用户名: 密码: 验证码:
丁坝群作用尺度理论及累积效应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丁坝是一种常见的涉河建筑物,广泛应用于治河工程、防洪工程、航道整治工程以及河滩围垦工程中。丁坝作为人类施加于河流系统的影响,在一定程度上会对河流系统产生干扰,为了更好地发挥丁坝的各项功能,工程实际中丁坝往往以“群”的形式出现。然而,目前针对丁坝所开展的研究无论是水流特性还是冲刷机理更多地着眼于单体丁坝上下游局部河段范围内对河床或水流的局部影响,而对由一系列丁坝所组成的丁坝群对河床及水流的综合影响和累积影响涉及较少。然而,不同间距下丁坝之间的关联性不同,从而产生的累积影响不同,因此,有必要开展丁坝作用尺度划分的研究。目前,一些涉河工程(如水库、电站、堤坝、人工运河等)的累积影响研究已经开展并取得了一定的研究成果,而丁坝作为其中的一种,关于其累积影响的研究却鲜有涉及。因此,在丁坝作用尺度划分的基础上,开展不同作用尺度之下丁坝群累积效应机理的研究具有一定的学术价值,对认识和评价涉河工程群对河流健康的影响亦有重要的意义。
     本文首先在浙江大学建工试验大厅开展水槽试验,获得数组丁坝群流场的试验资料,随后,选取三种不同方法求解N-S方程的紊流模型和两种自由表面处理方法对丁坝群流场进行数值模拟,在综合考虑模拟精度和模拟时间的前提下,分别获得适合非淹没丁坝和淹没丁坝流场模拟的数学模型。在前人研究的基础上,采用数值水槽定性研究非淹没丁坝和淹没丁坝作用尺度的划分准则,并对每种划分准则的优缺点进行定性分析比较,以此建立丁坝群作用尺度概念体系。进一步地,对非淹没双体丁坝和淹没双体丁坝作用尺度进行定量化研究,并在此基础上探讨不同作用尺度之下非淹没丁坝群和淹没丁坝群累积效应机理。论文完成的主要工作和取得的成果如下:
     (1)在水槽试验获得实测数据资料的基础上,选取三种紊流模型——标准k-ε模型、雷诺应力模型(RSM)和大涡模拟(LES),并且每种紊流模型之下自由表面边界分别采用刚盖假定和VOF模型两种处理方法,将6种数学模型分别应用于非淹没丁坝群和淹没丁坝群流场模拟中,综合考虑模型计算结果与水槽试验实测数据之间的吻合程度以及模型的计算时间,得出不同研究目的之下非淹没丁坝和淹没丁坝流场数值模拟所适合的紊流模型及自由表面边界条件。
     (2)根据丁坝流场数值模拟模型优选的结论并结合实际计算条件,确定非淹没丁坝流场数值模拟选用标准k-ε模型和刚盖假定所组成的数学模型,淹没丁坝流场数值模拟选用标准k-ε模型和VOF模型所组成的数学模型,以此作为工具,对不同间距之下非淹没双体丁坝和淹没双体丁坝的流场进行比较分析,提出三种非淹没丁坝群作用尺度划分准则——基于大尺度涡不相重叠、基于双丁坝断面流速分布相似和基于下游丁坝断面流速分布恢复,通过对三种划分准则的定性分析比较,分别得出三种划分准则的优缺点及适用范围;同时,提出一种淹没丁坝群作用尺度划分准则——基于下游丁坝断面流速分布恢复,通过定性分析,得出该划分准则的优缺点及适用范围。
     (3)通过量纲分析分别获得非淹没双体丁坝和淹没双体丁坝间距阈值的影响因素,并据此拟定数值试验工况;采用数值模拟的手段分别开展非淹没双体丁坝和淹没双体丁坝作用尺度量化研究,得出三种非淹没丁坝划分准则之下丁坝间距阈值的经验公式,定量比较三个公式的计算结果发现,基于大尺度涡不相重叠划分准则的计算结果偏小,后两者计算结果相当,机理分析表明,后两者本质相同但适用范围差异较大,前者是非淹没丁坝作用尺度判断的必要非充分条件;同时,获得淹没双体丁坝划分准则之下间距阈值的经验公式,并进一步对非淹没双体丁坝和淹没双体丁坝间距阈值进行横向定量比较。
     (4)最后,以非淹没双体丁坝三个间距阈值经验公式为基础,分别对三种作用尺度之下非淹没丁坝群水流结构、水流时均流速以及紊流强度等要素的累积效应机理进行探讨,通过对比分析发现,不同作用尺度之下非淹没丁坝群水流要素的累积效应有所不同,随着相邻丁坝间距增大作用尺度增大,累积影响最先消失的是水流结构,其次是水流时均流速,最后是紊流强度;以淹没双体丁坝间距阈值经验公式为基础,分别对两种作用尺度之下淹没丁坝群水面高度、水流时均流速以及紊流强度等要素的累积效应机理进行探讨,研究发现随着丁坝个数的累加,淹没丁坝群水面高度和水流时均流速的累积变化规律相反并且累积影响同时消失,而紊流强度仍然是其中最难恢复的水流要素。
Spur dike is one of the common river engineerings, which is widely used in river training projects, flood control projects, channel improvement projects and floodplain reclamation projects. As a human impact imposed on river system, spur dike would interfere river system to a certain extent. In order to better play the various functions of spur dike, spur dike often appears in the form of "group" in engineering practice. However, the current researches on spur dike, including flow characteristics or local scour mechanism, are more concentrated in partial impacts of single spur dike on the flow or riverbed and confined in the range of local reaches to the upstream or downstream spur dike. It is less involved in the combined effects and cumulative effects of spur dike group composed by a series of spur dikes on the flow or riverbed. In addition, the correlation between spur dikes is different under different dike spacing, so the corresponding cumulative effects are different. Consequently, it is necessary to carry out the research of impact scale of spur dikes. Currently, the cumulative effect studies of some river engineerings, such as reservoirs, hydropower stations, dams, artificial channels, etc., have been carried out and achieved some research achievements. However, as one of them, cumulative effect researches of spur dike are rarely involved. Therefore, based on the classification of impact scale of spur dikes, to carry out the research of cumulative effect mechanism of spur dike group with different impact scales has some academic value and important significance for understanding and evaluating the impact of river engineering on river system health.
