用户名: 密码: 验证码:
小波神经网络算法及其船舶运动控制应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小波神经网络结合了神经网络的自学习、自适应、鲁棒性、容错性和泛化推广能力以及小波变换的时频局部和变焦等特性,具有全局最优逼近和运算速度快等优点,避免了BP网络等传统的神经网络类型在这些方面的不足,已成功应用于系统辨识、模式识别和控制等领域。在实际应用中,小波神经网络尚存在对系统动态反映能力不足以及泛化能力难以保证等问题,制约了其在实际工程中的应用。
     为了提高小波神经网络的泛化能力,提出基于Akaike信息准则改进的余值选择算法。通过设定最优学习停止标准,在保证辨识精度的同时精简网络的规模,避免了神经网络在学习过程中出现的过拟和与欠拟合现象,提高了神经网络的泛化能力。作为小波神经网络的构造算法,余值选择算法通过正交选择方法高效地衡量了隐层节点对输出的贡献,有利于网络规模的自适应调整。仿真实验表明该算法提高了网络的泛化能力。
     为了更好地反映系统动态的变化,将系统历史信息引入网络输入层构造时滞小波神经网络模型,为弥补由此带来的输入变量膨胀的缺陷,利用基于相对贡献率的灵敏度分析方法确定与系统输出相关性强的变量作为输入,优化了输入层结构,解决了网络模型失配的问题,提高了网络对系统动态变化的反映能力。
     针对船舶海上运动非线性、大惯性和动态时变等特点,构建基于改进时滞小波神经网络的预测PID控制器。其中,利用小波神经网络进行船舶运动动态的在线辨识和预测,利用预测控制策略克服船舶运动的大惯性对控制效果的不利影响。基于该控制器进行了船舶航向跟踪控制的仿真实验,并与传统的PID控制器进行了对比研究,结果表明该控制系统具有较高的控制精度和较强的抗干扰能力。
     以上研究结果显示,改进的小波神经网络有针对性地提高了系统的动态反映能力和泛化能力,其运算快速性和非线性拟合能力适应船舶海上运动特点,在船舶运动控制领域有广阔的应用前景。
Wavelet neural network combines the virtues of neural network such as the self-learning ability, adaptivity, robustness, fault-tolerance ability as well as the time-frequency local characteristics and zooming characteristics of wavelet transform, possesses virturs of global optimum approximating ability and fast processing speed. It avoids drawbacks of conventional BP neural network such as local minima and slow convergence speed, has been successfully applied in areas of system identification, pattern recognition and control. However, it is found in practical applications that there are several problems such as deficiencies in dynamic representing ability and generalization ability, which frustrates its practical applications.
     To improve the generalization ability of wavelet neural network, an improved residual selection learning algorithm is proposed based on Akaike information criterion. By setting optimal stop criterion for learning process, the achieved wavelet neural network enables satisfying identification accuracy as well as compact network structure, which avoids unfavorable phenomenon of over-fitting and under-fitting and guarantees the generalization ability of wavelet neural network. As a learning algorithm for wavelet neural network, residual selection algorithm evaluates the contribution of hidden neurons to the output respectively, which facilitate the adaptive adjustment of network dimension. Simulation results shows that the proposed algorithm improves the generalization capability of the wavelet neural network.
     To better represent the changes of system dynamics, the history information of system is introduced in the network input layer leading to the time-delay wavelet neural network. To settle the subsequent problem of too much variables in input layer, sensitivity analysis method based on relative contribution ratio is applied to decide the optimal inputs by selecting variables which have higher correlation with output, which resolves the problem of model mismatch and improve the network's representing ability for changes of dynamical system.
     Aiming at the complex characteristics of ship motion such as nonlinearity, large inertia and time-varying dynamics, predictive PID controller is constructed based on the improved time-delay wavelet neural network. The wavelet neural network is performed for the online ship dynamic identification and prediction. The predictive control strategy is utilized to overcome the unfavorable effects of large inerita. Simulations of ship heading course following control were conducted and coparison study was processed with the conventional PID controller, the results shows that the proposed controller possesses higher control accuracy as well as stronger anti-interference ability.
     The aforesaid study results demonstrate that the improved wavelet neural network enhances the dynamic representing ability and generalization ability of wavelet neural network respectively. Its fast processing speed and nonlinear approximation ability enable that it can represent the characteristics of ship motion at sea, and can be implemented widely in field of ship motion control.
引文
[1]Haar A.Zur theorie der orthogonalen funktionensysteme[J]. Mathematische Annalen,1910,69(3): 331-371.
