用户名: 密码: 验证码:
爆胎现象实验和有限元仿真方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速行驶的汽车一旦发生爆胎事故,会对乘员、货物、路人及邻近车辆安全形成很大的威胁,造成无法挽回的损失。近年来,随着我国高速公路的迅猛发展,行车速度越来越快,发生爆胎事故的概率也随之增大。爆胎事故巨大的破坏性迫使许多学者和汽车企业对爆胎现象、爆胎后车辆的动力学特性及其对汽车操纵稳定性的影响与控制策略等进行深入研究。
     爆胎轮胎与正常轮胎有截然不同的运动学和动力学特性,进而影响到整车的运动。本文根据爆胎现象的物理效果开发了爆胎模拟实验装置和单轴爆胎实验台,实施单轮爆胎实验并获得爆胎过程轮胎胎压和轮辋下沉量随时间的变化曲线,使用非线性有限元软件LS-DYNA仿真分析爆胎现象以确认仿真模型的有效性,然后将这一爆胎模型应用于整车仿真分析,研究车辆行驶过程中爆胎现象发生后各个轮胎受力变化和车辆的运动响应,具体研究内容如下:
     首先,根据爆胎现象的物理效果,即胎压在短时间内迅速减小的特点,开发了简单可靠、可重复使用的爆胎发生模拟装置。这一装置由机械与控制部分构成,通过调节阀门开度大小可以控制爆胎的剧烈程度。爆胎模拟装置零部件完成加工和组装后进行气密性测试。
     其次,开发单轴爆胎实验台并实施单轮爆胎实验。为检验爆胎装置的效果,开发了由两个车轮构成的单轴爆胎实验台,在单轴上施加1/4车重后实施单轮爆胎实验,获取爆胎轮胎胎压和轮辋下沉量的时间历程。
     第三,建立单轴爆胎实验装置三维有限元模型,以单轴爆胎实验中获得的爆胎轮胎的胎压时间历程作为载荷条件施加于单个有限元轮胎内壁模拟单轴爆胎现象,获得爆胎过程轮辋下沉量随时间的变化曲线,通过与实验结果对比验证有限元模型的有效性。
     最后,建立包括转向系统、悬架系统、行驶系统的简化整车有限元模型,将爆胎模型(胎压变化曲线)作用于整车右前轮和右后轮,实施整车行驶过程中转向系统处于自由状态下的爆胎现象仿真分析。研究前后轮分别爆胎不同的整车响应和各车轮受力情况的变化。
     综上所述,本文的研究工作,为开展爆胎现象研究提供了新的方法和思路,为爆胎现象及安全对策研究提供了重要基础。
Once the tire blow-out accident of a high-speed car occurs, it may push the threat topassengers, cargo, passers-by and vehicles nearby, causing irreparable damage. In recentyears, as the highway has developed rapidly, the running speed of cars is becoming more andmore fast. Meanwhile, the probability of tire blow-out accident rises obviously. The hugedestructiveness of tire blow-out accident prompts scholars and automobile enterprise toconduct the thorough research on the phenomenon of tire blow-out, especially on thedynamics response of the vehicle and its effect on the stability of vehicle handling as well ascontrol strategies.
     The tire of blow-out has very different kinematics and dynamics characteristics frompneumatic tire, which has great influence on the movement of the vehicle. In this paper, thetyre blow-out device and the test bench of tyre blow-out are developed according to thephysics effects of tire blow-out phenomenon. The tyre blow-out experiments are implementedand the curves of the rim subsidence time history and the tire pressure time history during tireblow-out process are obtained. The tire blow-out phenomenon is simulated by using nonlinearfinite element analysis software LS-DYNA to confirm the validity of the simulation model.Then, the tire blow-out model is applied to vehicle simulation analysis. The change of all tireforces and the motion responses of the vehicle are researched after the tire blow-out of therunning vehicle happens. The works are summarized as follows
     Firstly, the simple, reliable and reusable tyre blow-out generator is developed accordingto the physics effects of tire blow-out phenomenon and the tire pressure decrease rapidly in ashort time. It consists of mechanical and control part. The intensity of tire blow-out can becontrolled by regulating valve opening size. The air tightness of tire blow-out generator istested after the components of tire blow-out generator are manufactured and assembled.