     Firstly, flume experiments were conducted in Jiangong Testing Hall of Zhejiang University to obtain observed data of flow field of spur dike group. And then, three turbulence models based on different solutions of N-S equations and two kinds of treatment methods of free surface were selected to simulate the spur dike flow field. Under the comprehensive consideration of simulation accuracy and computation time, the suitable mathematical models of non-submerged and submerged spur dikes were obtained. On the basis of previous studies, numerical simulation was used to study on the classification criteria of impact scale of non-submerged and submerged spur dikes, and the advantages and disadvantages of each classification criterion were analysed and compared, meanwhile, the concept system of impact scale of spur dike group was built. Furthermore, the impact scale of non-submerged and submerged spur dikes was researched quantitatively and the cumulative effect mechanism of non-submerged and submerged spur dikes under different impact scales were carried out further. The major work and conclusions of the thesis are as follows:
     (1) Based on the observed data from flume experiments, three turbulence models--standard k-ε model, Reynolds stress model (RSM) and large eddy simulation (LES)-were selected, and the free surface boundary respectively employed two methods--rigid-lid assumption and VOF method (volume of fluid) in each model. The six kinds of mathematical models were applied to the simulation of flow field of non-submerged and submerged spur dike. Considering the consistent degree between computed results and observed data as well as the model computation time, the appropriate turbulence model and free surface boundary for the simulation of flow field of non-submerged and submerged spur dike were obtained under different research purposes.
     (2) According to the conclusions of appropriate mathematical models of non-submerged and submerged spur dikes and the actual computation condition, mathematical model contained in standard k-ε model and rigid-lid assumption was utilized to simulate the flow field of non-submerged spur dike, and mathematical model combined by standard k-ε model and VOF model was used to simulate the flow field of submerged spur dike. Based on above mathematical models, the flow fields of non-submerged and submerged spur dikes with different spacing were simulated and analyzed. Three classification criteria of impact scale of non-submerged double spur dikes were proposed, which respectively based on non-overlapping of large-scale vortex, similarity of sectional velocity of double spur dikes and velocity recovery of downstream dike, and their advantages, disadvantages and application scopes were analyzed qualitatively. Meanwhile, a classification criterion of impact scale of submerged double spur dikes based on velocity recovery of downstream dike was proposed, and its advantages, disadvantages and application scopes were gotten by qualitative analysis.
     (3) The influence factors of spacing threshold of double non-submerged and submerged spur dikes were obtained by dimensional analysis and the corresponding simulation conditions were drawn up respectively. The quantitative research of impact scale of double non-submerged and submerged spur dikes were carried out by means of numerical simulation. Three empirical formulas of spacing threshold of double non-submerged spur dikes under three classification criteria were obtained. The comparion of calculation results from three formulas showed that the results based on non-overlapping of large-scale vortex were smallest, while the results from the other two were with little difference. Mechanism analysis showed that the latter two had the same essence but different applied scope, and the former criterion was the necessary but not sufficient condition for the judgment of impact scale of non-submerged spur dikes. Likewise, the empirical formula of spacing threshold of double submerged spur dikes under the classification criterion was obtained. And the quantitative comparison of spacing thresholds between non-submerged and submerged spur dikes was carried out further.
     (4) Finally, based on the three empirical formulas of spacing threshold of double non-submerged spur dikes, the cumulative effect mechanism of flow structure, velocity and turbulence intensity of non-submerged spur dike group under three kinds of impact scales were explored respectively. Comparison study showed that the cumulative effects of each flow component of non-submerged spur dike group were different under different impact scales. With the increase of spacing between adjacent dikes, the cumulative effects of flow structure were the first to disappear, followed by flow velocity and turbulence intensity. Similarly, based on the empirical formula of spacing threshold of double submerged spur dikes, the cumulative variation of water level, flow velocity and turbulence intensity of submerged spur dike group under different impact scales were discussed respectively. It was found that with the accumulation of the number of spur dike, the cumulative variation of water level and flow velocity were inverse and the cumulative effects almost disappeared simultaneously, while turbulence intensity was still the most difficult to recover among the flow factors.