    [2]Morlet J,Arens G,Fourgeau E,et al.Wave propagation and sampling theory-Part Ⅰ:Complex signal and scattering in multilayered media[J]. Geophysics,1982,47(2):203-221.
    [3]Grossmann A,Morlet J.Decomposition of Hardy functions into square integrable wavelets of constant shape[J]. SIAM journal on mathematical analysis,1984,15(4):723-736.
    [4]Grossmann A,Morlet J,Paul T.Transforms associated to square integrable group representations. I. General results[J]. Journal of Mathematical Physics,1985,26(10):2473-2479.
    [5]Smith M J T,Barnwell Ⅲ T P. Exact reconstruction techniques for tree-structured subband coders[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1986,34(3):434-441.
    [6]Meyer Y. Principe d'incertitude,bases hilbertiennes et algebres d'operateurs[J].Seminaire Bourbaki,1985,28:209-223.
    [7]Daubechies I. Orthonormal bases of compactly supported wavelets[J]. Communications on pure and applied mathematics,1988,41(7):909-996.
    [8]Daubechies I,Sweldens W. Factoring wavelet transforms into lifting steps[J]. Journal of Fourier analysis and Applications,1998,4(3):247-269.
    [9]Mallat S G. A theory for multiresolution signal decomposition:the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):674-693.
    [10]Mallat S G. Multiresolution approximations and wavelet orthonormal bases of L2 (R)[J]. Transactions of the American Mathematical Society,1989,315(1):69-87.
    [11]Cohen A,Daubechies I. A stability criterion for biorthogonal wavelet bases and their related subband coding scheme[J]. Duke Math. J,1992,68(2):313-335.
    [12]Chui C K,Wang J.On compactly supported spline wavelets and a duality principle[J]. Transactions of the American Mathematical Society,1992,330(2):903-915.
    [13]Coifinan R R,Meyer Y,Wickerhauser V. Wavelet analysis and signal processing[C]//In Wavelets and their Applications.1992.
    [14]Vetterli M, Herley C. Wavelets and filter banks:Theory and design[J]. IEEE Transactions on Signal Processing,1992540(9):2207-2232.
    [15]Rioul O,Vetterli M. Wavelets and signal processing[J]. IEEE signal processing magazine,1991, 8(LCAV-ARTICLE-1991-005):14-38.
    [16]Selesnick I W,Baraniuk R G,Kingsbury N C. The dual-tree complex wavelet transform[J]. IEEE Transactions on Signal Processing Magazine,2005,22(6):123-151.
    [17]梁慧,曾水平.应用小波多分辨率理论提取个性特征的研究[J].计算机工程与应用,2013,49(9):120-122.
    [18]李世平,陈方超.基于小波和高阶累积量的数字调制识别算法[J].网络与通信,.20111,31(11):2926-2928.
    [19]杨守志,何永滔.高维紧支撑正交对称的小波[J].数学物理学报:A辑,2010(2):375-385.
    [20]Newland D E. An introduction to random vibrations,spectral & wavelet analysis[M]. Courier Dover Publications,2012.
    [21]Bradshaw G A,Spies T A. Characterizing canopy gap structure in forests using wavelet analysis[J]. Journal of ecology,1992:205-215.
    [22]Bradshaw G A,McIntosh B A. Detecting climate-induced patterns using wavelet analysis[J]. Environmental Pollution,1994,83(1):135-142.
    [23]Kim H,Melhem H..Damage detection of structures by wavelet analysis[J].Engineering Structures,2004,26(3):347-362.
    [24]Percival D B,Walden A T. Wavelet methods for time series analysis[M]. Cambridge University Press,2006.
    [25]Coulibaly P,Burn D H. Wavelet analysis of variability in annual Canadian streamflows[J]. Water Resources Research,2004,40(3):1-8.
    [26]Shik Lee H. International transmission of stock market movements:a wavelet analysis[J]. Applied Economics Letters,2004,11(3):197-201.
    [27]Wilkinson W A,Cox M D. Discrete wavelet analysis of power system transients[J], IEEE Transactions on Power Systems,1996,11(4):2038-2044.
    [28]Abry P,Veitch D. Wavelet analysis of long-range-dependent traffic[J]. IEEE Transactions on Information Theory,1998,44(l):2-15.
    [29]邴龙飞,邵全琴,刘纪远,等.基于小波分析的长江和黄河源区汛期,枯水期径流特征[J].地理科学,2011,2(31).
    [30]李淼,军,陈社明,等.北京地区近300年降水变化的小波分析[J].自然资源学报,2011,26(6):1001-1011.
    [31]严银汉,孔兴功,汪永进,等.基于小波分析的全新世气候千年周期及其成因[J].第四纪研究,2012,32(2):294-303.