     Secondly, the test bench for tyre blow-out is developed and the tyre blow-outexperiments are implemented. To test the effect of tire blow-out device, the test bench of twowheels for tyre blow-out is developed. The tyre blow-out experiments are implemented after the1/4vehicle weight is loaded on the shaft. The curves of the rim subsidence time historyand the tire pressure time history during tire blow-out process are obtained.
     Thirdly, based on215/60R16radial tire, the3-dimensional finite element model of tireblow-out experimental device is established. The tire blow-out phenomenon is simulated byapplying the curve of pressure-time history which is obtained by the tyre blow-outexperiments to the wall of single finite element tyre model. The rim subsidence curve of tyreblow-out process which is used to compare with the experimental results and verify thevalidity of the finite element model is obtained.
     Finally, the simplified finite element model of the vehicle including steering system,suspension system and running system is established. The tire blow-out model (tire pressurechange curve) is applied to the right front wheel and the right rear wheel of the vehicle tosimulate and analyzed the tire blow-out phenomenon when the vehicle is in the runningprocess and the steering system is under a free state. The change of all tire forces and themotion responses of the vehicle are researched when the front and rear tire blow-out of therunning vehicle happens, respectively.
     According to the above, the research work provides a new approach and thought forinvestigation of tire blow-out phenomenon and lays a solid foundation for tire blow-outphenomenon and safety countermeasure research.
引文
[1]庄继德.汽车轮胎学[M].北京:北京理工大学出版社,1997
    [2]陈家瑞.汽车构造[M].北京:机械工业出版社,2005
    [3]吴广球,李培,赵涛,等.广深高速公路交通事故流行病学调查[J].中华创伤杂志,2004,20(3):139-141
    [4]郭孔辉,黄江,宋晓琳.爆胎汽车整车运动分析及控制[J].汽车工程,2007,29(12):1041-1045
    [5]徐晨,李凝,诸葛刚,等.汽车轮胎爆胎原因分析与对策[J].黑龙江科技信息,2011,27:175-176
    [6]孙骁勇.汽车爆胎原因及其防止措施.黑龙江交通科技[J].2008,12:146-148
    [7]李培,赵涛,吴广球.爆胎与高速公路交通事故的相关性分析[J].中华创伤杂志,2005,21(3):161-163
    [8]纵滔,高进东,程飞,等.西宝高速公路交通事故分析[J].交通医学,2001,15(6):593-595
    [9]李力,张玉太,高虹.高速公路交通事故伤分析[J].中华创伤杂志,1998,14(2):71
    [10]张创成,陈南升,朱玉耀.高速公路车祸成因及院前急救对策[J].福建医药杂志,2001,23:19-20
    [11]Patwardhan S., Tomizuka M., Zhang W., et al. Theory and experiments of tire blow-out effects and hazard reduction control for automated vehicle lateral control system[C]. Proc. of American Control Conference. Baltimore, American,1994
    [12]Blythe W., Day T., Grimes W..3-Dimensional Simulation of Vehicle Response to Tire Blow-outs[J].1998,SAE Paper980221
    [13]Robinette R.D., Fay R.J.. Drag and Steering Effects From Disablements of Run Flat Tires[J].1999,SAE Paper990447
    [14]Lozia Z.. Simulation Tests of Biaxial Vehicle Motion after a Tire Blow-Out[J].2005, SAE Paper20050410