引文
1. Azinfar, H., Kells, J. A., Backwater prediction due to the blockage caused by a single, submerged spur dike in an open channel. Journal of Hydraulic Engineering,2008. 134:1153-1157.
    2. Anu, A., Jennifer, G. D., Three dimensional simulation of flow field around series of spur dikes. World Environmental and Water Resources Congress 2011:Bearing Knowledge for Sustainability,2011.2085-2094.
    3. Bakken, T.H., Sundt, H., Ruud, A., et al., Development of small versus large hydropower in Norway comparison of environmental impacts. Energy Procedia,2012.20:185-199.
    4. Bey, A., Faruque, M.A.A., Balachandar, R., Two-dimensional scour hole problem:role of fluid structures. Journal of Hydraulic Engineering,2007.133(4):414-430.
    5. Burris, R., Canter, L., Cumulative impacts are not properly addressed in environmental assessments. Environmental Impact Assessment Review.1997.17(1):5-18.
    6. Canter, L.W., Kamath, J., Questionnaire checklist for cumulative impacts. Environmental Impact Assessment Review,1995. (04):311-339.
    7. Cao, X.M., Gu, Z.H., Hu, Y.A., et al., Study on data mining of jet field based on artificial neural network. International Symposium on Hydraulic Physical Modeling and Field Investigation, Nanjing, China,2010.
    8. Cao, X.M., Gu, Z.H., Tang, H. W., Study on spacing threshold of non-submerged spur dikes with alternate layout. Journal of Applied Mathematics,2013.
    9. Cocklin, C., Parker, S., Hay, J., Notes on cumulative environmental change I:concepts and issues. Journal of Environmental Management,1992.35(1):31-49.
    10. Cui, Z.F., Zhang, X.F., Flow and sediment simulation around spur dike with free surface using 3-D turbulence model. Journal of Hydrodynamics,2006.18(3) S:237-244.
    11. Cocklin, C., Parker, S., Hay, J., Notes on cumulative environmental change I:Concepts and issues. Journal of Environmental Management,1992.35:31-49.
    12. Contant, C.K., Wiggins, L.L., Defining and analyzing cumulative environmental impacts. Environmental Impact Assessment Review,1991.11:297-309.
    13. Cooper, L.M., Sheate, W.R., Cumulative effects assessment:A review of UK environmental impact statements. Environmental Impact Assessment Review,2002.22:415-439.
    14. Cuthbertson, A.J.S., Ervine, D.A., Experimental study of fine particle settling in turbulent open channel flows over rough porous beds. Journal of Hydraulic Engineering,2005.133(8): 905-916.
    15. Dey, S., Barbhuiya, A.K., Velocity and turbulent in a scour hole at a vertical-wall abutment. Flow Meas Instrum,2006.17:13-21.
    16. Duan, J.G., He, L., Fu, X.D., Wang, G.Q., Mean flow and turbulence around experimental spur dike. Advances in water resources,2009.32(12):1717-1725.
    17. Duan, J., He, L., Wang, G.Q., Fu, X.D., Turbulent burst around experimental spur dike. International Journal of Sediment Research,2011.26:471-486
    18. Eccleston, C.H., Applying the significant departure principle in resolving the cumulative impact paradox:Assessing significance in areas that have sustained cumulatively significant impacts. Environmental Practice,2006. (8):241-250.
    19. Eslami, S., vanRijn, L.C., Walstra, D.J., A numerical study on design of coastal groins. Scour and Erosion,2010.501-510.
    20. Emad, E., Masanori, M., Osamu, H., Experimental study of flow behavior around submerged spur-dike on rigid bed. Annual Journal of Hydraulic Engineering,2000.44:539-544.
    21. Ettema, R., Muste, M., Scale effects in flume experiments on flow around a spur dike in flatbed channel. Journal of Hydraulic Engineering,2004.130:635-646.
    22. Fang, H.W., Bai, J. He, G.J., et al., Calculations of nonsubmerged groin flow in a shallow open channel by large-eddy simulation. Journal of Engineering Mechanics,2013.1-11.
    23. Fang, H. W., Rodi, W., Three-dimensional calculations of flow and suspended sediment transport in the neighborhood of the dam for the Three Gorges Project (TGP) reservoir in the Yangtze River. Journal of Hydraulic Research,2003.41(4):379-394.
    24. Galvan, S., Reggio, M., Guibault, F., Assessment study of k-epsilon turbulence models and near-wall modeling for state swirling flow analysis in draft tube using FLUENT. Engineering Applications of Computational Fluid Mechanics,2011.5(4):459-478.
    25. Garvey, M.V., Letter to the Editor:a piecemeal approach won't work. St. Louis Post-Dispatch, 8/2/2003, B2
    26. Gisonni, C., Hager, W.H., Spur failure in river engineering. Journal of Hydraulic Engineering, 2008.134 (2),135-145.
    27. Gregory, K.J., The human role in changing river channels. Geomorphology,2006.79: 172-191.
    28. Han, S.S., Biron, P.M., Ramamurthy, A.S., Three-dimensional modelling of flow in sharp open-channel bends with vanes. Journal of Hydraulic Research,2011.49(1):64-72.
