用户名: 密码: 验证码:
不确定性水文模拟与流域管理模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受气候变化和人类活动的双重影响,流域系统已不能及时发挥自我调节和调控功能以应对变化的环境条件,流域内发生了一系列显著的环境问题和自然灾害事件,例如,水污染状况加剧、洪旱灾害频发。流域模型提供了一种有效的方式,可以实现流域系统主要的物理、社会经济和政治要素的综合研究。但是,复杂的流域系统和环境变化条件使得流域模型研究必须考虑、反映和分析不确定性。水文模型的输入、参数和结构都存在不确定性,开展水文模拟时需要量化和评估这些不确定性,并要求开发不确定性的处理方法以减小模拟的不确定性。流域管理模型需要综合考虑输入和参数的不确定性,以实现不确定性条件下的水资源和土地资源利用的规划与管理。因此,本文从不确定性的水文模拟与流域管理模型出发,分析了流域降雨径流序列的非一致性趋势变化,进而应用SLURP水文模型模拟了香溪河流域的水文过程,同时考虑不同流域划分水平对SLURP水文模拟的影响并评估了参数和模拟的不确定性。在此基础上,开发了一个能够处理输入不确定性的库区流域分布式水文模型。为研究不确定性的流域管理模型,分别开发了模糊约束的梯级水库生态调度模型和不确定性的流域土地利用优化管理模型。论文主要的研究工作及创新性成果如下:
     (1)联合应用多种趋势分析方法检验和解译了香溪河流域降雨径流序列可能存在的趋势。识别了降雨径流各统计量序列的趋势、趋势初始点和变异点。减小的趋势主要存在于径流序列,而9月份月降雨量的减少也存在统计显著性。径流序列的趋势多发生于70年代,并且在1988年以后,径流的统计特性发生了改变。因此,流域降雨径流关系也相应地变化。导致这些变化的主要原因是人类活动,尤其是水利工程建设的影响。
     (2)应用SLURP模型实现了香溪河流域分布式的水文模拟,并依据不同的流域划分水平对比研究了模型表现、模拟的水量平衡组分和不同下垫面类型的径流模拟贡献量。增加的流域划分水平可以提高水文模型效率,但是对水文过程模拟的改善有限,而不同流域划分水平下水量平衡组分和下垫面径流量的模拟变化较大。较精细的流域划分水平下模型参数的灵敏性降低,模拟结果的差别变小,从而有助于水文模拟结果趋向稳定。
     (3)基于马尔科夫蒙特卡洛的贝叶斯方法分析了SLURP水文模型参数和模拟的不确定性,并研究了不同流域划分水平的影响。不同流域划分水平下,水文模型参数的不确定性变化较大,而增加流域划分水平有助于降低日径流量模拟的不确定性。但是,存在一定的流域划分水平,增加流域划分不利于水文模型可靠性的改进。研究结论可为水文模型的实际应用提供参考。
     (4)开发了一个基于机会约束控制的库区流域分布式水文模型。通过将降雨强度用随机分布来描述,开发的水文模型能够处理降雨输入在时间尺度上的不确定性,并能将降雨输入尺度效应的影响有效地反映在流域水文模拟过程,改善地表径流产量的计算。与SLURP水文模型对比,模型效率和表现均得到明显地改善,尤其是径流量偏差得到有效控制。
     (5)开发了不确定性的梯级水库系统生态调度模型和流域土地利用管理模型。梯级水库生态调度模型将模糊的下游生态流量需求作为约束引入调度模型,并提出了模糊约束的自适应遗传算法求解规划模型,实现了水力发电效益的最大化,并有效地平衡了水力发电调度和下游生态用水的矛盾。不确定性的土地利用优化管理模型综合考虑了区间、模糊和随机的不确定性,并通过两阶段的决策过程对土壤侵蚀进行控制,最终实现了不确定性条件下流域系统净收益的最大化。
Under the coupling impacts of climate change and anthropogenic activities, watershed systems can no longer cope with changing environmental conditions in time, a lot of serious environmental problems and natural hazards have occurred in the watersheds around the world. For example, water pollution is aggravating, and floods and droughts have become more frequent. Watershed models provide efficient tools for integrated studies of the major physical, socioeconomic, and political aspects of watersheds. However, complex watershed systems and changing environmental conditions make uncertainties be incorporated within the watershed modeling studies, and as such, these uncertainties should be carefully considered, reflected and analyzed in the watershed models. As for hydrologic modeling, uncertainties exist in model inputs, parameters and structure. To perform hydrological simulations has to quantify and evaluate these uncertainties, and moreover, efficient approaches for dealing with them should be proposed to reduce the simulation uncertainty. Also, uncertainties in inputs and parameters should be effectively reflected in watershed management models. Consequently, this dissertation undertook the hydrological simulation and watershed management model under uncertainty through analyzing the trends in the precipitation and streamflow time series, applying the SLURP hydrologic model to simulate the hydrological processes in the Xiangxi River watershed, and investigating the effects of watershed subdivision level on the simulations as well as the uncertainty of parameters and discharge simulations. Based on these, a distributed reservoir watershed hydrologic model was developed to deal with uncertainties in precipitation inputs. To demonstrate the watershed management under uncertainty, two kind of watshed models, i.e. fuzzy constrained eco-friendly reservoir operation model and inexact land use allocation model, were developed in this dissertation. Main research works and innovative achievements were introduced as follows.
     (1) Multiple trend analysis methods were simultaneously applied to test and interpret the trends in precipitation and streamflow time series in the Xiangxi River watershed. The possible trends in various precipitation and streamflow statistics, the beginning of trends, and change points were identified in the Xiangxi River watershed. Mostly, streamflow time series exhibited a downward trend, and the negative trend in the monthly precipitation of September was also found to be statistically significant. The trends in streamflow mainly started in1970s, but the statistic characteristics of streamflow time series significantly changed after1988. As a result, the relation between precipitation and streamflow was accordingly changed, and anthropogenic activities, especially for the small hydropower construction were found to be mainly responsible for such changes in the Xiangxi River watershed.