    [15]卢荡,郭孔辉.不同胎压轮胎回正力矩的预测模型[C].第三届计算智能与工业应 用国际会议,中国,武汉,2010
    [16]卢荡,郭孔辉.不同胎压下轮胎侧偏侧向力的预测[C].第三届电子与智能交通系统国际会议,中国,深圳,2010
    [17]黄江,郭孔辉.爆胎汽车的稳定性控制[J].中国机械工程,2009,20(16):2005-2010
    [18]黄江,郭孔辉,宋晓琳,等.爆胎汽车的稳定性控制[J].中国机械工程,2009,20(16):2006-2010
    [19]丁海涛,郭孔辉.陈虹.汽车稳定性控制中横摆力矩决策的LQR方法[J].吉林大学学报,2010,40(3):597-601
    [20]王英麟.基于CarSim与UniTire的爆胎汽车动力学响应研究[D].长春:吉林大学,2007
    [21]Wang Y.L., Guo K.H.. Analysis of Vehicle's Kinetic Characteristic after Tire Blow-out[C]. International Conference on Future Material Research and Industry Application, Macau, China,2011
    [22]黄江.爆胎汽车稳定性控制原理与仿真研究[D].长春:吉林大学,2009
    [23]郭大鹏.爆胎车辆轨迹控制[D].长春:吉林大学,2011
    [24]陶峰.爆胎轮胎瞬态特性及对整车运动的影响[D].长春:吉林大学,2012
    [25]周景宇.爆胎汽车建模与稳定性控制[D].长沙:湖南大学,2012
    [26]黄善禧.爆胎后客车稳定性仿真研究[D].北京:北京航空航天大学,2004
    [27]郑宏宇,宗长富,刘海贞.汽车爆胎特性建模与主动制动控制策略[J].中国公路学报,2012,25(4):147-158
    [28]Zheng H.Y., Liu H.Z., Zong C.F.. Compensating torque algorithm in electric power steering system of vehicle with tire blow-out tire[J]. Journal of Jilin University,2012,42(3):521-526
    [29]张彦会.基于载荷转移的爆胎汽车操纵动力学研究[J].广西工学院学报,2011,22(1):39-41
    [30]张彦会,李晓萍,伍松.基于主动转向的爆胎汽车操纵稳定性模糊控制研究[J].机械设计与制造,2012,3:182-184
    [31]王东东,向宇,张彦会.汽车爆胎新模型的建立及仿真研究[J].广西工学院学报, 2011,22(4):30-34
    [32]秦立峰.汽车爆胎安全控制方法与系统研究[D].北京:北京林业大学,2011
    [33]叶嘉俊.轮胎气压异常与整车状态变异的关联性研究[D].上海,同济大学,2003
    [34]叶嘉俊.胡子正,孙华.轮胎气压异常时汽车状态特征的仿真分析[J].机械设计与制造,2006,3(3):57-58
    [35]刘桂飘,罗玉涛.轮胎气压对汽车性能影响的研究[J].广东公安科技.2003,1:58-61
    [36]浙江吉利控股集团有限公司.BMBS爆胎监测与安全控制系统[P].中国,2006CN301425175S,2010
    [37]傅建中,石勇.轮胎气压监测与爆胎自动减速系统[J].汽车工程,2006,28(2):199-202.
    [38]桂林安金汽车安全测控技术有限公司TPMS改进方案及爆胎自动救助系统简介[Z].2006
    [39]李凯.汽车轮胎压力监测系统(TPMS)的设计[D].武汉:武汉理工大学,2007
    [40]王正键.电子控制汽车爆胎方向防偏系统的研究与设计[J].公路与汽运.2006,6:3-5
    [41]Goldstein A.. Finite Element Analysis of Quasi-static Rolling Tire Model for Detemination of Truck Tire Force and Moments[J]. Tire Science and Technology,1996,24(4):278-293
    [42]Mousseau C.W., Clark S.K.. An Analytical and Experimental Study of a Tire Rolling Over a Stepped Obstacle at Low Velocity[J]. Tire Science and Technology,1994,22(4):162-181
    [43]Tseng N.T., Pelle R.G., Chang J.P.. Finite element simulation of destructive tire experimenting[J]. Tire Science and Technology,1991,19(1):2-22
    [44]Fabio O., Malcolm H.R., Chuck A.P. Modeling tire blow-out in roadside hardware simulations using LS-DYNA[C]. ASME International Mechanical Engineering Congress, Washington, American,2003
    [45]Olatunbosun O.A., Bolarinwa E.O.. Finite element simulation of the tyre burst test[J].Proceedings of the Institution of Mechanical Engineers, Part D: Journal of AutomobileEngineering,2004,218:1251-1258
    [46] Suripa U., Chaikittiratana A.. Finite Element Stress and Strain Analysis of a SolidTyre[J]. Journal of Achievements in Materials and Manufacturing Engineering,2008,31(2):576-579