    29. Hao, Z., Hajime, N., Kenji, K., et al., Experiment and simulation of turbulent flow in local scour around a spur dyke. International Journal of Sediment Research,2009.24:33-45.
    30. Hey, R.D., Winterbottom, A.N., River engineering in national parks:The case of the river Wharfe, U.K. Regulated Rivers:Research & Management,1990.5(1):35-44.
    31. Hojat, K., Abdollah, A., Kourosh, B·-,Masoud, G., Protective spur dike for scour mitigation of existing spur dikes. Journal of Hydraulic Research,2011.49(6):809-813.
    32. Hood, W.G., Indirect environmental effects of dikes on estuarine tidal channels:Thinking outside of the dike for habitat restoration and monitoring. Estuaries,2004.27(2):273-282.
    33. Hossein, A., James, A.K., Flow resistance due to a single spur dike in an open channel. Journal of Hydraulic Research,2009.47(6):755-763.
    34. Ishihara, T., Gotoh, T., Kaneda, Y., Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annual Review of Fluid Mechanics,2009.41:165-180.
    35. Ismail, H.O., Murat, I. K., Ali, R.B., et al., Effects of T-shape groin parameters on beach accretion. Ocean Engineering,2006. (33):382-403.
    36. James, L.A., Marcus, W.A., The human role in changing fluvial systems:retrospect, inventory and prospect. Geomorphology,2006.79(3-4):152-171.
    37. Jenkins, S. A., Inman, D. L., Richardson, M. D., et al., Scour and burial mechanics of objects in the nearshore. Journal of Ocean Engineering,2007.32(1):78-90.
    38. Jim, C.L., Lee, H.M., Exploring the benefits of paired watersheds for detecting cumulative effects. Watershed Management and Operations Management,2000:1-9.
    39. Karami, H. Ardeshir, A., Saneie, M., Behzadian, K., et al., Reduction of local scouring with protective spur dike. World Environmental and Water Resources Congress,2008.1-9.
    40. Kesel, R.H., Human modifications to the sediment regime of the Lower Mississippi River flood plain. Geomorphology,2003. (56):325-334.
    41. Keshavarzy, A., Ball, J.E., An analysis of the characteristics of rough bed turbulent shear stresses in an open channel. Stochastic Hydrology and Hydraulic,1997.11:193-210.
    42. Koken, M., Constantinescu, G., An investigation of the flow and scour mechanisms around isolated spur dikes in a shallow open channel:1. Conditions corresponding to the initiation of the erosion and deposition process. Water Resources Research,2008a.44, W08046:1-19.
    43. Koken, M., Constantinescu, G., An investigation of the flow and scour mechanisms around isolated spur dikes in a shallow open channel:2. Conditions corresponding to the final stages of the erosion and deposition process. Water Resources Research,2008b.44, W08407:1-16.
    44. Kuhnle, R., Alonso, C., Flow near a model spur dike with a fixed scoured bed. International Journal of Sediment Research,2013.28(3):349-357.
    45. Kuhnle, R.A., Alonso, C.V., Shields, Jr, F.D., Geometry of scour holes associated with 90°spur dikes. Journal of Hydraulic Engineering,1999.125(9):972-978.
    46. Kuhnle, R.A., Jia, Y., Alonso, C.V., Measured and simulated flow near a submerged spur dike. Journal of Hydraulic Engineering,2008.134(7):916-924.
    47. Le, H., Moin, P., Kim, J., Direct numerical simulation of turbulent flow over a backward-facing step. Journal of Fluid Mechanics,1997.330:49-374.
    48. Lee H.M., Predicting and managing cumulative watershed effects. Watershed Management and Operations Management,2000.1-10.
    49. Li, S., Cain, S., Wosnik, M., et al., Numerical modeling of probable maximum flood flowing through a system of spillways. Journal of Hydraulic Engineering,2011.131(1):66-74.
    50. Li, Y., Wang, J., Wang, W., Briaud, J. L., et al., Comparisons between predictions and measurements.1st International Conference on Scour of Foundations, Texas A&M Univ., College Station, Tex.,2002.1208-1221.
    51. Lu, X.B., Wang, L.L.,2D turbulent jet study based on FLUENT. Advances in Water Resources and Hydraulic Engineering,2008.608-613.
    52. Lysenko, D.A., Solomatnikov, A.A., Numerical simulation of a turbulent diffusion combustion with a small vorticity parameter with the aid of FLUENT CFD package. Heat Transfer Research,2006.37(6):515-526.
    53. McCold, L, Holman, J., Cumulative impacts in environmental assessments:how well are they considered? Environmental Professional,1995.17(1):2-8.
    54. McCoy, A., Constantinescu, G., Weber, L., A numerical investigation of coherent structures and mass exchange processes in channel flow with two lateral submerged groynes. Water Resource Research,2007.43(5):W05445.
    55. McCoy, A., Constantinescu, G., Weber, L.J., Numerical investigation of flow hydrodynamics in a channel with a series of groynes. Journal of Hydraulic Engineering,2008. 134(2):157-172.
