用户名: 密码: 验证码:
预应力混凝土梁超载疲劳刚度退化试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预应力混凝土桥是我国桥梁的主要桥型之一,高等级公路上的预应力混凝土桥常年承受反复荷载的作用,疲劳和其他因素相互作用引起桥梁结构刚度退化和变形增大的现象日渐普遍,预应力混凝土梁的开裂及过量下挠等病害也变得越来越突出。本文依托国家高技术研究发展计划(863计划)项目“大跨径混凝土桥梁长期变形和开裂控制技术”(2008AA11Z102)以及国家自然科学基金项目“大跨度跨海预应力混凝土梁桥的疲劳损伤与耐久性机理研究”(51178042)的项目,针对预应力混凝土梁在超载疲劳作用下的刚度退化和挠度增大问题开展了研究,主要研究内容和创新点如下:
     (1)回顾了预应力混凝土梁桥的发展历史,对预应力混凝土梁桥长期过量下挠和开裂病害的成因以及机理进行了简要的分析,阐述了研究预应力混凝土梁桥超载疲劳问题的必要性。总结了疲劳问题研究的一般方法,并对预应力混凝土梁疲劳研究现状进行了综述,说明了本文研究的意义。
     (2)开展了预应力混凝土试验梁的多级变幅超载疲劳试验,研究了预应力混凝土梁在疲劳荷载循环作用下混凝土和钢筋的应变增长情况、疲劳裂缝的产生和开展情况以及试验梁疲劳挠度的增长情况。试验结果表明:在低于开裂荷载水平或适度超载的疲劳荷载循环作用下,预应力混凝土梁中混凝土和钢筋的应变呈现出两阶段发展的规律,且应变的增长速率随着加载水平和应力比的增大而增大;在低于开裂荷载水平的疲劳荷载循环作用下,预应力混凝土梁也可能会在最大弯矩位置出现疲劳裂缝,并且裂缝的开展与加载水平及应力比有一定关系;疲劳挠度的发展过程与混凝土应变发展过程基本一致,也分为两个阶段,且疲劳挠度增长速率也随着加载水平的提高以及应力比的增大而增大;对于疲劳损伤后的预应力混凝土试验梁,其刚度在弹性阶段内较无疲劳损伤的试验梁降低了20%-30%左右,且经历的疲劳荷载循环水平越高,刚度降低程度越大,到极限荷载附近时,疲劳试验梁刚度平均降低约50%左右,且其极限承载力也有一定程度的降低。
     (3)从损伤力学的角度,推导了基于不可逆热力学为基础的耗散原理的混凝土材料损伤演化的两阶段模型,并通过已有的混凝土材料疲劳试验数据对模型参数进行了拟合和验证,结果表明该模型能较好的反映运营状态下的混凝土疲劳损伤发展历程。同时,还以断裂力学为基础推导了裂纹尖端附近区域的应力场和位移场,阐述了钢筋疲劳裂纹产生和扩展的三个阶段的特点及裂纹形成的机理,分析了钢筋疲劳裂纹扩展的阶段特性并总结了几种裂纹扩展速率表达式。此外,还总结和推导了五种典型的疲劳损伤累积理论,分析和阐述了各疲劳损伤累积理论的特点,为预应力混凝土梁疲劳刚度退化分析提供了理论上的基础。
     (4)建立了基于截面刚度损伤的预应力混凝土梁疲劳刚度退化模型,并采用损伤弹性模量来对混凝土进行损伤计量以及采用损伤剩余面积来对钢筋和预应力钢束进行损伤计量,而后进行了预应力混凝土梁疲劳刚度退化的全过程分析,并编制了相应的计算分析程序,结果表明:在考虑了有效刚度修正、疲劳开裂修正和超载修正后的模型计算结果与试验结果吻合程度较好,误差普遍在5%以内,能够较好的反映预应力混凝土梁疲劳刚度退化的演化过程。
     (5)基于疲劳刚度退化的全过程分析方法,提出了预应力混凝土梁疲劳挠度的预测计算方法,并同时建立了两种人工神经网络模型进行对比分析,结果表明:基于疲劳刚度退化全过程分析的疲劳挠度预测计算方法,其误差随着有效样本的增加而逐渐减小,并且误差较稳定,得到的挠度增长曲线也比较符合试验结果;采用神经网络对预应力混凝土梁疲劳挠度进行预测的方法,其在有效样本数较少时预测误差较大,不过随着样本数目的增多其精度会逐渐提高,但其计算得到的挠度增长曲线受选择的传递函数形式和隐层神经元的数目影响,同时稳定性相对较差,一般要进行多次重复训练才能获取较好的训练结果。
     (6)对一座4×20m的公路预应力混凝土连续梁桥进行了疲劳以及收缩徐变引起的长期挠度的计算分析,结果表明:在开始运营的一年内,因疲劳引起的挠度增长大于收缩徐变引起的挠度增长。此后,疲劳发展进入第二阶段,由于疲劳引起的挠度增量稳定缓慢增长,而此时收缩徐变仍处于快速发展期,收缩徐变引起的挠度增量仍增长较快且逐渐超过了疲劳引起的挠度增量。由此推断,对于预应力混凝土梁桥长期挠度的增长,在最初的一年左右是疲劳起主导作用,其后由于收缩徐变引起的长期挠度增量增加,并逐渐占据主导地位。而超载会显著的增大疲劳挠度。
     (7)根据基于截面刚度损伤的预应力混凝土梁疲劳刚度退化分析模型,构建了预应力混凝土梁疲劳挠度的功能函数,并在对各变量进行统计特性分析的基础上,进行了预应力混凝土试验梁疲劳挠度的时变可靠性分析,讨论了疲劳挠度可靠度指标随荷载循环降低的关系。
