用户名: 密码: 验证码:
节点区柱钢管非连续式矩形钢管混凝土柱—梁节点力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土柱-混凝土梁的连接形式构造多样,存在节点区域梁纵筋与柱钢管空间上的不协调,处理较为复杂。目前关于钢管混凝土柱-混凝土梁节点的研究尚不系统,存在节点力学性能与施工便利性不能两全等问题。研究开发受力性能良好、构造简单、施工方便的节点形式是研究人员与设计者急待解决的课题。
     本文提出一种新型的柱钢管节点区全断开的矩形钢管混凝土柱-混凝土梁节点。该节点的特点:柱钢管在节点区域断开,保证楼层框架梁纵筋贯通节点;通过扩大节点截面及配置多层约束钢筋网以解决因柱钢管断开和采用低强度等级混凝土而导致承载力下降问题;在多层钢筋网外围竖向配置密集箍筋,改善节点区混凝土的抗裂性能;节点区可不配置柱箍筋,通过钢筋网与密集箍筋形成的新型钢筋笼整体承受节点剪力。该新型节点具有的优点:节点可与任意方向的楼盖梁连接,楼盖梁的布置灵活;节点的抗裂能力提高,有利于扩大结构的正常使用范围;现场钢结构的焊接工作减少,施工较为方便。
     本文对该新型节点的轴压、偏压静力性能以及抗震性能进行研究,主要包括以下几个方面的工作。
     (1)进行了48个节点区试件的轴压试验,研究节点核心区的截面系数、高度系数β、配筋系数ρ、混凝土强度fcu以及柱长宽比γ对新型钢筋网节点核心区轴压力学性能的影响。试验表明,通过新型钢筋网的约束与扩大节点截面的局压作用,节点具有较高的轴压承载力和较好的延性;钢筋网外围布置密集箍筋可提高节点区的抗裂能力。
     (2)在约束混凝土本构关系的基础上,采用等效侧向应力的概念,计算钢筋网约束混凝土抗压强度,同时考虑混凝土的局压作用,获取该类新型节点的核心混凝土峰值强度。借鉴Mander本构形式,提出可适用于该类节点分析的等效单轴本构关系。采用该本构关系对轴压试件的等效应力-应变关系进行全过程计算,并与试验结果比较,两者吻合良好。
     (3)进行了8个带上下柱的新型节点试件受压试验,研究节点截面系数、高度系数β、柱长宽比γ对试件破坏形态、峰值承载力、各裂缝宽度对应荷载等力学性能的影响。通过与工程上采用的常规钢管混凝土柱承载力计算对比,合理设计的节点在轴压、小偏压荷载下的峰值承载力可高于钢管混凝土柱,满足“强节点,弱构件”的设计理念。同时节点区配置外围箍筋能够限制节点核心区外混凝土的竖向膨胀变形,限制各个侧面水平裂缝的产生和发展,有效地改善节点的抗裂性能。
     (4)在局压承载力理论的基础上,对混凝土局压与横向钢筋网约束双重作用机理进行分析,通过引入节点高度系数对已有的规范计算公式进行修正,提出该节点的轴压承载力计算公式一;并在此基础上,考虑偏心对局部受压承载力的折减,建立了该新型节点的偏压承载力计算公式。在Mander约束混凝土公式的架构下,考虑混凝土局压对横向钢筋网约束的影响作用,确定本试验环境中有效约束系数ke的计算方法,提出该节点轴压承载力计算公式二。根据试验现象,提出该节点峰值状态下试件受压有效截面的概念,并确定试件受压有效截面的计算方法,建立该节点轴压承载力计算公式三。通过验证比对,上述公式均可较精确地预测试验结果。
     (5)进行了5个试件的低周反复荷载试验,研究该新型节点的抗震力学性能。试验结果表明,随着相对配筋系数(节点体积配筋率/梁配筋率)与节点面积增大系数(节点面积/柱面积)的增大,破坏区域由节点区向框架梁根部转移,说明通过合理设计的节点在低周反复荷载作用下的受力性能是安全可靠的,可实现“强柱弱梁,节点更强”的抗震设计原则。对静力反复荷载作用后的节点试件进行轴压试验,结果表明在经历低周反复荷载作用后,节点钢筋网仍能有效约束节点核心区混凝土,节点仍具有较高的承载力与延性,说明通过合理设计的新型节点在震后也能体现“强节点,弱构件”的抗震理念。
     (6)在MCFT理论的基础上,确定新型节点计算关键参数的取值方法,提出了该新型节点抗剪承载力的计算方法。节点峰值剪应力计算结果与试验吻合良好,表明上述抗剪计算方法较为合理。
There are different constructions types of the joint of concrete filled steel tubular (CFST)columns connecting with reinforced concrete (RC) beam in which the longitudinalreinforcement bars in RC beam are interrupted by the continuous steel column tube, resultingin the construction of the joint is more complicated. The research results about the joint arenot systematic. In most cases, the mechanical behavior is incompatible with convenientconstruction. It is urgent for researchers and designers to develop a new joint type withexcellent mechanic behavior, convenient construction and significant commercial benefits.
     In this paper, a new type of joints between rectangular CFST column and RC beam withdisconnection column tube in joint zone is presented. The main features of this joint are asfollow: The steel tube is disconnected at the joint zone, and the column tube is separated ineach floor, so the longitudinal reinforcement bars in RC beam can be continued in the zone.Because the column disconnection and the lower strength concrete to be using in the jointzone leading to the decrease of compression capacity, the enlargement of the section of jointand mesh reinforcement are used to strengthen the joint zone. The stirrups are set along theouter mesh reinforcement to improve the capability of ant-crack. The column stirrups settingin the zone of normal joint do not need, because the mesh reinforcement and stirrups alongthe outer mesh reinforcement can resist the force of joint shear. The advantages of this newtype of joint include the following aspect: the joint can be used to connect to any directionbeams; The crack resistance of joint is effectively improved with stirrups along the outer meshreinforcement; It is more convenient to construction because the steel connection parts arereduced.