    [32]赵景波,邢闪,周旗.关中平原明代霜雪灾害特征及小波分析研究[J].地理科学,2012,32(1):81-86.
    [33]刘宇峰,孙虎,原志华.基于小波分析的汾河河津站径流与输沙的多时间尺度特征[J].地理科学,2012,32(6):764-770.
    [34]谢宏,怡刚,吴杰.基于小波-神经网络模拟电路故障诊断方法的研究[J].仪器仪表学报,2005,5(5):672-675.
    [35]张淑清,陈艳,徐红等.基于小波分析的机械系统振动信号故障诊断[J].仪器仪表学报,2004(z1):756-757.
    [36]张淑清,陈白,张立国.小波分析算法研究及在齿轮与滚动轴承故障诊断中应用[J].传感技术学报,2007,20(5):1196-1198.
    [37]林京,屈梁生.基于连续小波变换的信号检测技术与故障诊断[J].机械工程学报,2000,36(12):95-100.
    [38]符玲,何正友,麦瑞坤等.小波熵证据的信息融合在电力系统故障诊断中的应用[J].中国电机工程学报,2008,28(13):64-69.
    [39]宋国明,王厚军,刘红等.基于提升小波变换和SVM的模拟电路故障诊断[J].电子测量与仪器学报,2010(1):17-22.
    [40]杨超,王志伟.基于小波分析和模糊神经网络的齿轮故障诊断研究[J].噪声与振动控制,2010,30(4):64-67.
    [41]吴舰,吴楠.基于小波分析的煤矿机电设备故障检测关键技术应用研究[J].自动化与仪器仪表,2011(5):84-85.
    [42]涂丹,沈建军,沈振康.小波阈值技术在图像降噪中的应用研究[J].国防科技大学学报,1999,21(2):42-45.
    [43]杨风暴,韩焱.图像的小波指数降噪法及其应用[J].光电工程,2004,31(7):61-64.
    [44]傅一平,李志能,袁丁.利用小波系数的相关性提取噪声图像边缘[J].计算机辅助设计与图形学学报,2004,16(2):174-179.
    [45]丁绪星,朱日宏,李建欣.基于整数小波变换和改进嵌人零树编码的图像压缩[J].电子与信息学报,2004,26(07):1064-1069.
    [46]Egger O, Fleury P,Ebrahimi T. Shape adaptive wavelet transform for zerotree coding[C]//Proc. Eur. Workshop Image Analysis and Coding for TV, HDTV and Multimedia Application Rennes France.1996:201-208.
    [47]胡静涛,陈卫.一种改进的嵌入式零树小波编码方法[J].四川兵工学报,2012,33(4):118-120.
    [48]Davidson G, Griffiths H D. Wavelet detection scheme for small targets in sea clutter[J]. Electronics letters,2002,38(19):1128-1130.
    [49]Sinha D,Tewfik A H. Low bit rate transparent audio compression using adapted wavelets[J]. IEEE Transactions on Signal Processing,1993,41(12):3463-3479.
    [50]吴晓冬,李永明.低码率小波变换语音编码算法[J].通信学报,1997,18(9):86-91.
    [51]鸿飞,宋国乡.基于小波变换和音质模型的音频编码算法研究[J].电子学报,2000,28(1):26-29.
    [52]孙文珠,王洪玉,钱大兴等.一种适用于丢包信道的小波编码图像传输方案[J].电子与信息学报,2012,34(10):2342-2347.
    [53]翟国,宋余庆,谈佳宁等.DPCM与EZW混合编码在医学图像中的应用研究[J].计算机工程与应用,,2010,46(031):243-245.
    [54]李淑红,桑恩方.基于小波变换和矢量量化的语音压缩编码方案[J].声学学报,2000,25(1):50-55.
    [55]苟大举,苟平,周群彪.语音DCT变换的一种小波编码方法[J].四川大学学报:自然科学版,2005,41(6):1153-1157.
    [56]曲天书,何文欣,高懿等.一种基于提升小波变换的音频无损编解码方法[J].电声技术,2010,34(12):65-68.
    [57]林琴,郭玉堂,刘亚楠.基于自相关平方函数与小波变换的基音检测[J].计算机应用,2009,29(5):1433-1436.
    [58]徐爽,韩芳芳,郑德忠.基于阈值的小波域语音增强新算法[J].传感技术学报,2004,17(1):]50-153.
    [59]谢俊举,温增平,李小军等.基于小波方法分析汶川地震近断层地震动的速度脉冲特性[J].地球物理学报,2012,,55(6):1963-1972.
