用户名: 密码: 验证码:
非公路车辆座椅非线性悬架静动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非公路车辆由于工作环境复杂、路面条件差及车辆动力传动系统振动等原因导致驾驶员承受严重的全身低频振动,这种振动导致多种职业病,对驾驶员身心造成伤害,不仅影响矿山和工程施工的生产效率,针对相关职业病的治疗也增加了社会成本。非公路车辆座椅是振动向驾驶员传递路径中的关键一环,与驾驶员直接大面积接触,座椅悬架对座椅的隔振性能起决定作用。本文结合国家自然科学基金项目(51175216),系统研究了非公路车辆座椅非线性悬架静态特性、位移传递率及次谐波响应特性、非公路车辆座椅-人系统动态特性,并创新设计了基于球面滚子机构的座椅非线性悬架,通过试验验证了该悬架的隔振性能。论文完成的主要工作如下:
     (1)座椅非线性悬架静态特性研究。基于能量守恒原理建立了非公路车辆座椅非线性悬架静态特性数学模型,并应用ADAMS软件进行了仿真验证,在此基础上分析了各主要设计参数对座椅非线性悬架静态特性的影响。同时,给出了非线性悬架静态特性简化数学公式。另外,通过分析典型线性隔振运动传递曲线及公式,提出刚度、阻尼之间相互匹配的依据。结果表明可通过合理匹配关键设计参数来实现悬架具有理想的零刚度、任意线性刚度、最小刚度为正值或零的非线性刚度特性,且可通过调整主弹簧预压缩量进而实现悬架隔振性能随驾驶员体重变化的调整。这对非公路车辆座椅悬架低频隔振性能改进具有十分重要的现实意义。
     (2)座椅非线性悬架位移传递率特性研究。基于谐波平衡法分别推导了最小刚度为正值和零的两种静态特性情况座椅非线性悬架位移传递率数学模型,并基于四阶龙格库塔法进行了数值求解验证,分析了各关键参数对座椅非线性悬架位移传递率特性的影响,同时,还将线性与非线性座椅悬架特性做了对比分析。结果表明通过合理的参数匹配可增宽非线性悬架的隔振频带甚至使整个位移传递率低于1;稳态振动位置偏离了静态平衡位置。这对设计出具有宽频带隔振特性非公路车辆座椅非线性悬架提供了参考。
     (3)座椅非线性悬架次谐波响应特性研究。基于多尺度法推导了非公路车辆座椅非线性悬架参数可工程实现条件下,单自由度振动模型时间域位移响应的二阶近似解析解,基于该近似解分析了次谐波响应的频率成分。此外,应用Matlab软件针对该单自由度振动模型进行了数值求解,获得了时间域位移响应曲线,并针对该曲线进行了FFT变换,研究其频率成分。结果表明,在座椅非线性悬架参数可工程实现条件下,响应中主要成分为主谐波响应,次谐波响应成分几乎为零。
     (4)非公路车辆座椅-人系统动态特性研究。基于拉格朗日方程建立了8自由度非公路车辆座椅-人系统动力学模型,同时,建立了简谐激励、多频率组合激励、随机激励和冲击激励4种激励模型,进而将各激励模型分别与座椅-人系统动力学模型耦合,并应用四阶龙格库塔法进行数值求解,基于此研究了非公路车辆座椅-人系统动态特性。结果表明悬架刚度、阻尼特性相比座椅其他参数而言,对座椅-人系统动态特性的影响最显著。这对非公路车辆座椅-人系统参数匹配设计奠定了基础。
     (5)基于球面滚子机构的座椅非线性悬架、非线性隔振器的创新设计及试验。创新设计了两种非公路车辆座椅非线性悬架和座椅悬架用非线性隔振器,并制造、装配了物理样机,以及进行了准静态试验和振动试验。试验结果验证了本文理论的正确性。
     论文提出的非线性座椅悬架设计理论及基于球面滚子机构的新型隔振悬架,对减少振动向驾驶员的传递,提高非公路车辆振动舒适性具有重要意义。
Off-road vehicles work in mines, construction sites and other harsh environments.Due to the poor road surface, complex working conditions and the driveline vibrationof vehicle itself and so on, the drivers suffer severe whole-body low-frequencyvibration.This can lead to a variety of occupational diseases, such as cervical vertebraaches, low back pain, etc., which will harm the drivers’ physical and mental, and evencan cause the driver to lose the ability to work, and then result in the productionefficiency decline in mining and construction sites. Thus it will seriously affect theeconomic benefit both in mining and construction sites. In addition, the treatments forthe above-mentioned related diseases can also cause huge economic losses. Therefore,it is very urgent to carry out researches on the vibration comfort for off-road vehicles.Off-road vehicle’s seat is a key link on the vibration transmission path, which directlycontacts with the driver in a large area, and changing seat parameters appropriately,has little effect on vehicle’s performance. Therefore, the study on the off-roadvehicle’s seat has attracted more attentions of researchers. Suspension is the majorcomponent of off-road vehicle’s seat and plays a decisive role on the vibrationcomfort of seat. Mostly existing seat suspensions are designed based on the theory oflinear vibration isolation, while isolation effect for the theory of linear vibration isrelative poorer for the low-frequency vibration. Therefore, the nonlinear theory isintroduced to study the characteristics for the off-road vehicle’s seat suspension in thispaper. The paper is completed supported by the National Natural Science Fund Project(51175216). The static characteristics, displacement transmissibility, sub harmonicresponse characteristic of off-road vehicle’s seat and dynamic characteristic ofoff-road vehicle’s seat-man system are studied systematically in the paper. Also, theseat nonlinear suspension is innovative designed based on the theories of this paper.Then the static characteristic test and vibration isolation performance test are carriedout. The main work and conclusions of this paper are as follows:
     (1) Static characteristic of seat nonlinear suspension. The mathematic model ofstatic characteristic of nonlinear suspension of off-road vehicle’s seat is establishedand verified by the simulation using the ADAMS software. And then the impacts of main design parameters of the nonlinear suspension on the static characteristic arediscussed using the mathematic model. It is found that the desired zero stiffnesscharacteristic, arbitrary linear stiffness, and nonlinear stiffness characteristic with thezero or positive minimal stiffness can be achieved through reasonably matching thekey design parameters. And the suspension vibration isolation performance can makeadjustment with the driver weight by changing the pre-compression of the main spring.The simplified mathematic formula for static characteristic of the nonlinearsuspension of off-road vehicle’s seat is provided, and the basis of mutual matchingbetween stiffness and damping is proposed by analysis.
     (2) Displacement transmissibility characteristic of seat nonlinear suspension.Mathematic models of displacement transmissibility characteristic of the seatnonlinear suspension of off-road vehicle, which the minimum stiffness is zero andpositive, are derived based on harmonic balance method. And the numericalverification is made by fourth-order Runge-Kutta method. Then the impacts of keydesign parameters on the displacement transmissibility of seat nonlinear suspensionare analyzed. It is found that the vibration isolation frequency band of nonlinearsuspension can be widened through rational matching key parameters and even theentire displacement transmissibility can be less than1. In addition, it is found that thesteady vibration position deviate from the equilibrium position, the comparison andanalysis on the characteristics between linear and nonlinear seat suspension is carriedout.
     (3) Sub harmonic response characteristic analysis on seat nonlinear suspension.The second-order approximate analytical solution of time domain displacementresponse of single degree of freedom vibration model of seat nonlinear suspension ofoff-road vehicle is derived based on multi-scale method. And the frequencycomponents of sub harmonic response is analyzed based on the approximateanalytical solution. In addition, the numerical solution is conducted using MATLABsoftware and the time domain displacement response curves are obtained. Then thefrequency components are analyzed using FFT method on the time domain curve.Research results show that the displacement response mainly consists of harmonicresponse, and the proportion of sub harmonic component is nearly zero in theachievable parameters for the seat nonlinear suspension.
     (4) Dynamic characteristic of off-road vehicle seat-man system. In the paper,8 degrees of freedom dynamic model of off-road vehicle seat-man system is established,and the harmonic excitation, multi-frequency combination excitation, randomexcitation and impact excitation are modeled. The seat-man dynamic model and theexcitation model are coupled and solved using the fourth-order Runge-Kutta method,then the dynamic characteristics of off-road vehicle seat-man system is discussed.Analysis results show that the stiffness and damping of seat have serious impact onthe dynamic characteristics of the seat-man system compared with other seatparameters.