     The paper focuses on the mechanical behavior of this joint, and the innovation researchworks are as follow.
     (1) Experimental studies were carried out with48rectangular specimens to investigatethe axial compression behavior of this type of joint. The main parameters in the experimentare the relative section of joints (the edge length of the joint section/the edge length of thesection column), the relative height of joints β (the height of the joint/the edge length of thesection column), the mesh reinforcement ratio ρ, the strength of concrete fcuand the length towidth ratio of column γ. The results show that, under the confinement of the meshreinforcement and enlargement of the section of joints, this type of joint has high compressivecapacity and ductility. By setting the stirrups along the outer mesh reinforcement, thecapability of ant-crack can be improved.
     (2) Based on the local compression formulas and conception of equivalent lateralcompressive stress in confined concrete, the peak strength of the core concrete in the joint iscalculated. The constitutive relationship of confined concrete is adopted to build theequivalent stress-strain relationship for the core concrete of the joint. This stress-strainrelationship takes a similar form of the constitutive model of confined concrete while itsparameters are modified to fit this type of joint according to experimental results. Finally, acalculation of complete stress-strain relationship curves is conducted for experimentalspecimens using this constitutive relationship. The calculation results and the experiment onesare in good agreement with each other.
     (3) Experimental studies were carried out with8rectangular joint specimens havingupper and lower columns, to investigate the eccentric compression behavior of this type ofjoint. The main parameters in the experiment are the relative section of joints, the relativeheight of joints β and the length to width ratio of column γ. The influence of the parameters onthe eccentric compression capacity of the joint was discussed. Comparison between theexperimental eccentric compression capacity of the joint and the calculated compressioncapacity of the CFST column with the methods of standard formula shows that thecompression capacity of the joint zone is higher than the column with the reasonable design.The results indicate that this type of joint can meet the anti-seismic design principalrequirement of strong joint-weak member. By limiting the vertical expansion deformation ofconcrete with stirrups along the outer mesh reinforcement, the emergence and development ofeach side horizontal crack can be postponed, and the crack resistance of joint is effectivelyimproved.
     (4) Based on the theory of local compression of concrete, the confining effects of localcompression of concrete and steel reinforcement bars to the concrete were discussed. Byintroducing the joint height coefficient, the Chinese standard formula was modified toestablish the formula Ⅰ for the ultimate axial compression capacity of joint. Based on theformula Ⅰ, by introducing the eccentric bearing capacity reduction coefficient for localcompression, the formula for calculating the eccentric bearing capacity of joint wasestablished. Based on the Mander confined concrete theory, the effective restraint coefficientkeunder local compression was discussed. Then, the formula Ⅱ for the ultimate axialcompression capacity of the joint was established. On the basis of the experimentalobservations, the concept of effective compression section was submitted. The formula Ⅲwas put forward to predict the ultimate axial compression capacity of the joint. The results predicted by above formulas are in good agreement with the experimental ones.
     (5) Cyclic loading experimental studies were carried out with5interior joint specimensto investigate the seismic behavior of this new type of column-beam joint. The results showthat the failure region from the joint to the frame beam with the increase of relativereinforcement ratios (the ratio of joint mesh reinforcement/the ratio of beam reinforcement)and relative dimension of joints (the section area of the joint/the section area of the column).With the reasonable design, the new type joint has good seismic behaviors, and the seismicprinciple “weak beam strong column, stronger joint” can be satisfied. The axial compressionexperiment on four specimens after the cyclic loading was carried out. The results show thatthe concrete in the joints can be still confined by the mesh reinforcement after the cyclicloading. The joint has high compressive capacity and ductility. With the reasonable design,the capacity of the joint zone is higher than the concrete filled steel tubular column, meetingthe anti-seismic design principal requirement of strong joint-weak member.
     (6) Based on the modified compression filed theory (MCFT), the key parameters of shearcapacity calculation for the new type joint were studied. The calculation method for shearcapacity was set up. The calculation results are in accordance with the experimental ones. Itcan be thought suggested calculation method is reasonable.
