能试验研究[D].福州:同济大学,2004
    [99] Wu Y H, Yao L Y. Discussion on formula of ultimate bearing capacity of RPC filledcircular steel tube slender columns[J]. Advanced Science Letters,2011,4(8-10):3027-3031
    [100]闫志刚,张武奇,安明喆.圆钢管RPC短柱轴心受压极限承载力分析[J].北京工业大学学报,2011,37(3):361-367
    [101]王仁,熊祝华,黄文彬.塑性力学基础[M].北京:科学出版社,1982
    [102]王卓.厚、薄壁钢管混凝土轴压短柱承载力的统一解[J].广东建材,2009,25(6):16-19
    [103] Elkhabeey O H, Safar S S, Mourad S A. Analysis and design of axially loaded shortconcrete filled steel tubes[J]. Journal of Engineering and Applied Science,2012,59(2):149-167
    [104]韩林海,陶忠.方钢管混凝土轴压力学性能的理论分析与试验研究[J].土木工程学报,2001,34(2):17-25
    [105]张迎春.组合方钢管混凝土短柱轴压力学性能研究[D].呼和浩特:内蒙古科技大学,2008
    [106]李小伟,赵均海,朱铁栋,等.方钢管混凝土轴压短柱的力学性能[J].中国公路学报,2006,19(4):77-81
    [107]周绪红,甘丹,刘界鹏,等.方钢管约束钢筋混凝土轴压短柱试验研究与分析[J].建筑结构学报,2011,32(2):68-74
    [108] Luo X Y, Liu W P. Mechanics behavior of concrete-filled square steel tube columns[J].Applied Mechanics and Materials,2013,256-259(1):662-665
    [109] Uy B, Tao Z, Han L H. Behaviour of short and slender concrete-filled stainless steeltubular columns[J]. Journal of Constructional Steel Research,2011,67(3):360-378
    [110] Kenji S, Hiroyuki N, Shosuke M, et al. Behaviour of centrally loaded concrete-filledsteel-tube short columns[J]. Journal of Structural Engineering,2004,130(2):180-188
    [111] Varama A H, Sause R, Ricles J M, et al. Development and validation of fiber modelfor high strength square concrete filled steel tube beam-columns[J]. ACI StructuralJournal,2005,102(1):73-84
    [112]王力尚,钱稼茹.钢管高强混凝土柱轴向受压承载力试验研究[J].建筑结构,2003,33(7):46-49
    [113] Yu M, Zha X X, Ye J Q, et al. A unified formulation for hollow and solid concretefilled steel tube columns under axial compression[J]. Engineering Structures,2010,32(4):1046-1053
    [114] Inai E, Mukai A, Kai M, et al. Behavior of concrete filled steel tube beam columns[J].Journal of Structural Engineering,2004,130(2):189-202
    [115] Chan T M, Gardner L. Flexural buckling of elliptical hollow section columns[J].Journal of Structural Engineering,2009,135(5):546-557
    [116] Fujimoto T, Mukai A, Nishiyama I, et al. Behavior of eccentrically loaded concretefilled steel tubular columns[J]. Journal of Structural Engineering,2004,130(2):203-212
    [117] Weibull W. Phenomenon of rupture in solids[J]. The Toyal Swedish Institute forEngineering Research,1939,1-55
    [118] Elkadi A S, van Mier J G M. Experimental investigation of size effect in concretefracture under multiaxialcompression[J]. International Journal of Fracture,2006,140(1):55-71
    [119]黄海燕,张子明.混凝土的统计尺寸效应[J].河海大学学报,2004,132(5):291-294
    [120] Bazant Z P, Yu Q. designing against size effect on shear strength of reinforcedconcrete beams without stirrups: Formulation[J]. Journal of Structural Engineering,2005,131(12):1877-1885
    [121] Bazant Z P, Yu Q. designing against size effect on shear strength of reinforcedconcrete beams without stirrups: Verification and Calibration[J]. Journal of StructuralEngineering,2005,131(12):1886-1897