     (5) Innovative design and test of seat nonlinear suspension and nonlinearvibration isolator. Two nonlinear suspension of off-road vehicle seat and a nonlinearvibration isolator are innovative designed in the paper. Test content includequasi-static test and vibration test. Test results indicate that the theory provided in thepaper is correct.
     Design theory and new suspension proposed by this paper are important toreduce the transmission of vibration to the driver, and to improve off-road vehiclevibrition comfort.
引文
[1] Dupuis H, Zerlett G. Whole-body vibration and disorders of the spine[J].International Archives of Occupational and Environmental Health,1987,59(4):323-336.
    [2] Wilder D G, Pope M H. Epidemiological and aetiological aspects of low backpain in vibration environments—an update[J]. Clinical Biomechanics,1996,11(2):61-73.
    [3] Lings S, Leboeuf-Yde C. Whole-body vibration and low back pain: A systematic,critical review of the epidemiological literature1992–1999[J]. Internationalarchives of occupational and environmental health,2000,73(5):290-297.
    [4] Maikala R V, Bhambhani Y N. Estimating reduced oxygenation levels in theerector spinae lumbar muscle region during seated whole-body vibration[J].International Journal of Industrial Ergonomics,2013,43(1):121-128.
    [5] Eger T, Salmoni A, Cann A, et al. Whole-body vibration exposure experienced bymining equipment operators[J]. Occupational Ergonomics,2006,6(3):121-127.
    [6] http://www.hse.gov.uk/
    [7] BS6841-1987, Guide to Measurement and evaluation of human exposure towhole-body mechanical vibration and repeated shock[S].
    [8] GB/T13442-1992,人体全身振动暴露的舒适性降低界限和评价准则[S].
    [9] GB/T8419-2007,土方机械司机座椅振动的实验室评价[S].
    [10]ISO E N.7096[J]. Earth-moving machinery—Laboratory evaluation of operatorseat vibration (ISO7096:2000).
    [11]Holtz M W, Van Niekerk J L. Modelling and design of a novel air-spring for asuspension seat[J]. Journal of Sound and Vibration,2010,329(21):4354-4366.
    [12]Short Guide Human Vibration, Bruel&Kjaer, Denmark (1999)
    [13]余志生.汽车理论[M].北京:机械工业出版社,2009.
    [14]ISO2631-1:1997, Mechanical Vibration and Shock-Evaluation of HumanExposure to Whole Body Vibration. Part1: General Requirements[S]
    [15]Danh L T, Ahn K K. Active pneumatic vibration isolation system using negativestiffness structures for a vehicle seat[J]. Journal of Sound and Vibration,2014,333(5):1245-1268.
    [16]Le T D, Ahn K K. Experimental investigation of a vibration isolation systemusing negative stiffness structure[J]. International Journal of Mechanical Sciences,2013,70:99-112.
    [17]吴善跃,朱石坚,黄映云.带辅助气室橡胶空气弹簧的冲击特性分析[J].振动工程学报,2005,18(2):248-251.
    [18]黄映云,何琳,谭波,等.橡胶隔振器冲击刚度特性试验研究[J].振动与冲击,2006,25(1):77-78.
    [19]赵存生,朱石坚.橡胶金属环静刚度特性研究[J].中国机械工程,2004,15(11):962-964.
    [20]张利国,张嘉钟,贾力萍,等.空气弹簧的现状及其发展[J].振动与冲击,2007,26(2):146-151.
    [21]马国清,吴仁智.油气悬挂系统非线性数学模型的建立及其计算机仿真[J].机械工程学报,2002,38(5):95-99.
    [22]曹树平,易孟林.油气悬架非线性刚度模型的统计线性化分析[J].华中科技大学学报:自然科学版,2002,30(6):10-12.
    [23]周强.钢丝绳隔振器的非线性特性及应用[J].噪声与振动控制,1994(4):8-11.
    [24]万叶青,范立民,齐煜.钢丝绳隔振器非线性特性分析[J].振动与冲击,2007,26(7):46-49.
    [25]龚宪生,骆振黄.非线性隔振器阻尼特性研究[J].振动工程学报,2001,14(3):334-338.
    [26]胡海岩,李岳峰.几种非线性减振器的试验建模[J].振动与动态测试,1988,2.