引文
[1]蔡绍怀.钢管混凝土结构的计算与应用[M].北京:中国建筑工业出版社.1989
    [2]蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社.2007
    [3]钟善桐.钢管混凝土结构[M].北京:清华大学出版社.2003
    [4]韩林海.钢管混凝土结构一理论与实践[M].北京:科学出版社.2004
    [5]钟善桐.钢管混凝土结构[M].哈尔滨:黑龙江科学技术出版社.1994
    [6]钟善桐.高层钢管混凝土结构[M].哈尔滨:黑龙江科学技术出版社.1999
    [7]韩林海,钟善桐.钢管混凝土力学[M].大连:大连理工大学出版社.1996
    [8]韩林海,杨有福.现代钢管混凝土结构技术[M].北京:中国建筑工业出版社.2004
    [9]韩林海.钢管混凝土结构一理论与实践(第二版)[M].北京:科学出版社.2007
    [10]陈宝春..钢管混凝土拱桥设计与施工[M].北京:人民交通出版社.1999
    [11] BS5400. Steel,concrete and composite bridges-Parts: Code of practice for design of compositebridges[S]. London, UK.2005
    [12] Eurocode4. Design of composite steel and concrete and concrete structures-Partl一1:General rulesand rules for buildings[S]. EN1994-1-1, Brussels: European Committee for Standardization.2004
    [13] ACI Committee318. Building code requirements for reinforced concrete[S]. American ConcreteInstitution, Detroit, USA.2005
    [14] AISC-LRFD. Load and resistance factor design specification for structural steel buildings[S].American Institute of Steel Construction(AISC), Chicago, USA.2005
    [15] AustraliaStandard. AS4100-1998steel struetures[S]. Sydney.1998
    [16] AIJ. Recommendations for design and construction of concrete filled steel tubular structures[S].Architectural Institute of Japan(ALT), Tokyo.1997
    [17] JCJOl-89.钢管混凝土结构设计与施工规程[S].上海:同济大学出版社.1989
    [18] CECS28:90.钢管混凝土结构设计与施工规程[S].北京:中国计划出版社.1990
    [19] DL/T5085-1999.钢一混凝土组合结构设计规程[S].北京:中国电力出版社.1999
    [20] GJB4142-2000.战时军港抢修早强型组合结构技术规程[S].北京:中国人民解放军总后勤部.2001
    [21] CECS159:2004.矩形钢管混凝土结构技术规程[S].北京:中国计划出版社.2004
    [22] GB50XXX-2012.钢管混凝土结构技术规范-征求意见稿[S].北京:中国建筑工业出版社.2012
    [23]蔡健,黄泰赟.钢管混凝土柱节点的应用现状和存在问题[J].建筑结构.2001,31(7):8~10
    [24] France J E, Davison J B, Kirby P A. Strength and rotational stiffness of simple connections to tubularcolumns using flowdrill connectors[J]. Journal of Constructional Steel Research.1999,50(1):15~34
    [25] France J E, Davison J B, Kirby P A. Moment resistance of steel I-beam to CFT column connections[J].Journal of Structure Engineering.2001,127(10):1164~1172
    [26] Azizinamini A, Shekar Y. Design of through beam connection detail for circular composite columns[J].Engineering Structure.1995,17(3):209~213
    [27] Elremaily A, Azizinamini A. Design provisions for connections between steel beams and concretefilled tube columns[J]. Journal of Constructional Steel Research.2001,57(9):971~995
    [28] Elremaily A, Azizinamini A. Experimental behavior of steel beam to CFT column connections[J].Journal of Constructional Steel Research.2001,57(10):1099~1119
    [29] Atorod A, Schneider S P. Moment connections to circular concrete-filled steel tube columns[J]. Journalof Structure Engineering.2004,130(2):213~222
    [30] Kang C H, Shin K J, Oh Y S, et al. Hysteresis behavior of CFT column to H-beam connections withexternal t-stiffeners and penetrated elements[J]. Engineering Structures.2001,23(9):1194~1201
    [31] Prion H G L, Boehme J. Beam-column behaviour of steel tubes filled with high strength concrete[J].Canadian Journal of Civil Engineering.1994,21(2):207~218
    [32] Boyd P F, Cofer W F, Mclean D I. Seismic performance of steel-encased concrete columns underflexural loading[J]. ACI Structural Journa.1995,92(3):355~364
    [33] Ge H B, Usami T. Cyclic tests of concrete filled steel box columns[J]. Journal of StructuralEngineering.1996,122(10):1169~1177
    [34] Hajjar J F, Gourley B C. A cyclic nonlinear model for concrete-filled tubes cross-section strength[J].Journal of Structural Engineering.1997,122(11):1327~1136
    [35] Hajjar J F, Gourley B C, Olson M C. A cyclic nonlinear model for concrete-filled tubes,II:Verification[J]. Journal of Structural Engineering.1997,123(6):745~754
    [36] Lahlou K, Lachemi M, Aitcin P C. Confined high-strength concrete under dynamic compressiveloading[J]. Journal of Structural Engineering.1999,125(10):1100~1108