    [122] Carpinteri A, Puzzi S. The fractal-statistical approach to the size-scale effects onmaterial strength and toughness[J]. Probabilistic Engineering Mechanics,2009,24(1):75-83
    [123] Muhlhaus H B, Aifantis E C. A variational principle for gradient plasticity[J].International Journal of Solids and Structures,1991,28(7):845-857
    [124] Gao X L. Strain gradient plasticity solution for an internally pressurized thick-walledcylinder of an elastic linear-hardening material[J]. Zeitschrift for AngewandteMathematik and Physik,2007,58(1):161-173
    [125]余同希.塑性力学[M].北京:高等教育出版社,1989
    [126]王钟羡.用双剪强度理论对厚壁圆筒的极限分析[J].江苏理工大学学报,1997,18(2):81-84
    [127] Johansson M. Composite action in connection regions of concrete-filled steel tubecolumns[J]. Steel and Composite Structures,2003,3(1):47-64
    [128] Sahinkesen G, Erdemir U, Oktay E A, et al. The effect of post surface silanization andluting agents on the push-out bond strength of adhesively inserted fiber reinforcedposts[J]. International Journal of Adhesion and Adhesives,2011,31(4):265-270
    [129] Barragan B, Gettu R, Agullo L, et al. Shear failure of steel fiber-reinforced concretebased on push-off tests[J]. ACI Materials Journal,2010,103(4):251-257
    [130]仵建斌.方钢管混凝土结构粘结滑移基本性能研究[D].西安:西安建筑科技大学,2011
    [131] Virdi K S, Dowling P J. Bond strength in concrete filled circular steel tubes[R].CESLIC Report CC11, Department of Civil Engineering, Imperial College, London,1975
    [132] Virdi K S, Dowling P J. Bond strength in concrete filled steel tubes[J]. IABSEProceedings P-33/80,1980:125-139
    [133] Petrus C, Hamid H A, Ibrahim A, et al. Bond strength in concrete filled built-up steeltube columns with tab stiffeners[J]. Canadian Journal of Civil Engineering,2011,38(6):627-637
    [134] Yin X W, Lu X L. Study on push-out test and bond stress-slip relationship of circularconcrete filled steel tube[J]. Steel and Composite Structures,2010,10(4):317-329
    [135] Solomos G, Berra M. Rebar pullout testing under dynamic Hopkinson bar inducedimpulsive loading[J]. Materials and Structures,2010,43(1-2):247-260
    [136] Liang B, Meng F S, Mao R. Study on Interface Slips in Concrete Filled Square SteelTubular Column [J]. Advanced Materials Research,2011:888-892
    [137]郑山锁,邓国专,田微.型钢混凝土结构粘结滑移性能的对比试验研究[J].哈尔滨工业大学学报,2005,37(增刊):516-519
    [138]薛立红,蔡绍怀.钢管混凝土柱组合界面的粘结强度(上)[J].建筑科学,1996,(3):22-28
    [139]薛立红,蔡绍怀.钢管混凝土柱组合界面的粘结强度(下)[J].建筑科学,1996,(4):19-23
    [140] Jerome F H, Paul H S, Aleksandr M. A distributed plasticity model for concrete-filledsteel tube beam-columns with interlayer slip[J]. Engineering Struetures,1998,20(8):663-676
    [141] Aval S B B, Saadeghvaziri M A, Golafshani A A. Comprehensive composite inelasticfiber element for cyclic analysis of concrete-filled steel tubular columns[J]. Journal ofEngineering Mechanics,2002,128(4):28-37
    [142]刘玉茜.钢管混凝土粘结滑移性能的理论分析及ANSYS程序验证[D].西安:西安建筑科技大学,2006
    [143] Roeder C W, Cameron B, Brown C B. Composite action in concrete filled tubes[J].Journal of Structural Engineering,1999,125(5):477-484