The prestressed concrete bridges are widespread and most constructed in China. As most prestressed concrete bridges on highways are under cycle loading of vehicle, stiffness degradation and deformation growth induced by fatigue and other factors is much more common than before. And problems such as excessive deflection and cracking are prominent. This paper is mainly studied on stiffness degradation and deflection evolution of prestressed concrete beam under overload fatigue, which is funded by the National High Technology Research and Development Program "Long term deformation and cracking control technology of large span concrete bridges"(Grant No.2008AA11Z102) and the National Natural Science Foundation "Research on durability and fatigue damage mechanism of large span prestressed concrete bridges over sea"(Grant No.51178042). The detailed contents and highlights are listed as following:
     (1) The development of prestressed concrete bridges is reviewed. Then, the causes and mechanism of excessive deflection and cracking is briefly analyzed, and the significance of study on fatigue of prestressed concrete bridges is introduced. The general analysis methods of fatigue as well as latest research on fatigue of prestressed concrete beams are summarized, and the significance and research basis of this paper is introduced.
     (2) Fatigue test of prestressed concrete beams under multilevel amplitude cycle loading of overload was carried out. The strain increasement of concrete or steel rebar, cracking development and deflection evolution of prestressed concrete test beam under fatigue loading was obtained. Results indicate that the fatigue strain of concrete or steel rebar presents a two-stage evolution under the fatigue loading level below cracking level or just overloading temperately, and the strain grows more rapidly with the increasing of the loading level and stress ratio. Even while the loading level is below cracking level, crack appears at the position of maximum bending moment on the prestressed concrete test beams, and the crack development indicates that it's related to the fatigue loading level and stress ratio. The fatigue deflection evolution is somewhat like the development of the concrete strain, as it also performs a two-stage evolution and related to the loading level and stress ratio. The stiffness of the fatigue damaged test beams is about20%-30%lower in the elastic stage than those with no fatigue damage, and50%lower while near the ultimate load. And the ultimate bearing capacity is decreased as well.