    [37] Nakanishi K, Kitada T, Nakai H. Experimental study on ultimate strength and ductility of concretefilled steel columns under strong earthquakes[J]. Journal of Constructional Steel Research.1999,51(3):297~319
    [38] Aval S B B, Saadeghvaziri M A, Golafshani A A. Comprehensive composite inelastic fiber element forcyclic analysis of concrete-filled steel tube columns[J]. Journal of Structural Engineering.2002,128(4):428~437
    [39] Elremaily A, Azizinamini A. Behavior and strength of circular concrete-filled tube columns[J]. Journalof Constructional Steel Research.2002,58(12):1567~1591
    [40] Beutel J, Thambiratnam D, Perera N. Cyclic behaviour of concrete filled steel tubular column to steelbeam connections[J]. Engineering Structures.2002,24(1):29~38
    [41] Ricles J M, Peng S W, Lu L W. Seismic behavior of composite concrete filled steel tube column wideflange beam moment connections[J]. Journal of Structure Engineering.2004,130(2):223~232
    [42]唐九如.钢筋混凝土框架节点抗震[M].南京:东南大学出版社.1989
    [43] Shiohara H. New model for shear failure of rc interior beam-column connections[J]. Journal ofStructure Engineering.2001,127(2):152~160
    [44] Nakashima M, Matsumiya T, Suita K, et al. Full-Scale Test of Composite Frame under Large CyclicLoading[J]. Journal of Structure Engineering.2007,133(2):297~304
    [45]方小丹,李少云,陈爱军.新型钢管混凝土柱节点的试验研究[J].建筑结构学报.1999,20(5):2~15
    [46]李少云,方小丹,杨润强.广州市翠湖山庄工程钢管混凝土柱节点足尺静载试验研究[J].土木工程学报.2001,34(6):11~16
    [47]方小丹,李少云,钱稼茹,等.钢管混凝土柱-环梁节点抗震性能的试验研究[J].建筑结构学报.2002,23(6):10~18
    [48]钱稼茹,周栋梁,方小丹.钢管混凝土柱-RC环梁节点及其应用[J].建筑结构.2003,33(9):60~62
    [49]周栋梁,钱稼茹,方小丹,等.环梁连接的RC梁-钢管混凝土柱框架试验研究[J].土木工程学报.2004,37(5):7~15
    [50]方小丹,黄圣钧,李少云,等. RC梁-圆钢管混凝土柱节点环梁承载力设计方法[J].建筑结构学报.2008,29(5):20~33
    [51]吕西林,李学平.方钢管混凝土结构应用技术研究[J].建筑施工.2000,22(3):48~54
    [52]李学平,吕西林.方钢管混凝土柱外置式环梁节点的联结面抗剪研究[J].同济大学学报.2002,30(1):11~17
    [53]吕西林,李学平.方钢管混凝土柱外置式环梁节点的试验及设计方法研究[J].建筑结构学报.2003,24(1):7~13
    [54]蔡健,黄泰赟,苏恒强.新型钢管混凝土中柱劲性环梁式节点的设计方法初探[J].土木工程学报.2002,35(1):6~10
    [55]黄泰赟.钢管混凝土柱节点的基本研究和设计方法初探[D].广州:华南理工大学(导师:蔡健教授).2000
    [56]吴轶,蔡健,杨春,等.内隔板式方钢管混凝土柱-钢筋混凝土梁节点试验[J].建筑结构.2010,40(7):88~91
    [57]顾伯禄,朱筱俊,吕清芳,等.新型钢管砼框架节点试验研究及其应用[J].东南大学学报.1998,28(6):106~110
    [58]曲慧,陶忠,韩林海. CFST柱-RC梁钢筋环绕式节点抗震性能试验[J].工业建筑.2006,36(11):27~31
    [59]韩小雷,陈晖,季静,等.穿心暗牛腿钢管混凝土柱节点的试验研究[J].华南理工大学学报(自然科学版).1999,27(10):96~101
    [60]季静,陈庆军,韩小雷.穿心暗牛腿钢管混凝土柱节点的模型试验研究[J].华南理工大学学报(自然科学版).2001,29(7):70~73
    [61]韩小雷,贺锐波,季静.带环板的穿心暗牛腿钢管混凝土柱节点试验研究[J].工业建筑.2005,35(11):21~23
    [62]季静,吴爱明,王燕珺,等.新型穿心暗牛腿钢管混凝土柱节点试验及分析[J].华南理工大学学报(自然科学版).2008,36(3):114~120
    [63]欧谨,杨放,刘伟庆,等.钢管混凝土双梁节点试验及现场测试[J].东南大学学报(自然科学版).2001,31(1):74~77
    [64]蔡健,杨春,苏恒强,等.对穿暗牛腿式钢管混凝土柱节点试验研究[J].华南理工大学学报(自然科学版).2000,28(5):105~109
    [65]陈庆军,蔡健,徐刚,等.节点区柱钢管不全贯通式钢管混凝土柱-梁节点区的受压试验研究[J].华南理工大学学报(自然科学版).2008,36(6):10~
    [66]徐刚,吴轶,蔡健,等.新型钢管混凝土柱-梁节点有限元分析[J].广东工业大学学报.2007,24(4):89~94
    [67]陈庆军,蔡健,杨平,等.节点区柱钢管不贯通式钢管混凝土柱-梁节点抗震性能[J].土木工程学报.2009,42(12):33~42
    [68]陈庆军,蔡健,钟国坤,等.非贯通式钢管混凝土柱-梁节点偏压性能[J].广西大学学报:自然科学版.2010a,35(1):50~55
    [69]杨平,蔡健,陈庆军,等.钢管混凝土柱-梁节点反复荷载后的轴压试验[J].武理工大学学报.2010b,32(7):129~133
    [70]陈庆军,蔡健,林遥明,等.柱钢管不直通的新型钢管混凝土柱-梁节点(Ⅱ)-轴压下采用环形钢筋加强钢管不直通的节点区的性能[J].华南理工大学学报(自然科学版).2002,30(12):58~61
    [71]陈庆军,蔡健,徐刚,等.节点区柱钢管不连通式钢管混凝土柱-梁节点轴压承载力[J].工程力学.2008,25(9):170~175
    [72]陈庆军,蔡健,邱元,等.双重环筋加强式梁柱节点区非线性有限元分析[J].广西大学学报:自然科学版.2009,34(4):456~462
    [73]陈庆军,蔡健,吴轶,等.双重环筋约束下超短混凝土试件的局部受压试验研究[J].东南大学学报(自然科学版).2010,40(1):165~170
    [74]陈庆军,蔡健,林遥明,等.柱钢管不直通的新型钢管混凝土柱-梁节点(I)-轴压下采用钢筋网加强钢管不直通的节点区的性能[J].华南理工大学学报(自然科学版).2002,30(9):91~99
    [75]林瑶明.新型钢管混凝土柱节点轴压性能的基础研究[D].广州:华南理工大学.2001
    [76]王毅红,汤文锋.芯钢管连接的钢管混凝土中柱节点试验研究[J].建筑结构.2004,36(12):60~63
    [77]王毅红,蒋建飞,周绪红,等.芯钢管连接的钢管混凝土半连通边节点试验研究[J].土木工程学报.2006,39(12):54~59
    [78]王毅红,卢先军,周绪红,等.芯钢管连接的钢管混凝土半连通角节点试验研究[J].建筑结构学报.2008,29(4):51~57
    [79]聂建国,柏宇,李盛勇,等.分层钢管混凝土节点轴压性能的试验研究[J].建筑结构.2004,34(12):57~59
    [80]聂建国,赵洁,柏宇,等.钢管混凝土核心柱轴压极限承载力[J].清华大学学报(自然科学版).2005,45(6):1153~1156