    [144]楼志文.损伤力学基础[M].西安:西安交通大学出版社,1991
    [145]杨光松.损伤力学与复合材料损伤[M].北京:国防工业出版社,1995
    [146] Leckie F A, Hauhurst D R. Creep rupture of structure[M]. London: Proceedings of theRoyal Society,1974
    [147]郑山锁,邓国专,杨勇,等.型钢混凝土结构粘结滑移性能试验研究[J].工程力学,2003,20(5):63-69
    [148]郑山锁,李磊,邓国专,等.型钢高强高性能混凝土梁粘结滑移行为研究[J].工程力学,2009,26(1):104-112
    [149]杨勇,郭子雄,薛建阳.型钢混凝土粘结滑移性能试验研究[J].建筑结构学报,2005,26(4):1-9
    [150]吴建营.基于损伤能释放率的混凝土弹塑性损伤模型及其在结构非线性分析中的应用[D].上海:同济大学,2004
    [151]康希良.钢管混凝土组合力学性能及粘结滑移性能研究[D].西安:西安建筑科技大学,2008
    [152]肖海兵.薄壁钢管轻骨料混凝土轴压短柱承载力研究[D].西安:长安大学,2009
    [153] Han L H, Yao G H, Tao Z. Performance of concrete-filled thin-walled steel tubesunder pure torsion[J]. Thin-Walled Structures,2007,45(1):24-36
    [154] Gao X L. strain gradient plasticity solution for an internally pressurized thick-walledcylinder of an elastic linear-hardening material[J]. Zeitschrift fur AngewandteMathematik und Physik,2007,58(1):161-173
    [155]聂志峰,周慎杰,韩汝军,等.应变梯度弹性理论下微构件尺寸效应的数值研究[J].工程力学,2012,29(6):38-46
    [156]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,2009
    [157]罗华.圆钢管活性粉末混凝土短柱轴压受力性能研究[D].北京:北京交通大学,2011
    [158]邓凡平. ANSYS10.0有限元分析[M].北京:人民邮电出版社,2007
    [159]宁建国,王成,马天宝.爆炸与冲击动力学[M].北京:国防工业出版社,2010
    [160] Aly T, Thayalan P, Elchalakani M, et al. Theoretical study on concrete-filled steeltubes under static and variable repeated loadings[J]. Journal of Constructional SteelResearch,2010,66(1):111-124
    [161]沈亚丽.钢管及约束钢管混凝土短柱抗冲击性能研究[D].长沙:湖南大学,2010
    [162]单建华.钢管混凝土在冲击荷载作用下实验研究和有限元分析[D].长沙:湖南大学,2007
    [163] Chen W, Zhang B, Forrestal M J. A split Hopkinson bar technique for low-impedancematerias[J]. Experimental Mechanics,1999,39(2):81-85
    [164]李珠,王兆,王蕊.侧向冲击荷载作用下两端固定钢管混凝土构件的试验研究[J].工程力学,2009,26(S1):167-170
    [165] Xiao Y, Shan J H, Zheng Q, et al. Experimental studies on concrete filled steel tubesunder high strain rate loading[J]. Journal of Materials in Civil Engineering,2009,21(10):569-577
    [166]瞿海雁,李国强,孙建运,等.侧向冲击作用下钢管混凝土构件的简化分析模型[J].同济大学学报(自然科学版),2011,39(1):35-41
    [167]瞿海雁,李国强,孙建运,等.侧向冲击作用下圆钢管混凝土构件的数值模拟分析[J].建筑科学与工程学报,2010,27(1):89-96
    [168]王洪欣,查晓雄,叶福相.空心钢管混凝土构件抗侧向冲击性能研究[J].华中科技大学学报(自然科学版),2010,38(8):107-110
    [169]李立军,王蕊.钢管混凝土结构构件耐撞性能的试验研究[J].北京理工大学学报,2012,32(10):1018-1021
    [170]何远明,霍静思,陈柏生.高温下钢管混凝土SHPB动态力学性能试验研究[J].工程力学,2013,30(1):52-58
    [171]章琪,蒋庆,陆新征.侧向冲击对钢管混凝土受压承载力影响研究[J].结构工程师,2013,29(3):59-64
    [172]章琪,蒋庆,陆新征.不同截面钢管混凝土结构抗冲击性能比较[J].工程力学,2013,30(S1):89-93
    [173]王新征,李萍,杨文喜,等.侧向冲击下钢管混凝土构件损伤演化数值分析[J].工程力学,2013,30(S1):267-272
    [174] Wang R, Han L H, Hou C C. Behavior of concrete filled steel tubular (CFST)members under lateral impact: Experimental and FEA model[J]. Journal ofConstructional Steel Research,2013,80(1):188-201
    [175]郑红勇.钢管混凝土在侧向冲击作用下的耐撞性研究[J].太原大学学报,2009,10(3):127-131
    [176] Huo J S, Zheng Q, Chen B S. Tests on impact behaviour of micro-concrete-filled steeltubes at elevated temperatures up to400oC[J]. Materials and Structures,2009,42(10):1325-1334