    [60]解滔,杜学彬,刘君等.汶川Ms8.0,海地Mw7.0地震电磁信号小波能谱分析[J].地震学报,2013,35(1):61-71.
    [61]赵伟,姜在兴,邱隆伟,等.小波分析划分层序单元的地质学理论基础方法与应用[J].石油与天然气地质,2010,31(4):436-441.
    [62]王艳忠,操应长,远光辉.小波分析在深水砂砾岩和泥页岩地层层序划分中的应用[J].天然气地球科学,2012,23(002):251-258.
    [63]武粤,孟小红,李淑玲.小波分析及其在我国地球物理学研究中的应用进展[J].地球物理学进展,2012,27(2):750-760.
    [64]路鹏飞,郭爱华,赵宝银,等.利用小波分析技术提高老爷庙油田地震资料分辨率[J].石油地球物理勘探,2012,47(002):272-276.
    [65]陶观群,李大鹏,陆光华.小波分析方法在医学图像融合中的应用[J].西安电子科技大学学报,2004,31(1):82-86.
    [66]王晓慧,贾珈,蔡莲红.基于小波图像融合的表情细节合成[J].计算机研究与发展,2013,50(2):387-393.
    [67]刘忠,田龙海,李畅.CT与MRI医学图像小波变换融合算法的对比研究[J].现代预防医学,2012,39(018):4751-4752.
    [68]许良凤,林辉,胡敏.基于差分进化算法的多模态医学图像融合[J].电子测量与仪器学报,2013,27(2):110-114.
    [69]张兴武,陈雪峰,杨志勃等.基于多变量小波有限元的一维结构分析[J].工程力学,2012,29(8):302-307.
    [70]陈一鸣,李裕莲,周志全等.角形域上Neumann问题的拟小波自然边界元法[J].燕山大学学报,2012,36(1):73-78.
    [71]郭庆然.基于小波变换的股票异常点检测研究[J].统计与决策,2012(4):88-90.
    [72]谢赤,张丽,孙柏.外汇市场与股票市场间波动溢出效应——基于汇改后数据的小波多分辨分析[J].系统管理学报,2012,21(1):13-21.
    [73]张宗新,张雪娇.基金交易行为与市场波动——基于小波与互谱分析的数据挖掘[J].管理工程学报,2012,26(2):156-161.
    [74]Zhang Q, Benveniste A. Wavelet networks[J]. IEEE Transactions on Neural Networks,1992, 3(6):889-898.
    [75]Zhang J, Walter G G, Miao Y, et al. Wavelet neural networks for function learning[J]. IEEE Transactions on Signal Processing,1995,43(6):1485-1497.
    [76]Zhang Q. Regressor selection and wavelet network construction[C]. Proceedings of the 32nd IEEE Conference on. Decision and Control,1993:3688-3693.
    [77]罗航,王厚军,龙兵.基于“紧致型”小波神经网络的时间序列预测研究[J].计算机应用研究,2008,25(8):2366-2368.
    [78]Kugarajah T, Zhang Q. Multidimensional wavelet frames[J]. IEEE Transactions on Neural Networks,1995,6(6):1552-1556.
    [79]Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit:Recursive function approximation with applications to wavelet decomposition[C], Proceedings of The Twenty-Seventh Asilomar Conference on. Signals, Systems and Computers,1993:40-44.
    [80]张邦礼,李银国.小波神经网络的构造及其算法的鲁棒性分析[J].重庆大学学报:自然科学版,1995,18(6):88-95.
    [81]张邦礼.小波神经网络及其结构设计方法[J].模式识别与人工智能,1997,9:83-95.
    [82]曹长修,柏森,张邦礼.改进的图像小波域水印嵌入算法[J].贵州科学,2002,8(2):32-38.[83] Zhang J, Walter G G, Miao Y, et al. Wavelet neural networks for function learning[J]. IEEE Transactions on Signal Processing,1995,43(6):1485-1497.
    [84]Delyon B, Juditsky A, Benveniste A. Accuracy analysis for wavelet approximations[J]. IEEE Transactions on Neural Networks,1995,6(2):332-348.
    [85]He S, He Z. Blind equalization of nonlinear communication channels using recurrent wavelet neural networks[C].1997 IEEE International Conference on. Acoustics, Speech, and Signal Processing,1997,4:3305-3308.
    [86]Dexian H, Jingchun W, Yihui J. Application Research of Wavelet Neural Networks in Process Control[J]. Journal of Tsinghua University:Science and Technology,1999,39(1):91-94.
    [87]Pati Y C, Krishnaprasad P S. Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations[J]. IEEE Transactions on Neural Networks,1993,4(1): 73-85.