     (2) The SLURP hydrologic model was applied to simulate the hydrological processes in the Xiangxi River watershed, and impacts of watershed subdivision level on the modeling efficiency, water balance components and runoff contribution from various land types were also examined. To increase the watershed subdivision level would increase the modeling efficiency, but the improvement of hydrograph simulations was limited. However, the simulations of water balance components and runoff contributions from various land types were found to vary a lot. In addition, fine watershed subdivision would decrease the sensitivity of parameters, and the difference became slight under fine subdivisions. Hence, fine watershed subdivisions would help the simulations approach stable.
     (3) A Markov Monte Carlo based formal Bayesian method was employed to evaluate the parameter uncertainty and simulation uncertainty of the SLURP model with various watershed subdivision level. The parameter uncertainty was found to vary a lot under different subdivision level, but to increase the watershed subdivision level would help to reduce the daily discharge simulation uncertainty. However, there was a threshold, after which the reliability of hydrologic model could not be improved through increasing the watershed subdivision level. The obtained findings would support the practical application of hdyrological models.
     (4) A chance-constrained control based distributed reservoir watershed hydrologic model was developed. Through representing the rainfall intenstiy with a stochastic distribution, the developed hydrologic model was expected to handle the uncertainty in precipitation inputs at the temporal scale, to take the scaling effects of precipitation inputs into hydrological modeling processes, and to improve the simulation of overland surface flow generation. Compared to the SLURP model, both modeling efficiency and performance was significantly improved, especially for the runoff deviation, which was effectively controlled at a satisfactory level.
     (5) Inexact reservoir operation of a cascade reservoir system and optimal land use management models were formulated to demonstrate the consideration of uncertainties in watershed management models. The inexact reservoir operation model introduced the fuzzy downstream ecological demands into the operation model as constraints, and a fuzzy constrained self-adaptive algorithm was proposed to solve the inexact model. As a result, the electric generation of the cascade system was maximized, and meanwhile, the tradeoff between electric generation and downstream ecological flow was effectively balanced. The inexact land use management model considered uncertainties expressed as interval, fuzzy and stochastic distribution, and employed the two-stage decision theory into programming framework for soil erosion control. After the solution of the inexact programming model, the maximum net benefit of watershed system was finally achieved under uncertainty.
引文
[l]刘昌明,郑红星,王中根.流域水循环分布式模拟[M].北京:黄河水利出版社,2006
    [2]Freeze R. A., Harlan R. L. Blueprint of a physically-based digitally-simulated hydrological response model[J]. Jounal of Hydrology,1969.9:237-258
    [3]刘昌明,李道峰,田英,等.基于DEM的分布式水文模型在大尺度流域应用研究[J].地理科学进展,2003,22(5):437-445
    [4]Beasley D. B. ANSWERS:A mathematical model for simulating the effects of land use and management on water quality[M]:UNI.1977:247
    [5]王蕊,王中根,夏军.地表水和地下水耦合模型研究进展[J].地理科学进展,2008,27(4):37-41
    [6]万增友.MIKE SHE模型国内应用现状及其关键问题研究[J].科协论坛:下半月,2011,(5):99-101
    [7]Chaplot V. Impact of DEM mesh size and soil map scale on SWAT runoff, sediment, and N03-N loads predictions[J]. Journal of Hydrology,2005.312(1-4): 207-222
    [8]陈军锋,陈秀万.SWAT模型的水量平衡及其在梭磨河流域的应用[J].北京大学学报:自然科学版,2004,40(2):265-270
    [9]张银辉.SWAT模型及其应用研究进展[J].地理科学进展,2005.24(5):121-130
    [10]Han J. C., Huang G. H., Zhang H., et al. Effects of watershed subdivision level on semi-distributed hydrological simulations:case study of the SLURP model applied to the Xiangxi River watershed, China[J]. Hydrological Sciences Journal, 2013:1-18
    [11]黄平,赵吉国.森林坡地二维分布型水文数学模型的研究[J].水文,2000,20(4):1-4
    [12]王中根,刘昌明,左其亭,等.基于DEM的分布式水文模型构建方法[J].地理科学进展,2002,21(5):430-439
    [13]杨大文,李翀,倪广恒,等.分布式水文模型在黄河流域的应用[J].地理学报,2004,59(001):143-154
    [14]杨传国,余钟波,林朝晖,等.大尺度分布式水文模型数字流域提取方法研 究[J].地理科学进展,2007,26(1):68-76
    [15]贾仰文,王浩,王建华,等.黄河流域分布式水文模型开发和验证[J].自然资源学报,2005.20(2)
    [16]郭生练,熊立华,杨井,等.基于DEM的分布式流域水文物理模型[J].武汉水利电力大学学报,2000,33(6):1-5
    [17]于澎涛.分布式水文模型的理论、方法与应用[D].北京:中国林业科学研究院,2001
    [18]石朋.网格型松散结构分布式水文模型及地貌瞬时单位线研究[D].南京:河海大学,2006
    [19]许继军,杨大文,刘志雨,等.基于分布式水文模型的长江上游水资源时空变异性分析[J].水文,2007,27(3):10-15
    [20]Krzysztofowicz R. Bayesian theory of probabilistic forecasting via deterministic hydrologic model[J]. Water Resources Research,1999.35(9):2739-2750
    [21]Beven K., Binley A. The future of distributed models:Model calibration and uncertainty prediction[J]. Hydrological Processes,1992.6(3):279-298
    [22]Kavetski D., Kuczera G., Franks S. W. Calibration of conceptual hydrological models revisited:2. Improving optimisation and analysis[J]. Journal of Hydrology,2006.320(1-2):187-201
    [23]Gourley J. J., Vieux B. E. A method for identifying sources of model uncertainty in rainfall-runoff simulations[J]. Journal of Hydrology,2006,327(1-2):68-80