    56. McCoy, A., Constantinescu, G., Weber, L., Hydrodynamics of flow in a channel with two lateral submerged groynes. World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat,2007.
    57. Mohammed, A., Tetsuro, T., Optimum configuration of groynes for stabilization of alluvial rivers with fine sediments. International Journal of Sediment Research,2012. (27):158-167.
    58. Moin, P., Mahesh, K., Direct numerical simulation:a tool in turbulence research. Annual Review of Fluid Mechanics,1998.30:539-578
    59. Nagata, N., Hosoda, T., Nakato, T., et al., Three-dimensional numerical model for flow and bed deformation around river hydraulic structures. Journal of Hydraulic Engineering,2005. 131(12):1074-1087.
    60. Nguyen, V.T., Nestmann, F., Applications of CFD in hydraulics and river engineering. Journal of Computational Fluid Dynamics,2004.18(2):165-174.
    61. Pinter, N., Jemberie, A.A., Remo, J.W.F., et al., Flood trends and river engineering on the Mississippi River system. Geophysical Research Letters,2008.35(23):L23404.
    62. Pinter, N., Jembere, A.A., Remo, J.W.F., et al., Cumulative impacts of river engineering, Mississippi and lower Missouri Rivers. River Research and Applications,2010.26:546-571.
    63. Przedwojski, B., Bed topography and local scour in rivers with banks protected by groynes. Journal of Hydraulic Research,1995.33(2):257-273.
    64. Rajaratnam, N., Nwachukwu, B.A., Flow near groin-like structures. Journal of Hydraulic Engineering,1983.109:463-480.
    65. Reckendorfer, W., Schmalfuss, R., Baumgartner, C., et al., The integrated river engineering project for the free-flowing Danube in the Austrian Alluvial Zone National Park: contradictory goals and mutual solutions. Arch Hydrobiol Suppl,2005.15(1-4):213-230.
    66. Rees, W.E., Cumulative environmental assessment and global change.Environmental Impact Assessment Review,1995. (4):295-309.
    67. Rodi, W., Comparison of LES and RANS calculations of the flow around bluff bodies. Journal of Wind Engineering and Industrial Aerodynamics,1997.69-71.
    68. Roger, A. K., Yafei, J., Carlos, V. A., Measured and simulated flow near a submerged spur dike. Journal of Hydraulic Engineering,2008.134(7):916-924
    69. Saulny, S., Gay, M., Trusting in levees, St. Louis area builds on flood plains. New York Times,5/15/2007, A13
    70. Schmidt, S., Thiele, F., Detached eddy simulation of flow around A-airfoil. Flow, Turbulence and Combustion,2003.71(1-4):261-278.
    71. Sealing, H., Smit, B., Cumulative environmental change:Conceptual frameworks, evaluation approaches, and institutional perspectives. Environmental Management,1993.17:587-600.
    72. Seed, R.B., Athanasopoulos-Zekkos, A., Cobos-Roa, D., et al., U.S. levee and flood protection engineering in the wake of hurricane Katrina. Geotechnical Engineering State of the Art and Practice,2012.294-334.
    73. Sherif, A.M., Mootaz, K., Application of permeable groins on tourist shore. Ocean Wave Measurement and Analysis,2001.1735-1744.
    74. Shih, S.S., Lee, H.Y., Chen, C.C., Model-based evaluations of spur dikes for fish habitat improvement:A case study of endemic species Varicorhinus barbatulus (Cyprinidae) and Hemimyzon formosanum (Homalopteridae) in Lanyang River, Taiwan. Ecological Engineering,2008. (34):127-136.
    75. Sigurdur, M.G., Thomas, R.G., Case study:Requirements for cumulative effects analysis. Building Partnerships,2000.1-9.
    76. Smit, B., Harry, S., Method for cumulative effects assessment. Environmental Impact Assessment Review,1995.15:81-106.
    77. Smith, H. D., Foster, D. L., Modeling of flow around a cylinder over a scoured bed. Journal of Waterway Port Coastal and Ocean Engineering,2005.131(1):14-24.
    78. Smith, L.M., Winkley, B.R., The response of the Lower Mississippi River to river engineering. Engineering Geology,1996.45(1-4):433-455.
    79. Surian, N., Rinaldi, M., Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology,2003.50(4):307-326
    80. Tang, X.L., Ding, X., Chen, Z.C., Large eddy simulations of three-dimensional flows around a spur dike. Tsinghua Science and Technology,2006.11 (1):117-123.
    81. Tang, X.L., Ding, X., Chen, Z.C., Experimental and numerical investigations on secondary flows and sedimentations behind a spur dike. Journal of Hydrodynamics, Ser. B,2007.19(1): 23-29.
    82. Tehrani, M.J., Haddad, O.B., Marino, M. A. Power generation simulation of a hydropower reservoir system using system dynamics:case study of Karoon reservoir system. Journal of Energy,2014.04014003:1-12.
    83. Terunori, O., Ryuichi, H., Nobukazu, K., Effects of water surface oscillation on turbulent flow in an open channel with a series of spur dikes. Hydraulic Measurements and Experimental Methods,2002.1-10.