    [88]Zhao J, Chen B, Shen J. Multidimensional non-orthogonal wavelet-sigmoid basis function neural network for dynamic process fault diagnosis[J]. Computers & chemical engineering,1998, 23(1):83-92.
    [89]时宇,张贤达.Gabor原子网络法在雷达目标高分辨距离像识别中的应用[J].清华大学学报:自然科学版,2001,41(9):98-101.
    [90]Hou M Z, Han X H. The multidimensional function approximation based on constructive wavelet RBF neural network[J]. Applied Soft Computing,2011,11(2):2173-2177.
    [91]Jahangiri F, Doustmohammadi A, Menhaj M B. An adaptive wavelet differential neural networks based identifier and its stability analysis[J]. Neurocomputing,2012,77(1):12-19.
    [92]Alexandridis A K, Zapranis A D. Wavelet neural networks:A practical guidefJ]. Neural Networks,2013,42:1-27.
    [93]孙炜,王耀南.模糊小波基神经网络的机器人轨迹跟踪控制[J].控制理论与应用,2003,20(1):49-53.
    [94]Szu H, Telfer B, Garcia J. Wavelet transforms and neural networks for compression and recognition[J]. Neural networks,1996,9(4):695-708.
    [95]沈玉利,姚俊,郭雷.一种基于小波域特征树量化的数字水印算法[J].计算机应用研究,2006,233-234.
    [96]Davanipoor M, Zekri M, Sheikholeslam F. Fuzzy wavelet neural network with an accelerated hybrid learning algorithm[J]. IEEE Transactions on Fuzzy Systems,2012,20(3):463-470.
    [97]Yilmaz S, Oysal Y. Fuzzy wavelet neural network models for prediction and identification of dynamical systems[J]. IEEE Transactions on Neural Networks,2010,21(10):1599-1609.
    [98]陈哲,冯天瑾.小波神经网络研究进展及展望[J].青岛海洋大学学报:自然科学版,1999,29(4):663-668.
    [99]Sjoberg J, Zhang Q, Ljung L et al. Nonlinear black-box modeling in system identification:a unified overview[J]. Automatica,1995,31(12):1691-1724.
    [100]何振亚.用于信号逼近的自适应时延小波神经网络[J].电子科学学刊,1998,20(5):604-610.
    [101]高协平,周四望.正交平衡对称的区间多小波研究[J].中国科学(E辑),2005,35(4):385-404.
    [102]姚睿,张艳宁,孙瑾秋等.星图中基于小波变换的CCD传感器Smear现象消除方法[J].光子学报,2011,40(3):413-418.
    [103]Subasi A, Alkan A, Koklukaya E, et al. Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing[J]. Neural Networks,2005,18(7):985-997.
    [104]Omerhodzic I, Avdakovic S, Nuhanovic A, et al. Energy distribution of EEG signals:EEG signal wavelet-neural network classifier[J]. International Journal of Biological and Life Sciences, 2013,6:210-215.
    [105]J G M S, Tonelli-Neto M S, Malange F C V, et al. Detection and classification of voltage disturbances using a fuzzy-ARTMAP-wavelet network[J]. Electric Power Systems Research,2011, 81(12):2057-2065.
    [106]Bhangale R S,Zope C D. An Introduction to Textile Defect Identification and Classification Using Wavelet Transform and Neural Networks[J]. International Journal of Advanced Electronics and Communication Systems,2014, (S):1-4.
    [107]Babu K V. Classification of gene expression data using spiking wavelet radial basis neural network[J]. Expert Systems with Applications,2014,41(4):1326-1330.
    [108]Baqui I, Zamora I, Mazon J, et al. High impedance fault detection methodology using wavelet transform and artificial neural networks[J]. Electric Power Systems Research,2011,81(7): 1325-1333.
    [109]Wu J D, Liu C H. An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network[J]. Expert systems with applications,2009,36(3): 4278-4286.
    [110]Yilmaz S, Oysal Y. Fuzzy wavelet neural network models for prediction and identification of dynamical systems[J]. IEEE Transactions on Neural Networks,2010,21(10):1599-1609.
    [111]Oussar Y, Rivals I, Personnaz L, et al. Training wavelet networks for nonlinear dynamic input-output modeling[J]. Neurocomputing,1998,20(1):173-188.
    [112]Safavi A A, Romagnoli J A. Application of wavelet-based neural networks to the modelling and optimisation of an experimental distillation column[J].Engineering Applications of Artificial Intelligence,1997,10(3):301-313.
    [113]Zainuddin Z, Wan Daud W R, Pauline O, et al. Wavelet neural networks applied to pulping of oil palm fronds[J]. Bioresource technology,2011,102(23):10978-10986.