    [24]Refsgaard J. C., van der Sluijs J. P., Brown J., et al. A framework for dealing with uncertainty due to model structure error[J]. Advances in Water Resources, 2006.29(11):1586-1597
    [25]Butts M. B., Payne J. T., Kristensen M., et al. An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation[J]. Journal of Hydrology,2004,298(1-4):242-266
    [26]Vrugt J. A., ter Braak C. J. F., Clark M. P., et al. Treatment of input uncertainty in hydrologic modeling:Doing hydrology backward with Markov chain Monte Carlo simulation[J]. Water Resources Research,2008,44:W00B09
    [27]Li L., Xia J., Xu C. Y., et al. Evaluation of the subjective factors of the GLUE method and comparison with the formal Bayesian method in uncertainty assessment of hydrological models[J]. Journal of Hydrology,2010.390(3-4): 210-221
    [28]Moradkhani H., Sorooshian S., Gupta H. V., et al. Dual state-parameter estimation of hydrological models using ensemble Kalman filter[J]. Advances in Water Resources,2005,28(2):135-147
    [29]Smith P. J., Beven K. J., Tawn J. A. Detection of structural inadequacy in process-based hydrological models:A particle-filtering approach[J]. Water Resources Research,2008,44:W01410
    [30]李璐.流域水文模型不确定性分析方法的理论和应用研究[D].北京:中国科学院地理科学与资源研究所.2010
    [31]Abbaspour K. C., Yang J., Maximov I., et al. Modelling hydrology and water quality in the pre-ailpine/alpine Thur watershed using SWAT[J]. Journal of Hydrology,2007,333(2-4):413-430
    [32]Choi H. T., Beven K. Multi-period and multi-criteria model conditioning to reduce prediction uncertainty in an application of TOPMODEL within the GLUE framework[J]. Journal of Hydrology,2007.332(3-4):316-336
    [33]Li L., Xu C. Y., Xia J., et al. Uncertainty estimates by Bayesian method with likelihood of AR (1) plus Normal model and AR (1) plus Multi-Normal model in different time-scales hydrological models[J]. Journal of Hydrology,2011, 406(1-2):54-65
    [34]Xu C. Y. Statistical Analysis of Parameters and Residuals of a Conceptual Water Balance Model-Methodology and Case Study [J]. Water Resources Management,2001.15(2):75-92
    [35]Huang G. H., Liu L., Chakma A., et al. A hybrid GIS-supported watershed modelling system:application to the Lake Erhai basin, China[J]. Hydrological Sciences Journal,1999,44(4):597-610
    [36]Feiring B. R., Sastri T., Sim L. S. M. A stochastic programming model for water resource planning[J]. Mathematical and Computer Modelling,1998.27(3):1-7
    [37]Huang G. H. A hybrid inexact-stochastic water management model[J]. European Journal of Operational Research,1998,107(1):137-158
    [38]Huang G. H., Loucks D. P. An inexact two-stage stochastic programming model for water resources management under uncertainty [J]. Civil Engineering and Environmental Systems,2000,17(2):95-118
    [39]Maqsood M., Huang G. H., Yeomans J. S. An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty [J]. European Journal of Operational Research,2005.167(1):208-225
    [40]Li Y. P., Huang G. H., Nie S. L. Planning water resources management systems using a fuzzy-boundary interval-stochastic programming method[J]. Advances in Water Resources,2010,33(9):1105-1117
    [41]Li Y. P., Huang G. H., Nie S. L., et al. A robust modeling approach for regional water management under multiple uncertainties[J]. Agricultural Water Management,2011.98(10):1577-1588
    [42]Li Y. P., Huang G. H., Sun W. Management of Uncertain Information for Environmental Systems Using a Multistage Fuzzy-Stochastic Programming Model with Soft Constraints[J]. Journal of Environmental Informatics,2011. 18(1):28-37
    [43]Liu S., Konstantopoulou F., Gikas P., et al. A mixed integer optimisation approach for integrated water resources management[J]. Computers & Chemical Engineering,2011,35(5):858-875
    [44]Huang G. H., Cohen S. J., Yin Y. Y., et al. Land resources adaptation planning under changing climate—a study for the Mackenzie Basin[J]. Resources, Conservation and Recycling,1998,24(2):95-119
    [45]Wang X. H., Yu S., Huang G. H. Land allocation based on integrated GIS-optimization modeling at a watershed level[J]. Landscape and Urban Planning,2004,66(2):61-74
    [46]徐宗学,程磊.分布式水文模型研究与应用进展[J].水利学报,2010,41(9):1009-1017
    [47]Singh V. P. Hydrologic Systems:Rainfall-Runoff Modeling[M]. Englewood Cliffs, New Jersey:Prentice Hall College Div.1988
    [48]Singh V., Woolhiser D. Mathematical Modeling of Watershed Hydrology[J]. Journal of Hydrologic Engineering,2002,7(4):270-292
    [49]Vrugt J. A., Gupta H. V., Bouten W., et al. A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters[J]. Water Resources Research,2003,39(8):1201
    [50]Ehsanzadeh E., Ouarda T. B. M. J., Saley H. M. A simultaneous analysis of gradual and abrupt changes in Canadian low streamflows[J]. Hydrological Processes,2011,25(5):727-739
    [51]Bao Z., Zhang J., Liu J., et al. Sensitivity of hydrological variables to climate change in the Haihe River basin, China[J]. Hydrological Processes,2012,26(15): 2294-2306
    [52]Douglas E. M., Fairbank C. A. Is Precipitation in Northern New England Becoming More Extreme? Statistical Analysis of Extreme Rainfall in Massachusetts, New Hampshire, and Maine and Updated Estimates of the 100-Year Storm[J]. Journal of Hydrologic Engineering,2011.16(3):203-217
    [53]Ehsanzadeh E., van der Kamp G., Spence C. The impact of climatic variability and change in the hydroclimatology of Lake Winnipeg watershed[J]. Hydrological Processes,2012,26(18):2802-2813