    84. Thomas, M., M. Hanif, C., Khalid, W.K., Numerical simulation of two-dimensional flow near a spur-dike. Advances in Water Resources,1995.18(4):227-236.
    85. Tollefson, C., Wipond, K., Cumlative enviromnmental impacts and aboriginal rights. Environmental Impact Assessment Review,1998. (4):371-390.
    86. Tollefson, C., Wipond, K., Documentation of cumulative impacts in environmental impact statements.Environmental Impact Assessment Review,1997. (6):385-411.
    87. Uijttewall, W., Effects of groyne layout on the flow in groyne fields:laboratory experiments. Journal of Hydraulic Engineering,2005.131(9):782-791.
    88. Volker, W., Scott, A. Socolofsky, M., Gerhard, H. Jirka, F., Experiments on mass exchange between groin fields and main stream in rivers. Journal of Hydraulic Engineering,2008. 134:173-183.
    89.Walker, S.J., Schlacher, T.J., Thompson, L., Habitat modification in a dynamic environment: The influence of a small artificial groyne on macrofaunal assemblages of a sandy beach. Estuarine, Coastal and Shelf Science,2008.79:24-34.
    90. Wu, F.C., Jiang, M., Numerical investigation of the role of turbulent bursting in sediment entrainment. Journal of Hydraulic Engineering,2007.133(3):329-334.
    91. Xu, X.L., Liang, X.F., Liang, X.J., et al., Analysis on water resources supply and demand balance of major engineering project of rural land remediation in Jilin Province. Applied Mechanics and Materials,2013.295-298:2127-2131.
    92. Yovanni, A.C.L., Blake, J.L., Jorge, D.A., et al., Experimental and numerical study of the flow structure around two partially buried objects on a deformed bed. Journal of Hydraulic Engineering,2013.139:269-283.
    93. Zhang, X.F., Wang, P.Y., Yang, C.Y., Experimental study on flow turbulence discribution around a spur dike with different scructure. International conference on modern hydraulic engineering (CMHE). Nanjing,2012.28:772-775.
    94.蔡一全,宫敬,水力光滑圆管临界雷诺数的确定.油气储运,2004.23(9):23-25.
    95.曹晓萌,顾正华,三种双体丁坝作用尺度划分准则及比较.浙江大学学报(工学版)(录用待刊)
    96.曹晓萌,顾正华,刘国良,等,基于PSR的农村水电生态环境影响评价体系研究.人民 长江,2012.43(5):80-83.
    97.常福田,丁坝间距和壅水的研究.河海科技进展,1993.13(1):69-73.
    98.常福田,丰玮,丁坝群合理间距的试验研究.河海大学学报,1992.20(4):7-14.
    99.陈海军,徐长节,蔡袁强,宣伟丽,涌潮冲击排桩式丁坝的数值模拟.浙江大学学报(工学版),2007.41(1):171-175.
    100.陈国祥,张锦琦,陈耀庭,淹没丁坝雍水规律及试验研究.河海大学学报,1991.19(5):88-93.
    101.陈庆伟,陈凯麒,梁鹏,流域开发对水环境累积影响的初步研究.中国水利水电科学研究院学报,2003.1(4):300-305.
    102.陈涌城,杜玉柱,耿安锋,输配水管道沿程水头损失计算方法探讨.给水排水,2009.35(11):109-111.
    103.陈稚聪,黑鹏飞,丁翔等,丁坝回流分区机理及回流尺度流量试验研究.水科学进展,2008.19(5):613-617.
    104.程年生,丁坝有效影响范围与合理布设.水运工程,1991.(4):28-31.
    105.崔占峰,张小峰,三维紊流模型在丁坝中的应用.武汉大学学报(工学版),2006.39(1):15-20.
    106.邓云,李嘉,李克锋等,梯级电站水温累积影响研究.水科学进展,2008.19(2):273-279.
    107.董哲仁,河流生态修复的尺度格局和模型.水利学报,2006.37(12):1476-1481.
    108.董哲仁,河流生态系统研究的理论框架.水利学报,2009.40(2):129-137.
    109.董志,詹杰民,基于VOF方法的数值波浪水槽以及造波、消波方法研究.水动力学研究与进展:A辑,2009.24(1):15-21.
    110.冯永忠,常福田,错口丁坝在水流中的相互作用.河海大学学报,1996.24(1):70-76.
    111.付雅琴,基于复杂系统理论的梯级水电开发生态环境影响评价研究.博士学位论文,武汉:华中科技大学,2009.
    112.高桂景,丁坝水力特性及冲刷机理研究.硕士论文,重庆:重庆交通大学,2006.
    113.高先刚,刘焕芳,华根福等,双丁坝合理间距的试验研究.石河子大学学报(自然科学版),2010.28(5):614-617.
    114.高学平,赵世新,张晨等,河流系统健康状况评价体系及评价方法.水利学报,2009.40(8):962-968.
    115.高永胜,河流恢复尺度的内涵.人民黄河,2006.28(2):13-15.
    116.耿福明,薛联青,陆桂华,基于复合生态系统的流域梯级开发累积环境影响识别.水资源与水工程学报,2006.17(1):30-32.
    117.顾正华,等,涉河工程群对河流系统综合影响的评价体系及关键技术研究报告.水利部公益性项目:H20102290,2012.