    [114]Li L, Huang G. Prediction of goaf settlement with time sequence of wavelet neural network[J]. Procedia Engineering,2011,15:4723-4727.
    [115]Amina M, Kodogiannis V S, Petrounias I, et al. A hybrid intelligent approach for the prediction of electricity consumption[J]. International Journal of Electrical Power & Energy Systems, 2012,43(1):99-108.
    [116]Martinez-Morales J D, Palacios E-Velazquez-Carrillo G A. Wavelet Neural Networks for Predicting Engine Emissions[J], Procedia Technology,2013.7:328-335.
    [117]Bakshi B R, Stephanopoulos G. Representation of process trends—IV. Induction of real-time patterns from operating data for diagnosis and supervisory control[J]. Computers & Chemical Engineering,1994,18(4):303-332.
    [118]牛东晓,邢棉.时间序列的小波神经网络预测模型的研究[J].系统工程理论实践,1999,19(5):89-92.
    [119]Wang W, Ding J. Wavelet network model and its application to the prediction of hydrology [J]. Nature and Science,2003,1(1):67-71.
    [120]Deka P C. Prahlada R. Discrete wavelet neural network approach in significant wave height forecasting for multistep lead time[J]. Ocean Engineering,2012,43:32-42.
    [121]Tang M M, Zhang J L. A multiple adaptive wavelet recurrent neural network model to analyze crude oil prices[J]. Journal of Economics and Business,2012,64(4):275-286.
    [122]Hsu C F, Lin C M, Lee T T. Wavelet adaptive backstepping control for a class of nonlinear systems[J]. IEEE Transactions on Neural Networks,2006,17(5):1175-1183.
    [123]Li M, Liu D. A novel adaptive self-turned PID controller based on recurrent-wavelet-neural-network for PMSM speed servo drive system[J]. Procedia Engineering, 2011,15:282-287.
    [124]Wu X, Wang Y, Dang X. Robust adaptive sliding-mode control of condenser-cleaning mobile manipulator using fuzzy wavelet neural network[J]. Fuzzy Sets and Systems,2014,235:62-82.
    [125]Farahani M, Zare Bidaki A R, Enshaeieh M. Intelligent control of a DC motor using a self-constructing wavelet neural network[J]. Systems Science & Control Engineering:An Open Access Journal,2014,2(1):261-267.
    [126]Sun T, Pei H, Pan Y. et al. Robust wavelet network control for a class of autonomous vehicles to track environmental contour line[J]. Neurocomputing,2011,74(17):2886-2892.
    [127]Lin CM. Ting A B, Hsu C F, et al. Adaptive control for MIMO uncertain nonlinear systems using recurrent wavelet neural network[J]. International journal of neural systems,2012,22(01): 37-50.
    [128]Lin C M, Tai C F, Chung C C. Intelligent control system design for UAV using a recurrent wavelet neural network[J]. Neural Computing and Applications,2014,24(2):487-496.
    [129]Wu Y, Tanner J S. Adaptive control of linear time invariant systems via a wavelet network and applications to control Lorenz chaos[J]. Applied Mathematics and Computation,2011,218(1): 22-31.
    [130]Zhang JH, Wang Q R, Ye BY, et al. PID decoupling control for joystick mode of dynamic positioned ships[J]. Computer Engineering and Design,2012,33(12):4736-4740.
    [131]Wu J, Peng H, Ohtsu K, et al. Ship's tracking control based on nonlinear time series model[J]. Applied Ocean Research,2012,36:1-11.
    [132]梁利华,王保华,贾鹤鸣.基于干扰观测器的SWATH船运动非线性预测控制[J].控制与决策,2013:431-436.
    [133]Li R, Li T, Bu R, et al. Active disturbance rejection with sliding mode control based course and path following for underactuated ships[J]. Mathematical Problems in Engineering,2013.
    [134]Wu J, Peng H, Ohtsu K, et al. Ship's tracking control based on nonlinear time series model[J]. Applied Ocean Research,2012,36:1-11.
    [135]Li T S, Wang D, Feng G, et al. A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2010,40(3):915-927.
    [136]Ma L, Zhang X K. Ship parametric excitation rolling motion nonlinear robust control based on Lyapunov stability[J]. Journal of Dalian Maritime University,2013,39(1):23-26.
    [137]张显库.船舶运动简捷鲁棒控制[M].北京:科学出版社,2012.
    [138]张显库,王坤飞.船舶横摇运动中的混沌及其非线性简捷控制[J].中国造船,2010,51(004):21-27.