    [54]Wagesho N., Goel N. K., Jain M. K. Investigation of non-stationarity in hydro-climatic variables at Rift Valley lakes basin of Ethiopia[J]. Journal of Hydrology,2012,444:113-133
    [55]Yip Q. K. Y., Burn D. H., Seglenieks F., et al. Climate Impacts on Hydrological Variables in the Mackenzie River Basin[J]. Canadian Water Resources Journal, 2012,37(3):209-230
    [56]Sonali P., Nagesh Kumar D. Review of trend detection methods and their application to detect temperature changes in India[J]. Journal of Hydrology, 2013.476:212-227
    [57]曹明亮,张弛,周惠成,等.丰满上游流域人类活动影响下的降雨径流变化趋势分析[J].水文,2008,28(5):86-89
    [58]石教智,陈晓宏,吴甜.东江流域降雨径流变化趋势及其原因分析[J].水电能源科学,2005,23(5):8-10
    [59]张宝信,谢自银.我国降雨变化趋势分析[J].河海大学学报(自然科学版),2012,40(3):81-86
    [60]Yue S., Wang C. Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test[J]. Water Resources Research,2002, 38(6)
    [61]Khaliq M. N., Ouarda T. B. M. J., Gachon P., et al. Identification of hydrological trends in the presence of serial and cross correlations:A review of selected methods and their application to annual flow regimes of Canadian rivers[J]. Journal of Hydrology,2009,368(1-4):117-130
    [62]Shen Z. Y, Chen L., Chen T. Analysis of parameter uncertainty in hydrological and sediment modeling using GLUE method:a case study of SWAT model applied to Three Gorges Reservoir Region, China[J]. Hydrology and Earth System Sciences,2012.16(1):121-132
    [63]Zhai P., Zhang X., Wan H., et al. Trends in Total Precipitation and Frequency of Daily Precipitation Extremes over China[J]. Journal of Climate,2005.18(7): 1096-1108
    [64]Li D., Wang W., Hu S., et al. Characteristics of annual runoff variation in major rivers of China[J]. Hydrological Processes,2012.26(19):2866-2877
    [65]Xiong L. H., Guo S. L. Trend test and change-point detection for the annual discharge series of the Yangtze River at the Yichang hydrological station[J]. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques,2004,49(1): 99-112
    [66]孙长安.香溪河流域土地利用与水土流失的关系研究[D].北京:北京林业大学,2008
    [67]叶绿.三峡库区香溪河水华现象发生规律与对策研究[D].河海大学,2006
    [68]崔玉洁,刘德富,宋林旭,等.数字滤波法在三峡库区香溪河流域基流分割中的应用[J].水文,2011,31(6):18-23
    [69]盛前丽.香溪河流域土地利用变化径流效应研究[D].北京:北京林业大学.2008
    [70]叶麟.三峡水库香溪河库湾富营养化及春季水华研究[D].武汉:中国科学院,2006
    [71]Kundzewicz Z. W., Robson A. J. Detecting trend and other changes in hydrological data[R]. Geneva:World Meteorological Organization.2000
    [72]Tao H., Gemmer M., Bai Y., et al. Trends of streamflow in the Tarim River Basin during the past 50 years:Human impact or climate change?[J]. Journal of Hydrology,2011.400(1-2):1-9
    [73]Zhang Q., Xu C. Y., Chen X., et al. Statistical behaviours of precipitation regimes in China and their links with atmospheric circulation 1960-2005[J]. International Journal of Climatology,2011,31(11):1665-1678
    [74]Becker S., Gemmer M., Jiang T. Spatiotemporal analysis of precipitation trends in the Yangtze River catchment[J]. Stochastic Environmental Research and Risk Assessment,2006,20(6):435-444
    [75]Piao S., Ciais P., Huang Y., et al. The impacts of climate change on water resources and agriculture in China[J]. Nature,2010.467(7311):43-51
    [76]Zhang Q., Jiang T., Liu C. Changing Trends of Water Level and Runoff during Past 100 Years of the Yangtze River (China)[J]. Asian Journal of Water, Environment and Pollution,2006.3(1):49-55
    [77]周长艳,李跃清,李薇,等.东亚地区秋季水汽输送特征与水汽源地分析[J].热带气象学报,2006.22(4):380-385
    [78]Annamalai H., Liu P., Xie S. P. Southwest Indian Ocean SST Variability:Its Local Effect and Remote Influence on Asian Monsoons*[J]. Journal of Climate, 2005,18(20):4150-4167
    [79]Zhou B. T. Linkage between winter sea surface temperature east of Australia and summer precipitation in the Yangtze River valley and a possible physical mechanism[J]. Chinese Science Bulletin,2011,56(17):1821-1827
    [80]Niu N., Li J. Interannual variability of autumn precipitation over South China and its relation to atmospheric circulation and SST anomalies[J]. Advances in Atmospheric Sciences,2008,25(1):117-125
    [81]Tsonis A. A. Widespread increases in low-frequency variability of precipitation over the past century[J]. Nature,1996,382(6593):700-702
    [82]Seeber C., Hartmann H., Wei X., et al. Land use change and causes in the Xiangxi catchment, Three Gorges Area derived from multispectral data[J]. Journal of Earth Science,2010,21(6):846-855
    [83]Han J. C., Huang G. H., Zhang H., et al. Fuzzy constrained optimization of eco-friendly reservoir operation using self-adaptive genetic algorithm:a case study of a cascade reservoir system in the Yalong River, China[J]. Ecohydrology, 2012,5(6):768-778
    [84]Dehotin J., Braud I. Which spatial discretization for distributed hydrological models? Proposition of a methodology and illustration for medium to large-scale catchments[J]. Hydrological Earth System Sciences,2008,12(3):769-796
    [85]Efstratiadis A., Nalbantis I., Koukouvinos A., et al. HYDROGEIOS:a semi-distributed GIS-based hydrological model for modified river basins[J]. Hydrology and Earth System Sciences,2008.12(4):989-1006
    [86]Zhang H., Huang G. H., Wang D., et al. An integrated multi-level watershed-reservoir modeling system for examining hydrological and biogeochemical processes in small prairie watersheds[J]. Water research,2012, 46(4):1207-1224
    [87]Chen B., Jing L., Zhang B. Y., et al. Wetland Monitoring, Characterization and Modelling under Changing Climate in the Canadian Subarctic[J]. Journal of Environmental Informatics,2011,18(2):55-64