    [81] Nie J, Bai Y, Cai C S. New connection system for confined concrete columns and beams. I:Experimental study[J]. Journal of Structural Engineering.2008a,134(12):1787~1799
    [82] Bai Y, Nie J, Cai C S. New connection system for confined concrete columns and beams. II:theoretical modeling[J]. Journal of Structural Engineering.2008b,134(12):1800~1809
    [83]张玉芬,王育平,赵均海.复式钢管混凝土外钢管不连通环梁节点抗震性能试验研究[J].土木工程学报.2012,45(6):90~100
    [84] Xiao Y, Wu H.. Retrofit of reinforced concrete columns using partially stiffened steel jackets[J].Journal of Structural Engineering.2003,129(6):725~732
    [85]王再峰.钢管约束混凝土柱—钢筋混凝土梁节点滞回性能实验研究[D].福建:福州大学.2006
    [86]蔡绍怀,焦占拴.钢管混凝土短柱的基本性能和强度计算[J].建筑结构学报.1984,2(6):13~29
    [87]蔡健,谢晓锋,杨春,等.核心高强钢管混凝土柱轴压性能的试验研究[J].华南理工大学学报.2002,30(6):81~85
    [88]韩林海,杨有福.矩形钢管混凝土轴心受压构件强度承载力的试验研究[J].土木工程学报.2001,34(4):22~31
    [89]吕西林,余勇.轴心受压方钢管混凝土短柱的性能研究I试验[J].建筑结构.1999,29(10):41~43
    [90]韩林海.钢管高强混凝土轴压力学性能的理论分析与试验研究[J].工业建筑.1997,27(11):39~44
    [91]刘付钧,蔡健,张学文,等.新型钢管混凝土柱-平板节点轴压性能研究(Ⅰ)-试验概况及结果分析[J].华南理工大学学报(自然科学版).2003,31(3):77~80
    [92]刘付钧,蔡健,潘琴存,等.新型钢管混凝土柱板节点偏压性能研究[J].湖南大学学报(自然科学版).2008,35(5):6~10
    [93] Huang C.S., Yeh Y.K., Liu G.Y.. Axial load behavior of stiffened concrete-filled steel columns[J].Journal of Structure Engineering.2002,128(9):1222~1230
    [94] Schneider S.P.. Axially loaded concrete-filled steel tubes[J]. Journal of Structure Engineering.1998,124(10):1125~1138
    [95] Fam A.,Qie F.S.,Rizkalla S.. Concrete-filled steel tubes subjected to axial compression and lateralcyclic loads[J]. Journal of Structure Engineering.2004,130(4):631~640
    [96] Varma A.H., Ricles J.M., Sause R.. Experimental behavior of high strength square concrete-filled steeltube beam-columns[J]. Journal of Structure Engineering.2002,128(3):309~318
    [97] GB50010-2010.混凝土结构设计规范[S].北京:中国建筑工业出版社.2010
    [98] GB50512-92.混凝土结构试验方法标准[S].北京:中国建筑工业出版社.2002
    [99]刘永颐,关建光,王传志.混凝土局部承压强度及破坏机理[J].土木工程学报.1985,18(2):53~65
    [100]周文峰,黄宗明,白绍良.约束混凝土几种有代表性应力-应变模型及其比较[J].重庆建筑大学学报.2003,25(4):121~127
    [101]史庆轩,侯炜,张兴虎,等.箍筋约束混凝土结构及其发展展望[J].建筑结构学报.2009,增刊(2):109~114
    [102] Richart F E, Brandtzaeg A, Brown R L. A study of the failure of concrete under combinedcompressive stresses[R]. Engineering Experiment Station Experiment Station Bulletin No.185,University of Illinois, Urbana.1928
    [103] Kent D C., Park R.. Flexural members with confined concrete[J]. Journal of the Structural Division.1971,97(7):1969~1990
    [104] Park R, Priestley M J, Gill W D. Ductility of square-confined concrete columns[J]. Journal of thestructural division.1982,108(4):929~950
    [105] Sheikh S A, Uzumeri S M.. Analytical model for concrete confinement in tied columns[J]. Journal ofthe Structural Division.1982,108(12):2703~2722
    [106] Sheikh S.A.. A comparative study of confinement models[J]. ACI Structural Journal.1982,79(4):296~305
    [107] Mander J B, Priestley M J N, Park R.. Theoretical stress-strain model for confined concrete[J].Journal of Structural Engineering.1988,114(8):1804~1826
    [108] Popovics S. A numerical approach to the complete stress-strain curve of concrete[J]. Cement andConcrete Research.1973,3(5):583~599
    [109] Elwi A A, Murray D W. A3D hypoelastic concrete constitutive relationship[J]. Journal of theEngineering Mechanics Division.1979,105(4):623~641
    [110] Saatcioglu M, Razvi S R. Strength and ductility of confined concrete[J]. Journal of StructureEngineering.1992,118(6):1590~1607
    [111] Montoya E, Vecchio F J, Sheikh S A. Compression field modeling of confined concrete: Constitutivemodels[J]. Journal of Materials in Civil Engineering.2006,18(4):510~517
    [112]史庆轩,王南,田园,等.高强箍筋约束高强混凝土轴心受压应力-应变全曲线研究[J].建筑结构学报.2013,34(4):144~151
    [113] Cusson D, Paultre P. Stress-strain model for confined high-strength concrete[J]. Journal of StructuralEngineering.1995,121(3):468~477
    [114] Fatifis A,Shah S P. Lateral reinforcement for high-strength concrete columns[J]. ACI SpecialPublication.1985,87(3):213~233