    [27]刘延柱,陈立群.非线性振动[M].北京:高等敎育出版社,2001.
    [28]Liu S Y, Zhu S J, Yu X, et al. Study on chaotic parameter range of nonlinearvibration isolation system[C]//Proceedings of the2004International Symposiumon Safety Science and Technology.2004:2064-2068.
    [29]Efstathiades G J, Williams C J H. Vibration isolation using non-linear springs[J].International Journal of Mechanical Sciences,1967,9(1):27-44.
    [30]Efstathiades G J. Subharmonic instability and coupled motions in non-linearvibration isolating suspensions[J]. Journal of Sound and Vibration,1969,10(1):81-102.
    [31]Natsiavas S, Tratskas P. On vibration isolation of mechanical systems withnon-linear foundations[J]. Journal of Sound and Vibration,1996,194(2):173-185.
    [32]Alabuzhev P, Alabuzhev P M, Rivin E I. Vibration protection and measuringsystems with quasi-zero stiffness[M]. CRC Press,1989.
    [33]Cella G, Sannibale V, DeSalvo R, et al. Monolithic geometric anti-springblades[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2005,540(2):502-519.
    [34]Shoup T E. Shock and vibration isolation using a nonlinear elastic suspension[J].Aiaa Journal,1971,9(8):1643-1645.
    [35]Winterflood J, Blair D G, Slagmolen B. High performance vibration isolationusing springs in Euler column buckling mode[J]. Physics Letters A,2002,300(2):122-130.
    [36]彭献,黎大志.准零刚度隔振器及其弹性特性设计[J].振动.测试与诊断,1997,17(4):44-46.
    [37]彭解华,陈树年.正、负刚度并联结构的稳定性及应用研究[J].振动.测试与诊断,1995,15(2):14-18.
    [38]彭献,张施详.一种准零刚度被动隔振系统的非线性共振响应分析[J].湖南大学学报:自然科学版,2011,38(8):34-39.
    [39]胡光军,周生通,李鸿光.一种非线性隔振器的静力分析与实验研究[J].噪声与振动控制,2012,31(6):69-71.
    [40]刘兴天,张志谊,华宏星.新型低频隔振器的特性研究[J].振动与冲击,2012,31.
    [41]路纯红,白鸿柏,杨建春,等.超低频非线性隔振系统的研究[J].噪声与振动控制,2010,30(4):10-12.
    [42]Ibrahim R A. Recent advances in nonlinear passive vibration isolators[J]. Journalof sound and vibration,2008,314(3):371-452.
    [43]Carrella A, Brennan M J, Waters T P. Static analysis of a passive vibrationisolator with quasi-zero-stiffness characteristic[J]. Journal of Sound and Vibration,2007,301(3):678-689.
    [44]Maciejewski I. Control system design of active seat suspensions[J]. Journal ofSound and Vibration,2012,331(6):1291-1309.
    [45]Sun W, Li J, Zhao Y, et al. Vibration control for active seat suspension systemsvia dynamic output feedback with limited frequency characteristic[J].Mechatronics,2011,21(1):250-260.
    [46]Braghin F, Cheli F, Facchinetti A, et al. Design of an Active Seat Suspension forAgricultural Vehicles[M]//Structural Dynamics, Volume3. Springer New York,2011:1365-1374.
    [47]Zhao Y, Zhao L, Gao H. Vibration control of seat suspension using H∞reliablecontrol[J]. Journal of Vibration and Control,2010,16(12):1859-1879.
    [48]Kawana M, Shimogo T. Active suspension of truck seat[J]. Shock and vibration,1998,5(1):35-41.
    [49]Choi S B, Lee Y S, Han M S, et al. Vibration control of an ER seat suspension fora commercial vehicle[J]. Journal of dynamic systems, measurement, and control,2003,125(1):60-68.
    [50]McManus S J, St Clair K A, Boileau P E, et al. Evaluation of vibration and shockattenuation performance of a suspension seat with a semi-activemagnetorheological fluid damper[J]. Journal of Sound and Vibration,2002,253(1):313-327.
    [51]Choi S B, Choi J H, Nam M H, et al. A semi-active suspension using ER fluidsfor a commercial vehicle seat[J]. Journal of intelligent material systems andstructures,1998,9(8):601-606.