    [88]Orlandini S., Moretti G. Determination of surface flow paths from gridded elevation data[J]. Water Resources Research,2009.45:W03417
    [89]Sulis M., Paniconi C., Camporese M. Impact of grid resolution on the integrated and distributed response of a coupled surface-subsurface hydrological model for the des Anglais catchment, Quebec[J]. Hydrological Processes,2011,25(12): 1853-1865
    [90]Cho H., Olivera F. Effect of the Spatial Variability of Land Use, Soil Type, and Precipitation on Streamflows in Small Watersheds[J]. Journal of the American Water Resources Association,2009.45(3):673-686
    [91]Norris G., T. H. C. Impact of subdividing watersheds on estimated hydrographs[J]. Transaction of the ASAE,9(5):443-445
    [92]Hayakawa H., Uchijima K., Fujita M. A study on subcatchment scale for a distributed runoff model[J]. Environment International,1995,21(5):491-496
    [93]Bingner R. L., Garbrecht J., Arnold J. G., et al. Effect of watershed subdivision on simulation runoff and fine sediment yield[J]. Transactions of the ASAE,1997. 40(5):1329-1335
    [94]FitzHugh T. W., Mackay D. S. Impacts of input parameter spatial aggregation on an agricultural nonpoint source pollution model[J]. Journal of Hydrology,2000, 236(1-2):35-53
    [95]FitzHugh T. W., Mackay D. S. Impact of subwatershed partitioning on modeled source and transport-limited sediment yields in an agricultural nonpoint source pollution model[J]. Journal of Soil and Water Conservation,2001.56(2): 137-143
    [96]Jha M., Gassman P. W., Secchi S., et al. Effect of watershed subdivision on swat flow, sediment, and nutrient predictions[J]. Journal of the American Water Resources Association,2004,40(3):811-825
    [97]Cho J., Lowrance R. R., Bosch D. D., et al. Effect of Watershed Subdivision and Filter Width on SWAT Simulation of a Coastal Plain Watershed1[J]. Journal of the American Water Resources Association,2010,46(3):586-602
    [98]Gong Y., Shen Z., Liu R., et al. Effect of Watershed Subdivision on SWAT Modeling with Consideration of Parameter Uncertainty [J]. Journal of Hydrologic Engineering,2010,15(12):1070-1074
    [99]Wang X., Liu T., Yang D., et al. Simulating Hydrologic Effects of Raised Roads within a Low-Relief Watershed[J]. Journal of Hydrologic Engineering,2011, 16(7):585-597
    [100]Kumar S., Merwade V. Impact of Watershed Subdivision and Soil Data Resolution on SWAT Model Calibration and Parameter Uncertainty [J]. Journal of the American Water Resources Association,2009,45(5):1179-1196
    [101]Tripathi M. P., Raghuwanshi N. S., Rao G. P. Effect of watershed subdivision on simulation of water balance components[J]. Hydrological Processes,2006. 20(5):1137-1156
    [102]Kite G. Application of a land class hydrological model to climatic change[J]. Water Resources Research,1993.29(7):2377-2384
    [103]Kite G. Simulating Columbia River flows with data from regional-scale climate models[J]. Water Resources Research,1997,33(6):1275-1285
    [104]Kite G. Modelling the Mekong:hydrological simulation for environmental impact studies[J]. Journal of Hydrology,2001,253(1-4):1-13
    [105]龙天渝,梁常德,李继承,等.基于slurp模型和输出系数法的三峡库区非点源氨氮负荷预测[J].环境科学学报,2008.28(3):574-581
    [106]Lacroix M. P., Martz L. W., Kite G. W., et al. Using digital terrain analysis modeling techniques for the parameterization of a hydrologic model[J]. Environmental Modelling & Software,2002,17(2):125-134
    [107]Kite G. Manual for the SLURP Hydrological Model V-11[R]. Saskatoon: National Hydrology Research Institute,1997
    [108]Morton F. I. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology[J]. Journal of Hydrology. 1983,66(1-4):1-76
    [109]Duan Q., Sorooshian S., Gupta V. Effective and efficient global optimization for conceptual rainfall-runoff models[J]. Water Resources Research,1992, 28(4):1015-1031
    [110]Thorne R. Uncertainty in the impacts of projected climate change on the hydrology of a subarctic environment:Liard River Basin[J]. Hydrology Earth System Science Discussion,2010,7(3):3129-3157
    [111]Thorne R., Woo M. K. Efficacy of a hydrologic model in simulating discharge from a large mountainous catchment[J]. Journal of Hydrology,2006,330(1-2): 301-312
    [112]van der Linden S., Woo M. K. Transferability of hydrological model parameters between basins in data-sparse areas, subarctic Canada[J]. Journal of Hydrology, 2003.270(3-4):182-194
    [113]Beven K. Prophecy, reality and uncertainty in distributed hydrological modeling[J]. Advances in Water Resources,1993,16(1):41-51
    [114]Cheng C. T., Chau K. W., Li X. Y., et al. Hydrologic uncertainty for Bayesian probabilistic forecasting model based on BP ANN[M]2007:197-201
    [115]Engeland K., Xu C. Y., Gottschalk L. Assessing uncertainties in a conceptual water balance model using Bayesian methodology[J]. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques,2005.50(1):45-63
    [116]Krzysztofowicz R., Kelly K. S. Hydrologic uncertainty processor for probabilistic river stage forecasting[J]. Water Resources Research,2000, 36(11):3265-3277
    [117]王文圣,张翔,金菊良.水文学不确定性分析方法[M].北京:科学出版社,2011
    [118]Beven K. Environmental Modelling:An Uncertain Future?[M]. London: Routledge.2009:310
    [119]严登华,袁喆,王浩.水文学不确定性不确定性方法及其集合研究进展[J].水利学报,2013,44(1):73-82
    [120]Beven K. How far can we go in distributed hydrological modelling?[J]. Hydrology and Earth System Sciences,2001,5(1):1-12