    [115] Fafitis A, Shah S P. Constitutive model for biaxial cyclic loading of concrete[J]. Journal ofengineering mechanics.1986,112(8):760~775
    [116]过镇海,张秀琴,张达成,等.混凝土应力-应变全曲线的试验研究[J].建筑结构学报.1982,3(1):1~12
    [117]张秀琴,过镇海,王传志.反复荷载下箍筋约束混凝土的应力-应变全曲线方程[J].工业建筑.1985,15(12):18~22
    [118]青山博之.现代高层钢筋混凝土结构设计[M].重庆:重庆大学出版社.2006
    [119]叶列平,叶燕华.箍筋约束高强混凝土应力-应变全曲线的试验研究[J].南京建筑工程学院学报.1994,(4):67~72
    [120] Niyogi S K. Bearing strength of reinforced concrete blocks[J]. Journal of Structure Engineering.1975,101(5):1125~1137
    [121]陈庆军.节点区柱钢管不全贯通式钢管混凝土柱-梁节点力学性能研究[D].广州:华南理工大学.[博士学位论文].2008
    [122] Hawkins N M. The bearing strength of concrete loaded through rigid plates[J]. Magazine of ConcreteResearch.1968a,20(62):31~40
    [123] Hawkins N M. The bearing strength of concrete loaded through flexible plates[J]. Magazine ofConcrete Research.1968b,20(63):95~102
    [124] Hawkins N M. The bearing strength of concrete for strip loading[J]. Magazine of Concrete Research.1970,22(71):87~98
    [125] Escobar-Sandoval E D, Whittaker A S, Dargush G F. Concentrically loaded circular steel platesbearing on plain concrete[J]. Journal of Structure Engineering.2006,122(11):1784~1789
    [126] CEB-FIP. CEB-FIP MC90Model code for concrete structures[S]. London: CEB. Thomas Tellord.1993
    [127]过镇海,王传志,张秀琴.多轴应力下混凝土的强度和破坏准则研究[J].土木工程学报.1991,24(3):1~14
    [128]陈庆军,蔡健,吴轶,等.双重环筋约束下超短混凝土试件的局部受压试验研究[J].东南大学学报(自然科学版).2010,40(1):165~170
    [129]刘强,孙敏,朱聘儒,等.轻骨料混凝土局部承压试验研究及计算分析[J].建筑结构学报.2005,26(1):103~107
    [130]蔡健,龙跃凌.带约束拉杆矩形钢管混凝土的本构关系[J].工程力学.2008,25(2):137~143
    [131]过镇海.钢筋混凝土原理[M].北京:清华大学出版社.1993
    [132] Komendant A E. Prestressed concrete structures,1st Ed[M]. McGraw-Hill, New York.1952
    [133] Middendorf K H. Practical aspects of end zone bearing of post-tensioning tendons[J]. PCI Journal.1963,8(4):57~62
    [134] Committee318. Building code requirements for structural concrete and commentary (ACI318-02)[M]. American Concrete Institute, Farmington Hills, Michigan.2002
    [135] Shelson W. Bearing capacity of concrete[J]. ACI Structural Journal.1957,54(11):405~10
    [136] Niyogi S K. Bearing strength of concrete-geometric variations[J]. Journal of Structure Engineering.1973,99(7):1471~1490
    [137] Niyogi S K. Concrete bearing strength-support, mix, size effect[J]. Journal of Structure Engineering.1974,100(8):1685~1702
    [138] Meyerhof G G. The bearing capacity of concrete and rock[J]. Magazine of Concrete Research.1953,4(12):107~116
    [139] Au T, Baird D L. Bearing capacity of concrete blocks[J]. ACI Structural Journal.1960,56(3):869~880
    [140] Chen W F, Drucker D C. Bearing capacity of concrete blocks or rock[J]. Journal of EngineeringMechanics.1969,95(EM4):995~978
    [141] Nilson A H, Darwin D. Design of concrete structures[M]. McGraw-Hill, New York.2004
    [142]曹声远,杨熙坤.混凝土局部承压的工作机理及强度理论[J].哈尔滨建筑工程学院学报.1982,14(3):44~53
    [143]尉尚民.对“混凝土局部承压强度及破坏机理”的讨论[J].土木工程学报.1985,18(3):82~87
    [144]蔡绍怀.混凝土及钢筋混凝土的局部承压强度[J].土木工程学报.1963,9(6):1~10
    [145] Razvi S, Saatcioglu M. Confinement model for high-strength concrete[J]. Journal of StructuralEngineering.1999,125(3):281~289
    [146]刘永颐,曹声远,杨熙坤,等.混凝土及钢筋混凝土的局部承压问题[J].建筑结构.1982,12(4):1~9
    [147]曹声远,杨熙坤,徐凯怡.钢筋混凝土局部承压的试验研究[J].哈尔滨建筑工程学院学报.1983,15(3):1~22
    [148] Ross Jr H E, Sicking D L, Zimmer R A. Recommended procedures for the safety performanceevaluation of highway features (No.350)[M]. National Academy Press.1993
    [149]曹声远,杨熙坤,徐凯怡.钢筋混凝土局部承压强度理论[J].哈尔滨建筑工程学院学报.1984b,16(2):25~33
    [150]蔡绍怀,尉尚民,焦占拴.方格网套箍混凝土的局部承压强度[J].土木工程学报.1986,21(9):17~25
    [151]蔡绍怀,薛立红.高强度混凝土的局部承压强度[J].土木工程学报.1994,27(5):52~61
    [152] Lee S C, Mendis P. Behavior of high-strength concrete corner columns intersected by weaker slabswith different thicknesses[J]. ACI Structural Journal.2004,101(1):11~18
    [153] Hawkins N M, Bao A, Yamazaki J. Moment transfer from concrete slabs to columns[J]. ACIStructural Journal.1989,86(6):705~716
    [154]李英民,刘建伟.钢筋混凝土框架夹心节点抗震性能试验研究[J].建筑结构学报.2010a,31(12):74~81