    [52]Maciejewski I, Krzy yński T. Control design of semi-active seat suspensionsystems[J]. Journal of Theoretical and Applied Mechanics,2011,49:1151-1168.
    [53]Han Y M, Nam M H, Han S S, et al. Vibration control evaluation of acommercial vehicle featuring MR seat damper[J]. Journal of intelligent materialsystems and structures,2002,13(9):575-579.
    [54]Le T D, Ahn K K. A vibration isolation system in low frequency excitationregion using negative stiffness structure for vehicle seat[J]. Journal of Sound andVibration,2011,330(26):6311-6335.
    [55]Lee C M, Goverdovskiy V N. Type synthesis of function-generating mechanismsfor seat suspensions[J]. International journal of automotive technology,2009,10(1):37-48.
    [56]Sankar S, Afonso M. Design and testing of lateral seat suspension for off-roadvehicles[J]. Journal of terramechanics,1993,30(5):371-393.
    [57]Tewari V K, Prasad N. Three-DOF modelling of tractor seat-operator system[J].Journal of Terramechanics,1999,36(4):207-219.
    [58]Kim S K, White S W, Bajaj A K, et al. Simplified models of the vibration ofmannequins in car seats[J]. Journal of sound and vibration,2003,264(1):49-90.
    [59]Brogioli M, Gobbi M, Mastinu G, et al. Parameter sensitivity analysis of apassenger/seat model for ride comfort assessment[J]. Experimental mechanics,2011,51(8):1237-1249.
    [60]Joshi G, Bajaj A K, Davies P. Whole-body Vibratory Response Study Using aNonlinear Multi-body Model of Seat-occupant System with Viscoelastic FlexiblePolyurethane Foam[J]. Industrial health,2010,48(5):663-674.
    [61]Maciejewski I, Meyer L, Krzyzynski T. Modelling and multi-criteria optimisationof passive seat suspension vibro-isolating properties[J]. Journal of sound andVibration,2009,324(3):520-538.
    [62]Maciejewski I, Kiczkowiak T, Krzyzynski T. Optimisation of pneumatic circuitaimed at improving the vibro‐isolation properties of seat suspension[J]. PAMM,2009,9(1):639-640.
    [63]Ksi ek M A, Ziemiański D. Optimal driver seat suspension for a hybrid modelof sitting human body[J]. Journal of Terramechanics,2012,49(5):255-261.
    [64]Wu J D, Chen R J. Application of an active controller for reducingsmall-amplitude vertical vibration in a vehicle seat[J]. Journal of Sound andVibration,2004,274(3):939-951.
    [65]Choi S B, Han Y M. Vibration control of electrorheological seat suspension withhuman-body model using sliding mode control[J]. Journal of Sound and Vibration,2007,303(1):391-404.
    [66]Huseinbegovic S, Tanovic O. Adjusting stiffness of air spring and damping of oildamper using fuzzy controller for vehicle seat vibration isolation[C]//Control andCommunications,2009. SIBCON2009. International Siberian Conference on.IEEE,2009:83-92.
    [67]Zhang Z, Liu X, Huang C. H∞Output Feedback Control for Vehicle SeatSuspension subject to Parameter Perturbations[J]. Procedia Engineering,2011,16:444-452.
    [68]Lee C M, Goverdovskiy V N, Temnikov A I. Design of springs with “negative”stiffness to improve vehicle driver vibration isolation[J]. Journal of Sound andVibration,2007,302(4):865-874.
    [69]Lee C M, Bogatchenkov A H, Goverdovskiy V N, et al. Position control of seatsuspension with minimum stiffness[J]. Journal of sound and Vibration,2006,292(1):435-442.
    [70]Park S T. Vibration isolation system with a unique low vibration frequency: U.S.Patent Application13/120,135[P].2009-9-17.
    [71]赵强,冯海生,李昌.车辆磁流变座椅悬架模糊控制的研究[J].森林工程,2012,27(1):51-55.
    [72]赵强,杨亚殉.车辆磁流变座椅悬架的模糊自适应整定PID控制[J].噪声与振动控制,2009,29(2):106-109.
    [73]寇发荣,马建,王冀白.车辆座椅悬架用磁流变阻尼器的阻尼特性实验研究[J].西安科技大学学报,2012,32(1):111-115.