    [121]Lindenschmidt K.-E., Fleischbein K., Baborowski M. Structural uncertainty in a river water quality modelling system[J]. Ecological Modelling,2007, 204(3-4):289-300
    [122]Huang Y., Chen X., Li Y. P., et al. A fuzzy-based simulation method for modelling hydrological processes under uncertainty[J]. Hydrological Processes, 2010,24(25):3718-3732
    [123]Zhang H., Huang G. H., Wang D., et al. Uncertainty assessment of climate change impacts on the hydrology of small prairie wetlands[J]. Journal of Hydrology,2011,396(1-2):94-103
    [124]Engeland K., Gottschalk L. Bayesian estimation of parameters in a regional hydrological model[J]. Hydrology and Earth System Sciences,2002,6(5): 883-898
    [125]Jin X., Xu C. Y., Zhang Q., et al. Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model[J]. Journal of Hydrology,2010,383(3-4):147-155
    [126]Kelly K., Krzysztofowicz R. A bivariate meta-Gaussian density for use in hydrology[J]. Stochastic Hydrology and Hydraulics,1997,11(1):17-31
    [127]Blasone R. S., Vrugt J. A., Madsen H., et al. Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling[J]. Advances in Water Resources,2008,31(4):630-648
    [128]Blasone R.-S., Madsen H., Rosbjerg D. Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling[J]. Journal of Hydrology,2008,353(1-2):18-32
    [129]黄凯,张晓玲.贝叶斯方法在水环境系统不确定分析中的应用评述[J].水电能源科学,2012.(9):47-49
    [130]Liu X., Cardiff M., Kitanidis P. Parameter estimation in nonlinear environmental problems[J]. Stochastic Environmental Research and Risk Assessment,2010,24(7):1003-1022
    [131]Blasone R. S., Madsen H., Rosbjerg D. Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling[J]. Journal of Hydrology,2008,353(1-2):18-32
    [132]Yang J., Reichert P., Abbaspour K. C. Bayesian uncertainty analysis in distributed hydrologic modeling:A case study in the Thur River basin (Switzerland)[J]. Water Resources Research,2007,43(10):W10401
    [133]Yang J., Reichert P., Abbaspour K. C., et al. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China[J]. Journal of Hydrology,2008,358(1-2):1-23
    [134]Kelly K. S., Krzysztofowicz R. Probability distributions for flood warning systems[J]. Water Resour Res,1994,30(4):1145-1152
    [135]Engeland K., Renard B., Steinsland I., et al. Evaluation of statistical models for forecast errors from the HBV model[J]. Journal of Hydrology,2010,384(1-2): 142-155
    [136]Bernardo J. M., Smith A. F. M. Bayesian Theory[M]. New York:John Wiley. 1994
    [137]Reggiani P., Weerts A. H. A Bayesian approach to decision-making under uncertainty:An application to real-time forecasting in the river Rhine[J]. Journal of Hydrology,2008,356(1-2):56-69
    [138]Chib S., Greenberg E. Understanding the Metropolis-Hastings algorithm[J]. The American Statistican,1995,49:327-335
    [139]宋林旭,刘德富,肖尚斌.基于SWAT模型的三峡库区香溪河非点源氮磷负荷模拟[J].环境科学学报,2013,3(1):267-275
    [140]Kirkby M. Modelling the interactions between soil surface properties and water erosion[J]. Catena,2002,46(2):89-102
    [141]Bennett N. D., Croke B. F. W., Guariso G., et al. Characterising performance of environmental models[J]. Environmental Modelling & Software,2013,40: 1-20
    [142]Castronova A. M., Goodall J. L., Ercan M. B. Integrated modeling within a Hydrologic Information System:An OpenMI based approach[J]. Environmental Modelling & Software,2013.39(0):263-273
    [143]Liu S., Shao Y., Yang C., et al. Improved regional hydrologic modelling by assimilation of streamflow data into a regional hydrologic model[J]. Environmental Modelling & Software,2012.31(0):141-149
    [144]Schleiss M., Berne A. Stochastic Space-Time Disaggregation of Rainfall into DSD fields[J]. Journal of Hydrometeorology,2012.13(6):1954-1969
    [145]Pushpalatha R., Perrin C, Le Moine N., et al. A review of efficiency criteria suitable for evaluating low-flow simulations[J]. Journal of Hydrology,2012, 420:171-182
    [146]Peel M. C., Bloeschl G. Hydrological modelling in a changing world[J]. Progress in Physical Geography,2011,35(2):249-261
    [147]Beven K. J., Kirkby M. J. A physically based, variable contributing area model of basin hydrology/Un modele a base physique de zone d'appel variable de l'hydrologie du bassin versant[J]. Hydrological Sciences Bulletin,1979,24(1): 43-69
    [148]Kandel D. D., Western A. W., Grayson R. B. Scaling from process timescales to daily time steps:A distribution function approach[J]. Water Resources Research,2005.41(2):W02003
    [149]Kandel D. D., Western A. W., Grayson R. B., et al. Process parameterization and temporal scaling in surface runoff and erosion modelling[J]. Hydrological Processes,2004,18(8):1423-1446
    [150]Moriasi D. N., Arnold J. G., Van Liew M. W., et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the Asabe,2007,50(3):885-900
    [151]Yoo J. H. Maximization of hydropower generation through the application of a linear programming model[J]. Journal of Hydrology,2009,376(1-2):182-187
    [152]Graf W. L. Downstream hydrologic and geomorphic effects of large dams on American rivers[J]. Geomorphology,2006.79(3-4):336-360
    [153]Jager H. I., Smith B. T. Sustainable reservoir operation:Can we generate hydropower and preserve ecosystem values?[J]. River Research and Applications,2008.24(3):340-352
    [154]Postel S., Richter B. Rivers for life:managing waters for people and nature[M]. Washington, D C:Island Press.2003:220