     (3) Based on damage mechanics theories, a two-stage damage evolution model of concrete is derived, and the parameters in the model are fitted and verified by existing fatigue experiments. Results indicate that the model could well present the concrete damage evolution process in normal operating condition. Meanwhile, with regard to steel, the displacement field and stress field, which is near the crack tip region, is derived based on fracture mechanics theories. The mechanism of crack developing and the characteristics of the three stage of fatigue crack development are elaborated, and several crack propagation rate expressions are summarized. Besides, five typical fatigue cumulative damage theories and characteristics of which are discussed. And those are the theoretical basis of stiffness degradation analysis for prestressed concrete beam.
     (4) A fatigue stiffness degradation model for prestressed concrete beam is established based on section stiffness damage analysis, and damaged modulus of elasticity is applied to count concrete damage while damaged effective remaining area is applied to count steel damage. Then, a whole process analysis is carried out based on this model, and a program script is generated. The analysis results exhibit good agreements with the fatigue test results. The errors are generally within5%. And the model could well describe the stiffness degradation evolution of prestressed concrete beam under fatigue loading.
     (5) Based on the whole process analysis method of the fatigue stiffness degradation model, a method for fatigue deflection predicting analysis is presented. And two artificial neural network models are also established to gain an analysis compare. Results indicate that the results of the predicting method based on whole process analysis of fatigue stiffness degradation present good agreements with the test results, and the errors are generally stable and appropriately decrease with the increasing of sample size. The errors of artificial neural network models are exceeded when the sample size is not large enough, but errors would reduce while the sample size enlarges. However, the predicted fatigue deflection curve is influenced by the form of transfer functions and the number of hidden neurons. And, the stability of the predicting results is relatively poor. It is usually need a vast number of repeated simulating calculations to gain a preferable result.
     (6) Long term deflection leading by fatigue or concrete shrinkage and creep of a real prestressed concrete bridge of4x20m span was analyzed. Results indicate that during not a long time after opening to traffic, the deflection increasement leading by fatigue is larger than which leading by concrete shrinkage and creep. After then, the deflection increasement leading by fatigue grows steadly and slowly. However, the deflection growth leading by shrinkage and creep is still developing fast, and the shrinkage and creep deflection exceeds the fatigue deflection. As a result, it could be inferred that fatigue is a primary factor of deflection growth in the early time after opening to traffic, but deflection increasement leading by concrete shrinkage and creep is larger and larger and take the place of fatigue to be a primary factor. And overload lead to significant increasement on fatigue deflection.
     (7) Based on the fatigue stiffness degradation model, the performance function of fatigue deflection for prestressed concrete beam is obtained. The statistical properties of the variables are analyzed, and the time-variant reliability analysis of fatigue deflection for prestressed concrete beams is conducted. The relationship between reliability index decreasing and fatigue cycles is discussed.
引文
[1]中华人民共和国交通运输部.第二次全国公路普查数据公告[J].公路,2002(3):125-129.
    [2]Bazant Z P, Yu Q, Li G H. Excessive deflection of record-span prestressed box girder[J]. Concr. Int.,2010,32(6):44-52.
    [3]石雪飞,杨琪,阮欣.已建大跨径PC梁桥过量下挠及开裂处治技术[M].北京:人民交通出版社,2010.
    [4]Bazant Z P, Robert L. Mathematical modeling of creep and shrinkage of concrete[M]. Chichester:Wiley,1988.
    [5]Gwozdziewicz P, Jurkiewiez B, Destrebecq J F. Long Term Serviceability of Concrete Structures with Regards to Material Behaviors and Cyclic Loading[C]//.2000,1-8.
    [6]和海芳.博士后研究报告:桥梁运营期安全鉴定汽车荷载分类方法及标准研究[R].北京:清华大学、交通运输部公路科学研究院,2012.
    [7]Poncelet J V. Introduction a la mecanique industrielle[M].1839.
    [8]Rankine W J M. ON THE CAUSES OF THE UNEXPECTED BREAKAGE OF THE JOURNALS OF RAILWAY AXLES; AND ON THE MEANS OF PREVENTING SUCH ACCIDENTS BY OBSERVING THE LAW OF CONTINUITY IN THEIR CONSTRUCTION[C]//Minutes of the Proceedings, Ice Virtual Library,1843,2:105-107.