    [47] Behroozi M., Olatunbosun O.A., Ding W.. Finite Element Analysis of Aircraft TyreEffect of Model Complexity on Tyre Performance Characteristics[J]. Materials andDesign,2011,11:1-10
    [48] Tatsuya F., Hitoshi S., Kimihiro H., et al. Simulation of a Vehicle Running on to a Curbby Using Tire and Vehicle FE Models[C]. The4th European LS-DYNA UsersConference, Crash/Automotive Applications,2003
    [49] Shimonishi H., Fukushima T., Shiraishi M., et al. Vehicle Turn Simulation Using FETire model[C]. LS-DYNA Anwender forum, Bamberg,2004
    [50] Reid J.D., Boesch D.A., Bielenberg R.W.. Detailed Tire Modeling for CrashApplications[J]. International Journal of Crashworthiness,2007,12(5):521-529
    [51] Hall W., Mottram J. T., Jones R. P.. Tire modeling methodology with the explicit finiteelement code LS-DYNA[J]. Tire Science and Technology,2004,32(4):236-261
    [52] Burke A.M., Olatunbosum O.A.. New techniques in tyre model analysis using MSCNastran[J]. International Journal of Vehicle Design,1997,18(2):203-212
    [53] Ridha R.A.. Computation of stresses, strains, and deformations of tires[J]. RubberChemistry and Technology,1980,53(4):849-902
    [54] Ghoreishy M.H.. Finite element analysis of steady rolling type with slip angle: effect ofbelt angle[J]. Plastics,Rubber and Composites,2006,35(2):83-90
    [55] Ghoreishy M.H.. A parametric study on the steady state rolling behaviour of asteel-belted radical type[J]. Iranian Polymer Journal,2007,16(8):539-548
    [56] Burke A.M., Olatunbosum O.A.. Contact modeling of the tyre/road interface[J].International Journal of Vehicle Design,1997,18(2):194-202
    [57] Tonuk E., Unlusoy Y.S.. Prediction of automobile tire cornering force characteristics byfinite element modeling and analysis[J]. Computers&Structures,2001,79(1):219-232
    [58] Pelc J.. Static three dimensional modelling of pneumatic tyres using the technique ofelement overlaying[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2002.216(9):709-716.
    [59] Lee C.R., Kim, J.W., Hallquist J.O.. Validation of a FEA Tire Model for VehicleDynamic Analysis and Full Vehicle Real Time Proving Ground Simulations[J].1997,SAE Paper971100
    [60] Guan D.H., Wu W.D., Zhang A.Q.. Tire Modeling for Vertical Properties by UsingExperimental Modal Parameters[J].1998, SAE Paper980252
    [61] Barbani D., Pierini M., Baldanzini N.. FE modelling of a motorcycle tyre for full-scale crash simulations[J]. International Journal of Crashworthiness,2012,17(3):309-318
    [62] B hm F., Duda A.. Off-road cars and tractors with3D tyre models for fast rollingsimulation[J]. Journal Vehicles System Dynamic,2005,43(12):493-507
    [63] Hamid R.G.. A State of the Art Review of the Finite Element Modelling of RollingTyres [J]. Iranian Polymer Journal2008,17(8):571-597
    [64] Hamid R.G.. Modelling the Nonlinear Deformation in Steel-belted Radial Tyres UnderInflation Loading [J]. Iranian Polymer Journal2003,12(1):57-65