    [155]Wohl E. Disconnected rivers:linking rivers to landscapes[M]. New Haven: Yale University Press,2004:301
    [156]Arthington A. H., Bunn S. E., Poff N. L., et al. The challenge of providing environmental flow rules to sustain river ecosystems[J]. Ecological Applications,2006.16(4):1311-1318
    [157]Bauer M., Olsson O. Integration of enhanced reservoir operation (enrop) into IWRM in association with environmental and ecological aspects[A]. ⅩⅢth World Water Congress[C],2008:1-13
    [158]McCartney M. P. Decision support systems for dam planning and peration in Africa[R]. International Water Management Institute,2007
    [159]Suen J. P., Eheart J. W. Reservoir management to balance ecosystem and human needs:Incorporating the paradigm of the ecological flow regime[J]. Water Resources Research,2006,42(3):W03417
    [160]Lytle D. A., Poff N. L. Adaptation to natural flow regimes[J]. Trends in ecology & evolution (Personal edition),2004,19(2):94-100
    [161]Poff N. L., Bledsoe B. P., Cuhaciyan C. O. Hydrologic variation with land use across the contiguous United States:Geomorphic and ecological consequences for stream ecosystems[J]. Geomorphology,2006,79(3-4):264-285
    [162]Chang L. C., Chang F. J., Wang K. W., et al. Constrained genetic algorithms for optimizing multi-use reservoir operation[J]. Journal of Hydrology,2010, 390(1-2):66-74
    [163]Tennant D. L. Instream flow regimens for fish, wildlife, recreation and related environmental resources[J]. Fisheries,1976,1(4):6-10
    [164]Huang G. H., Chang N. B. The perspectives of environmental informatics and systems analysis[J]. Journal of Environmental Informatics,2003.1(1):1-7
    [165]Zhang H., Huang G. H. Assessment of non-point source pollution using a spatial multicriteria analysis approach[J]. Ecological Modelling,2011.222(2): 313-321
    [166]Ahmadi-Nedushan B., St-Hilaire A., Berube M., et al. A review of statistical methods for the evaluation of aquatic habitat suitability for instream flow assessment[J]. River Research and Applications,2006,22(5):503-523
    [167]Salski A. Ecological Applications of Fuzzy Logic[M]. New York:Springer. 2003
    [168]Lauzon N., Lence B. J. Hybrid fuzzy-mechanistic models for addressing parameter variability [J]. Environmental Modelling & Software,2008.23(5): 535-548
    [169]Cai Y. P., Huang G. H., Tan Q., et al. An integrated approach for climate-change impact analysis and adaptation planning under multi-level uncertainties. Part I: Methodology[J]. Renewable & Sustainable Energy Reviews,2011,15(6): 2779-2790
    [170]Sadri S., Burn D. H. A Fuzzy C-Means approach for regionalization using a bivariate homogeneity and discordancy approach[J]. Journal of Hydrology, 2011.401(3-4):231-239
    [171]Cheng C. T., Ou C. P., Chau K. W. Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration[J]. Journal of Hydrology,2002.268(1-4):72-86
    [172]Huang G. H., Baetz B. W., Patry G. G. A grey fuzzy linear programming approach for municipal solid waste management planning under uncertainty [J]. Civil Engineering Systems,1993.10(2):123-146
    [173]Nie X. H., Huang G. H., Li Y. P., et al. IFRP:A hybrid interval-parameter fuzzy robust programming approach for waste management planning under uncertainty [J]. Journal of Environmental Management,2007.84(1):1-11
    [174]Ahmed J. A., Sarma A. K. Genetic algorithm for optimal operating policy of a multipurpose reservoir[J]. Water Resources Management,2005,19(2):145-161
    [175]Chen L. Real coded genetic algorithm optimization of long term reservoir operation[J]. JAWRA Journal of the American Water Resources Association, 2003.39(5):1157-1165
    [176]Cheng C. T., Wang W. C., Xu D. M., et al. Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos[J]. Water Resources Management,2008,22(7):895-909
    [177]Hakimi-Asiabar M., Ghodsypour S. H., Kerachian R. Deriving operating policies for multi-objective reservoir systems:Application of Self-Learning Genetic Algorithm[J]. Applied Soft Computing,2010,10(4):1151-1163
    [178]Mousavi S. J., Ponnambalam K., Karray F. Reservoir operation using a dynamic programming fuzzy rule-based approach[J]. Water Resources Management,2005,19(5):655-672
    [179]Ngo L. L., Madsen H., Rosbjerg D. Simulation and optimisation modelling approach for operation of the Hoa Binh reservoir, Vietnam[J]. Journal of Hydrology,2007.336(3-4):269-281
    [180]Labadie J. W. Optimal operation of multireservoir systems:State-of-the-art review[J]. Journal of Water Resources Planning and Management-ASCE,2004. 130(2):93-111
    [181]Cai X., McKinney D. C., Lasdon L. S. Solving nonlinear water management models using a combined genetic algorithm and linear programming approach[J]. Advances in Water Resources,2001.24(6):667-676
    [182]Kerachian R., Karamouz M. A stochastic conflict resolution model for water quality management in reservoir-river systems[J]. Advances in Water Resources,2007,30(4):866-882
    [183]Oliveira R., Loucks D. P. Operating rules for multireservoir systems[J]. Water Resour Res,1997.33(4):839-852
    [184]Cheng C. T., Zhao M. Y., Chau K. W., et al. Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure[J]. Journal of Hydrology,2006,316(1-4):129-140
    [185]Baskar S., Subbaraj P., Rao M. V. C., et al. Genetic algorithms solution to generator maintenance scheduling with modified genetic operators[J]. IEE Proceedings-Generation, Transmission and Distribution,2003,150(1):56-60