    [9]Hood C. ON SOME PECULIAR CHANGES IN THE INTERNAL STRUCTURE OF IRON, INDEPENDENT OF, AND SUBSEQUENT TO, THE SEVERAL PROCESSES OF ITS MANUFACTURE[C]//Minutes of the Proceedings, Ice Virtual Library,1842,2:180-181.
    [10]Wohler A. Ueber die Festigkeits-versuche mit Eisen und Stahl[M].1870.
    [11]Gerber W. Relation between the superior and inferior stress of a cycle of limiting stress[J]. Zeit. Bayerischen Arch. Ing.-Vereins,1874.
    [12]Goodman J. Mechanics to engineering[M]. Longmans, Green, and Co.,1906.
    [13]Basquin O H. The exponential law of endurance tests[C]//Proc. ASTM,1910,10(Part II):625.
    [14]Bairstow L. The elastic limits of iron and steel under cyclical variations of stress[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character,1911,210:35-55.
    [15]Haigh B P. The relative safety of mild and high-tensile alloy steels under alternating and pulsating stresses[J]. Proceedings of the Institution of Automobile Engineers, 1929,24(1):320-362.
    [16]Neuber H. Kerbspannungslehre:grundlagen fur genaue spannungsrechnung[M]. J. Springer, 1937.
    [17]Miner M A. Cumulative damage in fatigue[J]. J. Appl. Mech.,1945,12:A159-A164.
    [18]Palmgren A. Die Lebensdauer von Kugellagern[J]. Zeitschrift des Vereins Deutscger Ingenieure,1924,68:339-341.
    [19]Coffin L F. A study of effects of cyclic thermal stresses on a ductile metal[J]. Trans. ASME, 1954,76:931-950.
    [20]Manson S S. Behavior of materials under conditions of thermal stress[M]. TN-2933:NACA, 1953.
    [21]Irwin G R. Analysis of stresses and strains near the end of a crack traversing a plate[J]. J. Appl. Mech.,1957.
    [22]Tada H, Paris P C, Irwin G R. The stress analysis of cracks handbook[M]. Del Research Corporation,1973.
    [23]Van Ornum J L. Fatigue of cement products[J]. Trans. ASCE,1903,51:443.
    [24]Graf O, Brenner E. Experiments for investigating the resistance of concrete under often repeated compression loads. I[J]. Bulletin, Deutseher Ausschuss fur Stahlbeton, Berlin, 1934,1(76):17-25.
    [25]Graf O, Brenner E. Experiments for investigating the resistance of concrete under often repeated compression loads. II[J]. Bulletin, Deutseher Ausschuss fur Stahlbeton, Berlin, 1936,2(83):45-53.
    [26]Aas-Jakobsen K. Fatigue of concrete beams and columns[R].Bulletin No.70-1, NTH Institute for Betonkonstruksjoner,1970.
    [27]Matsushita H, Tokumitsu Y. A study on compressive fatigue strength of concrete considered survival probability[J]. Proceeding of JSCE,1972,198(2):127-138.
    [28]Tevfers R, Kutti T. Fatigue strength of plain, ordinary and lightweight concrete[J]. ACI Journal,1979,76(5):635-652.
    [29]姚明初.混凝土在变幅和等幅重复应力下疲劳性能的研究[R].铁道部科学研究院,1990.
    [30]Petkovic G, Lenschow R, Stemland H, et al. Fatigue of high-strength concrete[J]. ACI Special Publication, SP-121-25,1991,121:505-525.
    [31]Kim J K, Kim Y Y. Experimental study of the fatigue behavior of high strength concrete[J]. Cem. Concr. Res.,1996,26(10):1513-1523.
    [32]Sinha B P, Gcrstlc K H, Tulin L G. Stress-strain relations for concrete under cyclic loading[JJ. ACI Journal,1964,61(2):195-211.
    [33]Whaley C P, Nevile A M. Non-elastic deformation of concrete under cyclic compression[J]. Mag. Concr. Res.,1973,25(84):145-154.