    118.哈岸英,李国栋,杨兰,陈刚,丁坝群间取水建筑物局部流场及其冲淤变形的试验研究.应用基础与工程科学学报,2012.20(4):602-611.
    119.韩占忠,王敬,兰小平,Fluent-—流体工程仿真计算实例与应用(第2版).北京:北京理工大学出版社,2010.
    120.韩玉芳,陈志昌,丁坝回流长度的变化.水利水运工程学报,2004.(3):33-36.
    121.何鹏,南水北调东线工程受水区水环境累积影响评价.硕士学位论文,邯郸:河北工程大学,2012.
    122.何用,李义天,吴道喜,邓家泉,水沙过程与河流健康.水利学报,2006.37(11):1354-1359
    123.黑鹏飞,丁坝回流区水流特性的实验研究.博士学位论文,北京:清华大学,2009.
    124.黄荣敏,陈立,谢葆玲,等,建桥对河流洲边滩的影响.水利水运工程学报,2006.(2):51-55.
    125.假冬冬,王博,周刚,邵学军,边墩纵向宽度对回流长度的影响研究.水科学进展,2008.19(6):814-820.
    126.江帆,黄鹏,Fluent高级应用与实例分析.北京:清华大学出版社,2008.
    127.金小娟,陈进,河流健康评价的尺度转换问题初探.长江科学院院报,2010.27(3):1-4,11
    128.孔祥柏,程年生,丁潜坝局部水头损失的试验研究.水利水运科学研究,1992.(4):387-395.
    129.孔祥柏,胡英美,吴济难等,丁坝对水流影响的试验研究.水利水运科学研究,1983.(2):67-77.
    130.李国斌,韩信,傅津先,非淹没丁坝下游回流长度及最大回流宽度研究.泥沙研究,2001.(3):68-73.
    131.李国斌,李昌华,天然河道淹没丁坝群水流计算平面二维流带模型.泥沙研究,1994.4:4-49.
    132.李玲,李玉梁,应用基于RNG方法的湍流模型数值模拟钝体绕流的湍流流动.水科学进展,2000.11(4):357-361.
    133.李振青,廖小永,涉河工程群对防洪的累积影响研究.水利水运工程学报,2011.(4):121-125.
    134.李志勤,李洪,李然,溢流丁坝附近自由水面的实验研究与数值模拟.水利学报,2003.8:53-57.
    135.刘昌明,刘晓燕,河流健康理论初探.地理学报,2008.63(7):683-692.
    136.刘兰芬,陈凯麒,张士杰,等,河流水电梯级开发水温累积影响研究.中国水利水电科学研究院学报,2007.5(3):173-180.
    137.刘星才,徐宗学,张淑荣,徐华山,流域环境要素空间尺度特征及其与水生态分区尺度的关系——以辽河流域为例.生态学报,2012.32(11):3613-3620.
    138.刘亚男,郭晓宇,刘桦,基于RANS方程的海堤越浪数值模拟.水动力学研究与进展A辑,2007.22(6):682-688.
    139.卢金友,徐海涛,姚仕明,天然河道水流紊动特性分析.水利学报,2005.36(9):1029-1034.
    140.路幸福,文化生态保护研究尺度与进展.成都理工大学学报:社会科学版,2012.20(4):1-7.
    141.陆永军,周耀庭,丁坝下游恢复区流场初探.水动力学研究与进展,1989.4(3):70-78.
    142.吕江,祝梅良,翟洪刚,涌潮冲击丁坝的数值计算.海岸工程,2005.24(1):1-8.
    143.毛文锋,吴仁海,可持续发展与累积影响评价.环境导报,1997.(5):1-2.
    144.毛文锋,吴仁海,建议在我国开展累积影响评价的理论与实践研究.环境科学研究,1998.(05):8-11.
    145.毛野,杨华,袁新明,表面糙率与明渠紊流猝发现象.水利学报,2002.(6):53-59.
    146.毛野,杨华,袁新明等,平底光面明渠中紊流猝发的特性研究.水动力学研究与进展A辑,2002.17(4):413-421.
    147.毛战坡,王雨春,彭文启,等,筑坝对河流生态系统影响研究进展.水科学进展,2005.16(1):134-140.
    148.彭静,丁坝水流及冲刷——可视化与三维数值模拟.郑州:黄河水利出版社.2004.
    149.祁继英,阮晓红,大坝对河流生态系统的环境影响分析.河海大学学报(自然科学版),2005.33(1):37-40.
    150.尚淑丽,顾正华,曹晓萌.水利工程生态环境效应研究综述.水利水电科技进展,2014.34(1):14-19,48.
    151.孙东亚,赵进勇,董哲仁,流域尺度的河流生态修复.水利水电技术,2005.36(5):11-14.
    152.孙昭华,李义天,黄颖,水沙变异条件下的河流系统调整及其研究进展.水科学进展,2006.17(6):887-893.
    153.童跃平,张淑佳,李贤华,等,标准K-ε模型与RSM模型在离心泵三维模拟中的比较.浙江工业大学学报,2008.36(6):678-681.