    [65] Hamid R.G.. A Parametric Study on the Steady State Rolling Behaviour of aSteel-belted Radial Tyre [J]. Iranian Polymer Journal2007,16(8):539-548
    [66] Rao K.V., Kumar R.K.. Simulation of tire dynamic behavior using various finiteelement techniques[J]. International Journal for Computational Methods in EngineeringScience and Mechanics,2007,8(5):363-372
    [67] Danielson K.T., Noor A.K., Greens J.S.. Computational Strategies For Tire Modelingand Analysis[J]. Computers and Structures,1996(4):673-693
    [68] Gall R., Tabaddor T., Robbins D, et al. Some notes on the finite element analysis oftires[J]. Tire Science and Technology,1995,23(3):175-88
    [69] Meschke G., Payer H.J., Mang H.A..3D simulations of automobile tires: material modeling, mesh generation, and solution strategies[J]. Tire Science and Technology,1995,25(3):175-88
    [70]Cho J.R., Choia J.H., Yoo W.S., et al. Estimation of dry road braking distance considering frictional energy of patterned tires[J]. Finite Elements in Analysis and Design2006,42:1248-1257
    [71]Cho J.R., Choia J.H., Yoo W.S., et al. A wet-road braking distance estimate utilizing the hydroplaning analysis of patterned tire[J]. International Journal of Numerical Method Engineering2007,69:1423-1445
    [72]Cho J.R., Kim K.W., Yoo W.S., et al. Mesh generation considering detailed tread blocks for reliable3D tire analysis [J]. Advances in Engineering Software2004,35:105-113
    [73]Cho J.R., Jeong H.S., Yoo W.S.. Multi-objective optimization of tire carcass contours using a systematic aspiration-level adjustment procedure [J]. Computational Mechanics2002,29:498-509
    [74]薛小香,姚振汉,李鹏,等.子午线轮胎的轴对称非线性有限元分析[J].橡胶工业,2003,5:292-297.
    [75]薛小香,姚振汉,尹伟奇,等.子午线轮胎静负荷实验的有限元模拟[J].工程力学,2005,4:196-200
    [76]尹伟奇,姚振汉,薛小香,等.子午线轮胎稳态滚动有限元分析[J].橡胶工业,2005,7:389-395
    [77]尹伟奇,姚振汉,薛小香,等.加强筋模型在轮胎有限元分析中的应用[J].橡胶工业,2004,9:543-548
    [78]李兵,李炜.包含复杂胎面花纹的子午线轮胎结构分析[C].ABAQUS用户论文集,2006
    [79]李兵,李子然,李炜.计及复杂胎面花纹的子午线轮胎滚动分析[C].ABAQUS用户论文集,2007
    [80]李炜.子午线轮胎结构有限元分析和设计原理的若干问题研究[D].合肥:中国科学技术大学,2003
    [81]李兵.计及复杂胎面花纹的子午线轮胎结构有限元分析[D].合肥:中国科学技术大学,2008
    [82]应卓凡,臧孟炎,周涛.基于复杂花纹的子午线轮胎刚度特性仿真[J].汽车技术,2009,11:35-37
    [83]臧孟炎,许玉文,周涛.三维非线性轮胎的五刚特性仿真[J].华南理工大学学报,2011,39(1):129-133
    [84]臧孟炎,陈高军,林银辉.湿滑路面轮胎制动距离有限元仿真分析[J].中国机械工程,2012,10:1246-1251
    [85]臧孟炎,陆波,陈玉祥.干燥路面上轮胎制动距离的FEM仿真[J].汽车工程,2011,2:156-161
    [86]臧孟炎,朱林培,应卓凡.3-D轮胎模型滑水仿真分析[J].科学技术与工程,2009,39(11):2999-3002
    [87]应卓凡.子午线轮胎的刚度特性和制动摩擦力的三维有限元分析[D].广州:华南理工大学,2010
    [88]许玉文.子午线轮胎刚度特性和滚动阻力仿真分析[D].广州:华南理工大学,2011
    [89]朱林培.轮胎滑水特性仿真分析与研究[D].广州:华南理工大学,2010
    [90]丁剑平,贾德民,黄小清.三维非线性有限元法在子午胎分析中的应用[J].华南理工大学学报,2005,33(9):55-59
    [91]丁剑平,贾德民,俞淇.有限元法分析轮胎结构与滚动阻力的关系[J].橡胶工业,2005,10:592-595
    [92]丁剑平,贾德民,周小舒,等.子午线轮胎滚动阻力的数值模拟[J].汽车技术,2005,3:23-25
    [93]丁剑平,俞淇,林惠音,等.子午线轮胎用纤维骨架材料的发展概况[J].橡胶工业,2004,5:302-308