    [139]Lee H. Robust adaptive fuzzy control by backstepping for a class of MIMO nonlinear systems[J]. IEEE Transactions on Fuzzy Systems,2011,19(2):265-275.
    [140]Xia G, Shao X, Zhao A, et al. Adaptive Neural Network Control with Backstepping for Surface Ships with Input Dead-Zone[J]. Mathematical Problems in Engineering,2013.
    [141]Haykin, S. Neural Networks:A Comprehensive Foundation, Second Edition New York: Macmillan College Publishing.. View all references, Wasserman,1998.
    [142]Ge S S, Hang C C, Lee T H, et al. Stable adaptive neural network control[M]. Springer Publishing Company, Incorporated,2010
    [143]罗兵,甘俊英,张建民.智能控制技术[M].清华大学出版社,2011.
    [144]Dai S L, Wang C, Luo F. Identification and learning control of ocean surface ship using neural networks[J]. IEEE Transactions on Industrial lnformatics,2012,8(4):801-810.
    [145]Bai W, Li T, Li R. Neural network based direct adaptive for fin stabilizer system with input saturation[J]. Marine Engineering Frontiers,20131 (4):63-68.
    [146]Lee S D, Tzeng C Y, Huang W W. Ship Steering Autopilot Based on ANFIS Framework and Conditional Tuning Scheme[J]. Marine Engineering Frontiers,2013,1(3):53-62.
    [147]肖海荣,闫红华,马荣琳等.基于RBFN的船舶航向离散滑模控制器设计与仿真[J].中南大学学报(自然科学版),2013,S1:1:4.
    [148]石为人,陶芬,张元涛.基于RBF神经网络的减摇鳍自适应滑模控制[J].控制工程,2012,19(006):978-981
    [149]Peng Z, Wang D, Chen Z, et al. Adaptive dynamic surface control for formations of autonomous surface vehicles with uncertain dynamics[J]. IEEE Transactions on Control Systems Technology,2013,21(2):513-520.
    [150]Pan C Z, Lai X Z, Yang S X, et al. An efficient neural network approach to tracking control of an autonomous surface vehicle with unknown dynamics[J]. Expert Systems with Applications, 2013,40(5):1629-1635.
    [151]刘洋,郭晨.船舶航向保持RBF神经网络自适应非线性控制[J].大连海事大学学报,2013,39(4).
    [152]邸继征.小波分析原理[M].科学出版社,2010.
    [153]Kugarajah T, Zhang Q. Multidimensional wavelet frames, IEEE Transactions on Neural Networks,1995,6:1552-1556.
    [154]侯霞.小波神经网络若干关键问题研究:(博士论文).南京:南京航空航天大学,2006.
    [155]刘守生.遗传算法与小波神经网络中若干问题的研究:(博士论文).南京:南京航空航天大学,2004.
    [156]李向武,韦岗.小波网络及其结构设计方法,模式识别与人工智能,1997,10:130-137.
    [157]Zhang Q. Using wavelet network in nonparametric estimation. IEEE Trans, on Neural Networks,.1997,8(2):227-236.
    [158]Chen S, Cowan C F N, Grant P M. Orthogonal least squares learning algorithm for radial basis function networks[J]. IEEE Transactions on Neural Networks,1991,2(2):302-309.
    [159]焦李成,神经网络的应用与实现,西安:西安电子科技大学出版社,1996.
    [160]Hull J R, Pendse H P, Musavi M T. A neural network algorithm using wavelets and autoregressive inputs for system identification[C], Proceedings of IEEE International Conference on. Neural Networks,1997,2:728-732.
    [161]李军,王执铨,小波非线性神经网络的算法研究,东南大学学报,1995,17(5):259-263.
    [162]Bierman G J., Factorization Methods for Discrete Sequential Estimation, New York, Academic Press, Inc.1992.
    [163]Xu J, Ho D W C. A basis selection algorithm for wavelet neural networks[J]. Neurocomputing,2002,48(1):681-689.
    [164]Zapranis A, Alexandridis A. Modeling and Forecasting CAT and HDD Indices for Weather Derivative Pricing[J]. Engineering Applications of Neural Networks,2009:210-222.
    [165]Guyon I, Elisseeff A. An introduction to variable and feature selection[J]. The Journal of Machine Learning Research,2003,3:1157-1182.
    [166]Xu J, Ho D W C. A constructive algorithm for wavelet neural networks[M]//Advances in Natural Computation. Springer Berlin Heidelberg,2005:730-739.
    [167]Alexandridis A K, Zapranis A D. Wavelet neural networks:A practical guide[J]. Neural Networks,2013,42:1-27.
    [168]Friedman J H, Stuetzle W. Projection pursuit regression[J]. Journal of the American statistical Association,1981,76(376):817-823.