    [186]Deb K., Beyer H. G. Self-adaptation in real parameter genetic algorithms with simulated binary crossover[A]. Proceedings of the Genetic and Evolutionary Computation Conference [C], Morgan Kaufmann,1999:172-179
    [187]Su C. T., Chiang C. L. An incorporated algorithm for combined heat and power economic dispatch[J]. Electric Power Systems Research,2004.69(2-3): 187-195
    [188]Subbaraj P., Rengaraj R., Salivahanan S. Enhancement of Self-adaptive real-coded genetic algorithm using Taguchi method for Economic dispatch problem[J]. Applied Soft Computing,2011.11(1):83-92
    [189]Deb K., Beyer H. G. Self-adaptive genetic algorithms with simulated binary crossover[J]. Evol Comput,2001.9(2):197-221
    [190]Sahinidis N. V. Optimization under uncertainty:state-of-the-art and opportunities[J]. Computers & Chemical Engineering,2004.28(6-7):971-983
    [191]Bellman R. E., Zadeh L. A. Decision-Making in a Fuzzy Environment[J]. Management Science,1970,17(4):141-164
    [192]Blickle T., Thiele L. A Comparison of Selection Schemes Used in Genetic Algorithms [R].1995
    [193]Li R. N., Chen Q. W., Chen D. Application of genetic algorithm to improve the fuzzy logic river habitat model[A]. Proceedings of the 6th ISEH Conference[C], 2010
    [194]Liu Z. Soil and Water Conservation in China[A]. Proceedings of the Ninth International Symposium on River Sedimentation[C]. Tsinghua University Press,2004:136-142
    [195]Burn D. H., McBean E. A. Optimization modeling of water-quality in an uncertain environment[J]. Water Resources Research,1985,21(7):934-940
    [196]Luo B., You J. A watershed-simulation and hybrid optimization modeling approach for water-quality trading in soil erosion control[J]. Advances in Water Resources,2007.30(9):1902-1913
    [197]Liu A., Wang J., Liu Z. Assessing the Effects of Land Use Changes on Soil Erosion in Three Gorges Reservoir Region of China.2008 International Workshop on Earth Observation and Remote Sensing Applications. New York: IEEE,2008.
    [198]Liu Y., Yu Y., Guo H., et al. Optimal Land-Use Management for Surface Source Water Protection Under Uncertainty:A Case Study of Songhuaba Watershed (Southwestern China)[J]. Water Resources Management,2009,23(10): 2069-2083
    [199]Meng Q. H., Fu B. J., Yang L. Z. Effects of land use on soil erosion and nutrient loss in the Three Gorges Reservoir Area, China[J]. Soil Use and Management,2001.17(4):288-291
    [200]Wang E., Xin C., Williams J. R., et al. Predicting soil erosion for alternative land uses[J]. Journal of Environmental Quality,2006.35(2):459-467
    [201]Zhou Z., Ning D., Yang Z. Land Resource Optimized Distribution of Zigui County in Three Gorges Reservoir Area[J]. Journal of Beijing Normal University (Natural Science),1999.35(4):536-541 (in Chinese)
    [202]Sadeghi S. H. R., Jalili K., Nikkami D. Land use optimization in watershed scale[J]. Land Use Policy,2009.26(2):186-193
    [203]Alshuwaikhat H. M., Nassef K. A GIS-based spatial decision support system for suitability assessment and land use allocation[J]. Arabian Journal for Science and Engineering,1996.21(4A):525-543
    [204]Liu Y., Lv X., Qin X., et al. An integrated GIS-based analysis system for land-use management of lake areas in urban fringe[J]. Landscape and Urban Planning,2007.82(4):233-246
    [205]Mendoza G. A. A mathematical-model for generating land-use allocation alternatives for agrogorestry systems[J]. Agroforestry Systems,1987,5(4): 443-453
    [206]Chuvieco E. Integration of linear-programming and GIS for land-use modeling[J]. International Journal of Geographical Information Systems,1993, 7(1):71-83
    [207]Sharawi H. A. Optimal land-use allocation in central Sudan[J]. Forest Policy and Economics,2006,8(1):10-21
    [208]Arthur J. L., Nalle D. J. Clarification on the use of linear programming and GIS for land-use modelling[J]. International Journal of Geographical Information Science,1997,11(4):397-402
    [209]Zhang H., Huang G. H., Wang D. L., et al. Uncertainty assessment of climate change impacts on the hydrology of small prairie wetlands[J], Journal of Hydrology,2011,396(1-2):94-103
    [210]Liu Y., Qin X., Guo H., et al. ICCLP:An inexact chance-constrained linear programming model for land-use management of lake areas in urban fringes[J]. Environmental Management,2007,40(6):966-980
    [211]Malczewski J. GIS-based land-use suitability analysis:a critical overview[J]. Progress in Planning,2004,62(1):3-65
    [212]Wets R. Programming Under Uncertainty:The Solution Set [J]. SIAM Journal on Applied Mathematics,1966,14(5):1143-1151
    [213]Huang G. H., Cao M. F. Analysis of Solution Methods for Interval Linear Programming[J]. Journal of Environmental Informatics,2011,17(2):54-64
    [214]Cao M. F., Huang G. H. Scenario-Based Methods for Interval Linear Programming Problems[J]. Journal of Environmental Informatics,2011,17(2): 65-74
    [215]Fan Y. R., Huang G. H. A robust two-step method for solving interval linear programming problems within an environmental management context[J]. Journal of Environmental Informatics,2012,19(1):1-9
    [216]陈炼钢,钱新,施勇,等.基于RUSLE和SDR的香溪河流域土壤流失脆弱区识别[J].中国科技论文,2012,7(5):395-402
    [217]宜昌市人民政府.宜昌市土地利用总体规划(2006-2020)[R].宜昌:2009
    [218]尹忠东,左长清,苟江涛,等.川中紫色土区小流域土地利用与土壤流失关系[J].水利学报,2011,42(3):329-336
    [219]周宗丽,宁大同,杨志峰.三峡库区秭归县土地资源优化配置[J].北京师范大学学报(自然科学版),1999,35(4):536-541

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700