    [94]景立新.全钢载重子午线轮胎特性有限元分析及验证[D].长春:吉林大学,2007
    [95]刘长国.全钢载重子午线轮胎稳态力学特性有限元分析[D].长春:吉林大学,2006
    [96]唐宏.泥泞路面汽车轮胎附着力三维有限元计算[D].武汉:华中科技大学,2006
    [97]石琴,陈无畏,洪洋,等.基于有限元理论的轮胎刚度特性的仿真研究[J].系统仿真学报,2006,18(6):1445-1449
    [98]束永平,陈秋红,郑建荣.载重子午线轮胎稳态滚动有限元分析[J].华东理工大学学报,2008,34(6):902-907
    [99]叶进雄.全钢载重子午胎滚动阻力有限元仿真与试验分析[D].北京:清华大学,2007
    [100]Liu J.R., Quek S.S有限元法实用教程[M].龙述尧,侯淑娟,钱长照译.长沙:湖南大学出版社,2004
    [101]Bathe K.J.. Finite Element Procedures in Engineering Analysis[M]:Prentice-Hall,1962
    [102]Hughes T.J.. Implicit-explicit finite elements in nonlinear transient analysis[J]. Computer Methods in Applied Mechanics and Engineering,1979,17(18):159-182
    [103]Belytschko T.. Explicit algorithms for the nonlinear dynamics of shells[J]. Computer Methods in Applied Mechanics and Engineering,1984,42:225-251
    [104]赵海鸥LS-DYNA动力分析指南[M].北京:兵器工业出版社,2003
    [105]赵隆茂,杨桂通.动力响应数值分析中的hourglass现象[J].计算力学学报,2003,1:53-58
    [106]张雄,王天舒.计算动力学[M].北京:清华大学出版社,2007
    [107]赵隆茂,杨桂通.工程结构非线性动力响应数值分析中零能量模态控制对响应的影响[J].工程力学,2001,1:282-288
    [108]Wilkins M. L.. A method for computer simulation of problems in solid mechanics and gas dynamics in three dimensions and time[R]. University of California, Lawrence Livermore National Lab,1974
    [109]Kosloff D., Frazier G.A.. Treatment of hourglass patterns in low order finite element codes[J]. International Journal of Numerical Analysis Method Geomechnical1978,2:57-72
    [110]Belytschko T., Ong J.S., Liu W.K., et al. Hourglass control in linear and nonlinear problems[J]. Computer Methods in Applied Mechanics and Engineering,1984,43: 251-276
    [111]David J.B., John O.H.. A Single Surface Contact Algorithm for the Post-buckling Analysis of Shell Structures [J]. Computer Methods in Applied Mechanics and Engineering,1990,78:141-163
    [112]美国LSTC公司LS-DYNA970user's manual[Z].2003
    [113]彭永胜,赵玉璠,刘洪,等.轮胎中央充放气系统的充放气规律研究[C].中国汽车工程学会年会论文集,2009
    [114]庄继德.现代汽车轮胎技术[M].北京:北京理工大学出版社,2001
    [115]崔胜民,余群编.汽车轮胎行驶性能与测试[M].北京:机械工业出版社,1995
    [116]陈家瑞,马天飞.汽车构造[M].北京:人民交通出版社,2006:200-220
    [117]Samuel K.C.. Mechanics of Pneumatic Tires[R]. U.S. Government Printing Office,1981
    [118]Yeoh O.H.. Some forms of the strain energy function for rubber[J]. Rubber Chemistry and Technology,1993,66(5):754-771
    [119]危银涛,杨挺青,杜星文.橡胶类材料大变形本构关系及其有限元方法[J].固体力学学报,1999,20(4):281-289
    [120]Yeoh O.H.. Characterization of elastic properties of carbon black filled rubber vul-canizates[J]. Rubber Chemistry and Technology,1990,63(5):792-795
    [121]Walter J.D.. Cord-rubber tire composites:theory and applications [J]. Rubber Chemistry and Technology,1978,51(3):524-576
    [122]Walter J.D., Patel H.P. Approximate expressions for the elastic constants of cord rubber laminates[J]. Rubber Chem Technol,1979,52(4):710-724
    [123]美国LSTC公司LS-DYNA971User's Manual[Z]. California,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700