    [169]Dong Y C, Fan G H, YiLH, et al. Application of Projection Pursuit Regression in the Fault Diagnose of Advanced Amphibious Assault Vehicle Hydraulic Motor Based on Applied Mechanics[J]. Advanced Materials Research,2012,485:310-313.
    [170]Averbuch A Z, Zheludev V A, Khazanovsky M. Deconvolution by matching pursuit using spline wavelet packets dictionaries[J]. Applied and Computational Harmonic Analysis,2011,31(1):
    [171]Qian S, Chen D. Signal representation using adaptive normalized Gaussian functions[J]. Signal processing,1994,36(1):1-11.
    [172]Akaike H.,1973. Information theory and an extension of the maximum likelihood principle. Proceedings of the 2nd International Symposium on Information Theory, pp.267-281.
    [173]Zhao Z, Zhang Y, Liao H. Design of ensemble neural network using the akaike information criterion[J]. Engineering Applications of Artificial Intelligence,2008.21(8):1182-1188.
    [174]Ren C, Wu W, Huang Z K, et al. RBF neural network application in GPS height fitting based on AIC criterion[J]. Science of Surveying and Mapping,2013,38(2):77-79.
    [175]Sugiura N. Further analysts of the data by akaike's information criterion and the finite corrections:Further analysts of the data by akaike's[J]. Communications in Statistics-Theory and Methods,1978,7(1):13-26.
    [176]Burnham K P, Anderson D R. Model selection and multimodel inference:a practical information-theoretic approach[M]. Springer,2002.
    [177]贾欣乐.杨盐生[J].船舶运动数学模型-机理建模与辨识建模,1999.
    [178]Fossen T I. Guidance and control of ocean vehicles[M]. New York:Wiley,1994.
    [179]曹山林,林萱,施建华.远洋教学实习船“育鲲”号[J].船舶设计通讯,2009,120(1):5-9.
    [180]Coruh S, Geyikci F, K(?)c E, et al. The use of NARX neural network for modeling of adsorption of zinc ions using activated almond shell as a potential biosorbent[J]. Bioresource technology,2014,151:406-410.
    [181]Antic D, Milovanovic M, Nikolic S, et al. Simulation model of magnetic levitation based on NARX neural networks[J]. International Journal of Intelligent Systems & Applications,2013, 5(5):25-32.
    [182]Ardalani-Farsa M, Zolfaghari S. Chaotic time series prediction with residual analysis method using hybrid Elman-NARX neural networks[J]. Neurocomputing,2010,73(13):2540-2553.
    [183]Zainuddin Z. Pauline O. Modified wavelet neural network in function approximation and its application in prediction of time-series pollution data[J]. Applied Soft Computing,2011,11(8): 4866-4874.
    [184]Guan C, Luh P B, Michel L D, et al. Very short-term load forecasting:wavelet neural networks with data pre-filtering[J]. IEEE Transactions on Power Systems,2013,28(1):30-41.
    [185]Inoussa G, Peng H, Wu J. Nonlinear time series modeling and prediction using functional weights wavelet neural network-based state-dependent AR model[J]. Neurocomputing,2012,86: 59-74.
    [186]Zhong C, Hu Q, Yang F, et al. Software Quality Prediction Method with Hybrid Applying Principal Components Analysis and Wavelet Neural Network and Genetic Algorithm[J]. JDCTA: International Journal of Digital Content Technology and its Applications,2011,5(3):225-234.
    [187]Saltelli A, Annoni P, Azzini I, et al. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[J]. Computer Physics Communications,2010, 181(2):259-270.
    [188]Christopher Frey H, Patil S R. Identification and review of sensitivity analysis methods[J]. Risk Analysis,2002,22(3):553-578.
    [189]Rhee K P, Kim K. A new sea trial method for estimating hydrodynamic derivatives[J]. Ship & Ocean Technology,1999,3(3):25-44.
    [190]Jakubowski M, Fonck R J, Fenzi C, et al. Wavelet-based time-delay estimation for time-resolved turbulent flow analysis[J]. Review of Scientific Instruments,2001,72(1):996-999.
    [191]杨智,高靖.神经元自适应预测PID控制器及实现,信息与控制,1999,28(5):345-349.
    [192]Niu L, Li J. Adaptive Neural Network Generalized Predictive Control for Unknown Nonlinear System[J]. TELKOMNIKA Indonesian Journal of Electrical Engineering,2013,11(7):3611-3617.
    [193]Hedjar R. Adaptive neural network model predictive control[J]. International Journal of Innovative Computing, Information and Control,2013,9(3):1245-1257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700