    [74]张红新,朱思洪.主动座椅悬架电磁作动器仿真研究[J].机械设计,2008,25(4):24-26.
    [75]张志勇.半主动座椅悬架控制理论与实验研究[D].湖南大学,2008.
    [76]高爱云,徐锐良,付主木.非线性座椅悬架动态参数的研究[J].拖拉机与农用运输车,2004(4):15-17.
    [77]王磊,汪洪洲.非线性弹性特性座椅悬架曲面板的尺寸计算[J].洛阳工学院学报,2000,21(3):63-66.
    [78]张润生,赵铨.座椅悬架非线性弹性特性的优化和实验验证[J].农业机械学报,2001,32(5):19-21.
    [79]高爱云,付主木.基于I-DEAS的非线性座椅悬架系统的设计[J].农机化研究,2008,6:036.
    [80]Kovacic I, Brennan M J. On the use of two classical series expansion methods todetermine the vibration of harmonically excited pure cubic oscillators[J]. PhysicsLetters A,2008,372(22):4028-4032.
    [81]Brennan M J, Kovacic I, Carrella A, et al. On the jump-up and jump-downfrequencies of the Duffing oscillator[J]. Journal of Sound and Vibration,2008,318(4):1250-1261.
    [82]闻邦椿,李以农,徐培民,韩清凯.工程非线性振动[M].东北大学出版社,2001.
    [83]韩清凯,于涛,王德友,曲涛.故障转子系统的非线性振动分析与诊断方法[M].科学出版社,2010.
    [84]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西北工业大学出版社,2001.
    [85]陈纪修,於崇华,金路.数学分析[M].高等教育出版社,2000.
    [86]张义民.机械振动力学[M].长春:吉林科学技术出版社,2000.
    [87]Huang X, Liu X, Sun J, et al. Effect of the system imperfections on the dynamicresponse of a high-static-low-dynamic stiffness vibration isolator[J]. NonlinearDynamics,2014:1-11.
    [88]Dormand J R, Prince P J. A family of embedded Runge-Kutta formulae[J].Journal of computational and applied mathematics,1980,6(1):19-26.
    [89]张德丰. Matlab数值分析与应用[M].国防工业出版社,2007.
    [90]李夏云,陈传淼.用龙格-库塔法求解非线性方程组[J].数学理论与应用,2008,28(2):62-65.
    [91]胡广书.数字信号处理:理论,算法与实现[M].清华大学出版社,2003.
    [92]Wu X. Study of driver-seat interactions and enhancement of vehicular ridevibration environment[D]. Concordia University,1998.
    [93]Papalukopoulos C, Natsiavas S. Nonlinear biodynamics of passengers coupledwith quarter car models[J]. Journal of Sound and vibration,2007,304(1):50-71.
    [94]Kim S K. Simulations of the vibration response of mannequins in car seats bychanging parameter and excitation[J]. International Journal of PrecisionEngineering and Manufacturing,2010,11(2):285-289.
    [95]Mastinu G, Gobbi M, Pennati M. Theoretical and Experimental Ride ComfortAssessment of a Subject Seated into a Car[J]. SAE International Journal ofPassenger Cars-Mechanical Systems,2010,3(1):607-625.
    [96]Amann C, Huschenbeth A, Zenk R, et al. Virtual Assessment of Occupied SeatVibration Transmissibility[J]. Development,2008,1:1924.
    [97]Siefert A, Pankoke S, W lfel H P. Virtual optimisation of car passenger seats:Simulation of static and dynamic effects on drivers’ seating comfort[J].International Journal of Industrial Ergonomics,2008,38(5):410-424.
    [98]何大为,黄欣娜.机械系统动力学[M].机械工业出版社,2005.
    [99]徐延海.随机路面谱的计算机模拟[J].农业机械学报,2007,38(1):33-36.
    [100]杨万桥.基于人—车—路相互作用的沥青路面平整度评价方法研究[D].长安大学,2009.
    [101]张永林.用谐波叠加法重构随机道路不平顺高程的时域模型[J].农业工程学报,2004,19(6):32-35.
    [102]聂彦鑫,李孟良,过学迅,等.基于谐波叠加法的路面不平度重构[J].汽车科技,2009(4):55-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700