    [155]中国建筑标准设计研究院.全国民用建筑工程设计技术措施[M].北京:中国计划出版社.2009
    [156]段建中,刘立兵,方高倪,等.不同强度混凝土梁柱节点承载性能研究[J].合肥工业大学学报(自然科学版).2004,27(4):396~400
    [157]余琼,李思明.核心区和柱混凝土强度不等时节点的性能研究[J].同济大学学报(自然科学版).2004,32(12):1583~1588
    [158]杨治洪,李英民,刘建伟,韩军.钢筋混凝土框架夹心节点设计方法[J].土木建筑与环境工程.2010b,32(3):35~40
    [159]李英民,刘建伟,郑清,等.高剪压比钢筋混凝土框架夹心节点抗震性能研究[J].重庆建筑大学学报.2007,29(4):44~48
    [160]刘建伟,李英民,杨治洪,等.空间RC框架夹心节点与传统节点抗震性能对比试验[J].工业建筑.2009a,39(2):88~93
    [161]刘建伟,李英民,杨治洪,等.平面RC框架夹心节点与传统节点抗震性能对比试验[J].建筑结构.2009b,39(4):10~13
    [162] Committee318. Building code requirements for structural concrete and commentary (ACI318-02)[M]. American Concrete Institute, Farmington Hills, Michigan.1989
    [163] Canadian Standards Association, CSA A23.3-94. Design of concrete structures[S]. CSA, Rexdale,Ontario.1994
    [164] Shu C C, Hawkins N M. Behavior of columns continuous through concrete floors[J]. ACI StructuralJourna.1992,89(4):405~414
    [165] McHarg P J, Cook W D, Mitchell D, et al. Improved transmission of high-strength concrete columnloads through normal strength concrete slabs[J]. ACI Structural Journa.2000,97(1):157~165
    [166] Lee J H, Yoon Y S. Prediction of strength of interior HSC column–NSC slab joints[J]. Magazine ofConcrete Research.2010,62(7):507~518
    [167] Lee J H, Yoon Y S. Prediction of effective compressive strength of corner columns comprisingweaker slab–column joint[J]. Magazine of Concrete Research.2012,64(12):1113~1121
    [168]陈骥.钢结构稳定理论与设计.第二版[M].北京:科学出版社.2003
    [169] Tang, Xulin; Cai, Jian; Chen, Qingjun; He, An; Yang, Chun. The finite element analysis on the localcompression of the concrete filled steel tubular column-Beam joint[J]. Advanced Materials Research.2012,368-373(Advances in Civil Engineering and Architecture Innovation):489~494
    [170]秦士洪,曹桓铭,倪校军,等.蒸压粉煤灰砖砌体偏心受压性能试验[J].重庆大学学报.2009,32(7):815~822
    [171]施楚贤.砌体结构理论与设计.第二版[M].北京:中国建筑工业出版社.2003
    [172] GB50003-2011.砌体结构设计规范[S].北京:中国建筑工业出版社.2011
    [173]焦心亮,张连德.钢筋混凝土框架顶层中节点抗震性能研究[J].建筑结构.1995,25(11):33~39
    [174] Jones S L, Fry G T, Engelhardt M D.. Experimental evaluation of cyclically loaded reduced beamsection moment connections[J]. Journal of Structure Engineering.2002,128(4):441~451
    [175] Ricles J M, Mao C, Lu L W, et al. Inelastic cyclic testing of welded unreinforced momentconnections[J]. Journal of Structure Engineering.2002,128(4):429~440
    [176] Parra-Montesinos G, Wight J K. Seismic response of exterior RC column-to-steel beamconnections[J]. Journal of Structure Engineering.2000,126(10):1113~1121
    [177]金刚,丁洁民,陈建斌,等.矩形钢管混凝土柱-钢梁节点抗震性能试验研究与分析[J].建筑结构.2007,37(2):88~93
    [178]张大旭,张素梅.钢管混凝土梁柱节点动力性能试验研究[J].哈尔滨建筑大学学报.2001,34(1):21~27
    [179]黄襄云,周福霖,罗学海,等.钢管混凝土柱结构节点抗震性能研究[J].建筑结构.2001,31(7):3~7
    [180]吴涛,刘伯权,白国良.大型厂房钢筋混凝土框排架结构中异型节点的抗震性能和设计方法研究[J].土木工程学报.2006,39(4):1~6
    [181]傅剑平,张笛川,韦峰,等.异型柱框架中间层端节点抗震性能试验研究[J].建筑结构.2005,35(9):66~72
    [182]欧谨,黄伟淳,韩晓健,等.新型钢管混凝土柱框架节点低周反复荷载试验研究[J].地震工程与工程振动.1999,19(3):44~48
    [183]聂建国,秦凯,刘嵘,等.方钢管混凝土柱与钢_混凝土组合梁连接的内隔板式节点的抗震性能试验研究[J].建筑结构学报.2006,27(4):1~9
    [184]傅剑平,白绍良,王峥,等.考虑轴压比影响的钢筋混凝土框架内节点抗震性能试验研究[J].重庆建筑大学学报.2000,22(5):60~66
    [185]杨建江,郝志军.钢梁-钢筋混凝土柱节点在低周反复荷载作用下受力性能的试验研究[J].建筑结构.2001,31(7):35~38
    [186]李黎明,陈志华,李宁,等.隔板贯通式梁柱节点抗震性能试验研究[J].地震工程与工程振动.2007,27(1):46~53
    [187]石永久,李兆凡,陈宏,等.高层钢框架新型梁柱节点抗震性能试验研究[J].建筑结构学报.2002,23(3):2~7
    [188]邵永健,张汉东,陈国兴,等.框架边节点组合试件90°弯折钢筋锚固性能的试验研究[J].世界地震工程.2002,16(2):74~78
    [189]傅剑平.钢筋混凝土框架节点抗震性能与设计方法研究[D].重庆:重庆大学.2002
    [190]黄雅捷.钢筋混凝土异形柱框架结构抗震性能及性能设计方法研究[D].西安:西安建筑科技大学.2003
    [191] Vayas I, Pasternak H, Schween T. Cyclic behavior of beam-to-column steel joints with slender webpanels[J]. Journal of Structure Engineering.1995,121(2):240~248
    [192] Chou C C, Uang C M. Cyclic performance of a type of steel beam to steel-encased reinforcedconcrete column moment connection[J]. Journal of Constructional Steel Research.2002,58:637~663