    [177] Remennikov A M, Kong S Y, Brian U. Response of foam concrete-filled square steeltubes under low-velocity impact loading[J]. Journal of Performance of ConstructedFacilities,2011,25(5):373-381
    [178] Qu H Y, Li G Q, Chen S W, et al. Analysis of cirular concrete filled steel tubespecimen under lateral impact[J]. Advances in Structural Engineering,2011,14(5):941-951
    [179] Kolsky H. An investigation of the mechanical properties of materials at very highratesof loading[J]. Proceedings of the Physical Society,1949,62(11):676-700
    [180]贾彬,李正良,陶俊林,等.混凝土SHPB试验数值模拟研究[J].固体力学学报,2010,31(6):216-222
    [181] SHPB实验中试样形状和尺寸效应的数值模拟[J].合肥工业大学学报(自然科学版),2008,31(9):1509-1512
    [182]多孔硬脆性材料的SHPB实验技术[J].力学与实践,2011,33(6):35-39
    [183]陈滔,李庆斌,管俊峰.混凝土压缩性对SHPB试验中惯性效应的影响[J].固体力学学报,2010,34(5):515-520
    [184]王礼立.应力波基础[M].北京:国防工业出版社,1985
    [185] Malinowski J Z, Klepaczko J R. Unified analytic and numerical approach to specimenbehavior in the split-hopkinson pressure bar[J]. International Journal of MechanicalSciences,1986,28(6):381-391
    [186] Davies E D H, Hunter S C. The dynamic compression testing of solids by the splitHopkinson pressure bar[J]. Journal of the Mechanics and Physics of Solids,1963,11(3):155-179
    [187]牛卫晶,闫晓鹏,赵勇刚,等.基于Hopkinson杆技术的混凝土动态压缩性能研究[J].太原理工大学学报,2013,44(2):251-254
    [188]陈韬,李庆斌,管俊峰.混凝土压缩性对SHPB试验中惯性效应的影响[J].固体力学学报,2013,34(5):515-520
    [189] Meng H, Li Q M. Correlation between the accuracy of a SHPB test and the stressuniformity based on numerical experiments[J]. International Journal of ImpactEngineering,2003,28(5):537-555
    [190]肖大武,胡时胜. SHPB实验试样横截面面积不匹配效应的研究[J].爆炸与冲击,2007,27(1):87-90
    [191]孙善飞,巫绪涛,李和平,等. SHPB实验中试样形状和尺寸效应的数值模拟[J].合肥工业大学学报(自然科学版),2008,31(9):1509-1512
    [192]张华,杨军,高富强,等.大直径SHPB弥散效应实验研究[J].昆明理工大学学报(理工版),2010,35(1):14-18
    [193] Huo J S, Zheng Q, Chen B S, et al. Tests on impact behaviour of icro-concrete-filledsteel tubes at elevated temperatures up to400oC[J]. Materials and Structures,2009,42(10),1325-1334
    [194]田志敏,吴华杰,姜锡全,等.超高性能混凝土RPC的抗冲击压缩特性[J].解放军理工大学学报(自然科学版),2007,8(5):463-469
    [195] Tai Y S. Uniaxial compression tests at various loading rates for reactive powderconcrete[J]. Theoretical and Applied Fracture Mechanics,2009,52(1):14-21
    [196] Wang Y H, Wang Z D, Liang X, et al. Experimental and numerical studies ondynamic compressive behavior of reactive powder concretes[J]. Acta MechanicaSolida Sinica,2008,21(5):420-430
    [197]王勇华,梁小燕,王正道,等.活性粉末混凝土冲击压缩性能实验研究[J].工程力学,2008,25(11):167-173
    [198]李业学,谢和平,彭琪,等.活性粉末混凝土力学性能及基本构件设计理论研究进展[J].力学进展,2011,41(1):51-59
    [199]鞠杨,盛国华,刘红彬,等.高应变率下RPC动态力学性能的试验研究[J].中国科学,2010,40(12):1437-1451
    [200]王立闻,庞宝君,盖秉政,等.活性粉末混凝土高温后冲击压缩性能研究[J].工程力学,2012,29(9):245-251
    [201]梁小燕,王勇华,王正道. RPC材料冲击加载下的横向惯性和应变率效应[J].北京交通大学学报,2008,32(4):58-62
    [202] Malvar L J. Review of static and dynamic properties of steel reinforcing bars[J]. ACIMaterials Journal,1998,95(5):609-616
    [203]张华,郜余伟,武守峰.混凝土材料SHPB主动围压实验的数值模拟[J].合肥工业大学学报(自然科学版),2012,35(2):216-220

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700