    154.王波,梯级水库对河流生境因子的累积影响研究.硕士学位论文,武汉:长江科学院,2008.
    155.王波,黄薇,陈进,累积环境影响研究进展.水科学进展,2009.20(1):145-152.
    156.王波,梁婕鹏,基于不同空间尺度的河流健康评价方法探讨.长江科学院院报,2011.28(12):32-35.
    157.王海伟,王波,环境累积影响评价方法及在水利工程中的应用.中国农村水利水电,2013.(11):20-23.
    158.汪鹏,岸线开发利用对河道防洪影响的初步研究.硕士学位论文,武汉:长江科学院,2008:20-29.
    159.王瑞金,张凯,王刚,Fluent技术基础与应用实例.北京:清华大学出版社,2007.
    160.王文君,建设项目累积影响评价的实践探讨——以稔坑水电站建设项目累积影响评价为例.硕士学位论文,中山:中山大学,2005.
    161.韦丹,锦州湾港口建设环境累积影响评价的方法研究.硕士学位论文,大连:大连海事大学,2008.
    162.吴信才,地理信息系统原理与方法.北京:电子工业出版社,2002.
    163.吴义锋,薛联青,吕锡武,基于复合生态系统的流域梯级开发累积环境影响识别.水与社会经济发展的相互影响及作用--全国第三届水问题研究学术研讨会论文集,2005.388-392.
    164.夏自强,郭文献,河流健康研究进展与前瞻.长江流域资源与环境,2008.17(2):252-256.
    165.项海帆,21世纪世界桥梁工程的展望.土木工程学报,2000.33(3):1-6
    166.谢金明,吴保生,刘孝盈,水库泥沙淤积管理综述.泥沙研究,2013.(3):71-80.
    167.辛永政,张莉莉,3种紊流数值模型模拟明渠丁坝三维水流初探.贵州水力发电,2011.25(5):56-58,67.
    168.许光样,程昌华,刘建新,丁坝对河道水位影响的实验研究.重庆交通学院学报,1994,13(4):48-53.
    169.许继军,陈进,金小娟,健康长江评价区划方法和尺度探讨.长江科学院院报,2011.28(10):49-53.
    170.徐晓东,非淹没正交双体丁坝的水流特性及作用尺度研究.硕士学位论文,杭州:浙江大学,2013.
    171.杨宏,流域水电梯级开发累积环境影响评价研究.硕士学位论文,兰州:兰州大学,2006.
    172.杨纪伟,胥战海,滕丽娟,基于FLUENT的小尺度粗糙明渠紊流数值模拟.人民长江,2008.39(19):76-80
    173.杨丽虎,梯级水库对流域出口水沙的累积影响研究.硕士学位论文,武汉:长江科学院,2007.
    174.杨丽虎,陈进,常福宣,等,梯级水库对生态系统基流的累积影响.武汉大学学报,2007,44(3):22-26
    175.杨文慧,河流健康的理论构架与诊断体系的研究.博士学位论文,南京:河海大学,2007.
    176.应强,淹没丁坝附近的水流流态.河海大学学报(自然科学版),1995.23(4):62-68.
    177.应强,孔祥柏,非等长淹没丁坝群局部水头损失的计算.水科学进展,1994.5(3):214-220.
    178.应强,焦志斌,丁坝水力学.北京:海洋出版社,2004.
    179.于守兵,淹没丁坝对水流的调整作用.博士学位论文,南京:南京水利科学研究院,2010.
    180.于守兵,陈志昌,韩玉芳,淹没丁坝端坡对附近水流结构的调整作用.水动力学研究与 进展(A),2012.27(1):39-46.
    181.于守兵,韩玉芳,丁坝—水流—河床的相互作用.郑州:黄河水利出版社,2011.
    182.张洪波,黄强,张双虎,等,梯级水库运行对黄河上游水文条件的累积影响.河海大学学报(自然科学版),2011.39(2):137-142.
    183.张家福,桥梁墩台对河道防洪影响的分析计算.广东水利电力职业技术学院学报,2006.4(1):35-38.
    184.张可,王平义,喻涛,不同坝型丁坝坝体周围水流紊动特性试验研究.水运工程,2012.(7):1-7.
    185-张细兵,卢金友,蔺秋生,长江中下游岸线利用对防洪累积影响初步研究.长江流域资源与环境,2011.20(9):1138-1142.
    186.张征,沈珍瑶,韩海荣,等,环境评价学.北京:高等教育出版社,2004.
    187.赵晖,钱塘江排桩式丁坝在涌潮作用下的受力分析.科技通报,2006.22(2):247-253.
    188.赵连白,淹没丁坝群水力计算的试验研究.水科学进展,1994.5(3):221-228.
    189.赵彦伟,汪思慧,于磊,等,流域景观格局变化的河流生物响应研究进展.生态学杂志,2010.29(6):1228-1234.
    190.赵银军,丁爱中,李原园,论河流功能.科技导报,2013.31(33):19-24.
    191.中华人民共和国水利部,堤防工程设计规范(GB50286-94).北京:中国建筑工业出版社,1998.
    192.周宜林,淹没丁坝附近三维水流运动大涡数值模拟.长江科学院院报,2001.18(5):28-31,36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700