    [193] Kim T, Whittaker A S, Gilani A S J, et al. Experimental evaluation of plate-reinforced steel momentresisting connections[J]. Journal of Structure Engineering.2002,128(4):483~491
    [194] Tsai K C, Wu S, Popov E P. Experimental performance of seismic steel beam-column momentjoints[J]. Journal of Structure Engineering.1995,121(6):925~931
    [195] Ju Y K, Kim J Y, Kim S D. Experimental evaluation of new concrete encased steel composite beamto steel column joint[J]. Journal of Structure Engineering.2007,133(4):519~529
    [196] JGJ101-96.建筑抗震试验方法规程[S].北京:中国建筑工业出版社.1997
    [197] GB50023-95.建筑抗震鉴定标准[S].北京:中国建筑工业出版社.1995
    [198]邱法维,钱稼茹,陈志鹏.结构抗震实验方法[M].北京:科学出版社.2000
    [199]姚谦峰,陈平.土木工程结构试验[M].北京:中国建筑工业出版社.2005
    [200]李忠献.工程结构试验理论与技术[M].北京:天津大学出版社.2004
    [201]沈在康.混凝土结构试验方法新标准应用讲评[M].北京:地震出版社.1992
    [202] Harada Y, Morita K. Design of wide-flange section column-to-split-tee tensile connection withhigh-strength bolts[J]. Journal of Structure Engineering.2007,133(3):335~346
    [203]李杰,李国强.地震工程学导论[M].北京:地震出版社.1992
    [204]沈聚敏,周锡元.抗震工程学[M].北京:中国建筑工业出版社.2000
    [205] NZS3101. The design of coneretes structures[S]. Wellington,NewZealand.1982
    [206] NZS3101. The design of coneretes structures[S]. Wellington,NewZealand.1995
    [207] Collins M P. Towards a rational theory for RC members in shear[J]. Journal of structural Division.1978,104(4):649~666
    [208] Vecchio F J, Collins M P. The modified compression-field theory for reinforced concrete elementssubjected to shear[C].//ACI Journal Proceedings. ACI.1986
    [209] Lowes L N, Altoontash A. Modeling Reinforced-Concrete Beam-Column Joints Subjected to CyclicLoading[J]. Journal of Structural Engineering.2003,129(12):1686~1670
    [210] Shin M, LaFave J M. Testing and modeling for cyclic joint shear deformations in RC beam-columnconnections[C].//13th World Conference on Earthquake Engineering.2004
    [211] LaFave J M, Shin M. Discussion of “Modeling Reinforced-Concrete Beam-Column Joints Subjectedto Cyclic Loading” by Laura N. Lowes and Arash Altoontash[J]. Journal of Structural Engineering.2005,131(6):992~993
    [212] Mitra N. An analytical study of reinforced concrete beam-column joint behavior under seismicloading[D]. Washington: University ofWashington.2007
    [213] Mitra N, Lowes L N. Evaluation and advancement of a reinforced concrete beam-column jointmodel[C].//13th World Conference on Earthquake Engineering.2004
    [214] Lowes L N, Altoontash A, Mitra N. Closure to “Modeling Reinforced-Concrete Beam-Column JointsSubjected to Cyclic Loading” by Laura N. Lowes and Arash Altoontash[J]. Journal of StructuralEngineering.2005,131(6):993~994
    [215]刘鸣,邢国华,吴涛,等.基于MCFT理论的RC框架节点受剪性能研究[J].土木工程学报.2011,44(2):82~89
    [216] Hsu T T C, Mau S T, Chen B. Theory on shear transfer strength of reinforced concrete[J]. ACIStructural Journal.1987,84(2):149~160
    [217] Hsu T T C. Softened truss model theory for shear and torsion[J]. ACI Structural Journal.1988,85(6):624~635
    [218] Hsu T T C. Unified theory of reinforced concrete[M]. CRC press.1992
    [219] Belarbi A, Hsu T T C. Constitutive laws of concrete in tension and reinforcing bars stiffened byconcrete[J]. ACI Structural Journal.1994,91(4):465~474
    [220] Belarbi A, Hsu T T C.. Constitutive laws of softened concrete in biaxial tension compression[J]. ACIStructural Journal.1995,92(5):562~573
    [221] Pang X B D, Hsu T T C. Fixed angle softened truss model for reinforced concrete[J]. ACI StructuralJournal.1996,93(2):197~207
    [222] Hsu T T C. Nonlinear analysis of membrane elements by fixed-angle softened-truss model[J]. ACIStructural Journal.1997,94(5):483~492
    [223]邢国华.钢筋混凝土框架变梁异型节点破坏机理及设计方法研究[D].西安:长安大学.2009
    [224] GB50011-2011.建筑抗震设计规范[S].北京:中国建筑工业出版社.2011
    [225] NZS3101. The design of coneretes structures[S]. Wellington,NewZealand.2006
    [226]吴涛,刘伯权,邢国华.钢筋混凝土框架变梁异型节点抗震[M].北京:科学出版社.2010
    [227]陈映瑞.分楼层式圆钢管混凝土柱-梁T形环梁节点抗震性能研究[D].广州:华南理工大学.
    2013

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700