    [34]Balaguru P N. Analysis of prestressed concrete beams for fatigue loading[J]. J. Prestressed Concr. Inst.,1981,26(3):70-94.
    [35]Sparks P R, MenZies J B. The effect of rate of loading upon the static and fatigue strengths of plain concrete in compression[J]. Mag. Concr. Res.,1973,25(83):73-80.
    [36]Holmen J O. Fatigue of concrete by constant and variable amplitude loading. Fatigue strength of concrete structures[J]. ACI Pub.,1982,SP-75:71-110.
    [37]王瑞敏,赵国藩,宋玉普.混凝土的受压疲劳性能研究[J].土木工程学报,1991,24(4):38-47.
    [38]李朝阳,宋玉普,赵国藩.混凝土疲劳残余应变性能研究[J].大连理工大学学报,2001,41(3):355-358.
    [39]王时越,张立翔,徐人平.弹性模量对混凝土疲劳性能的影响[J].昆明理工大学学报(自然科学版),2001,26(5):18-20.
    [40]Clemmer H E. Fatigue of concrete[J]. Proceedings ASTM,1922,22(Part II):408-419.
    [41]Kesler C E. Effects of speed of testing on flexural fatigue strength of plain concrete[J]. Proceedings, Highway Research Board,1953,32:251-258.
    [42]Murdock J W, Kesler C E. Effect of range of stress on fatigue of plain concrete beams[J]. ACI Journal,1959,55(2):221-232.
    [43]Linger D A, Gillespie H A. A study of the mechanism of concrete fatigue and fracture[J]. HRB Res. News,1966(No.22).
    [44]Tevfers R. Tensile fatigue strength of plain concrete[J]. ACI Journal,1979,76(8):919-933.
    [45]Zielinski A J, Reinhardt H W, Kormeling H A. Experiments on concrete under repeated uniaxial impact tensile loading[J]. Mater. Cons. Mater. Struct.,1981,14(8):163-169.
    [46]Slowik V, Plizzari G A, Saouma V E. Fracture of concrete under variable amplitude fatigue loading[J]. ACI Mater. J.,1996,93(3):272-283.
    [47]Cook D J, Chindaprasirt P. Influence of loading history upon the tensile properties of concrete[J]. Mag. Concr. Res.,1981,33(116):154-160.
    [48]Saito M. Tensile fatigue of strength of lightweight concrete[J]. Int. J. Cem. Compos. Lightweight Concr.,1984,6(3):143-149.
    [49]Saito M, Imai S. Direct tensile fatigue of concrete by the Use of friction grips[J]. ACI Journal, Proceeding,1983,80(5):431-438.
    [50]Comelissen H A W, Reinhardt H W. Fatigue of plain concrete in uniaxial tension and in alternating tesion compression loading[J]. IABSE Colloqium Lausanne,1982:273-282.
    [51]Comelissen H A W, Reinhardt H W. Uniaxial tensile fatigue failure of concrete under constant-amplitude and programme loading[J]. Mag. Concr. Res.,1984,36(129):216-226.
    [52]Reinhardt H W, Cornelissen H A W. Post-peak cyclic behavior of concrete in uniaxial tensile and alternative tensile and compressive loading[J]. Cem. Concr. Res.,1984,14(2):263-270.
    [53]Oh B H. Fatigue analysis of plain concrete in flexure[J]. J. Struct. Eng.,1986,112(2):273-288.
    [54]Shi X P, Fwa T F, Tan S A. Flexural fatigue strength of plain concrete[J]. ACI Mater. J., 1993,90(5):435-440.
    [55]石小平,姚祖康,李华,等.水泥混凝土的弯曲疲劳特性[J].土木工程学报,1990,23(3):11-22.
    [56]杨梦蛟,张澍曾.预应力混凝土梁正截面疲劳抗裂性[J].铁道建筑,1994(4):18-21.
    [57]吕培印.混凝土单轴、双轴动态强度和变形试验研究[D].大连:大连理工大学结构工程,2001.
    [58]Clifford O. Highway research in Illinois[J]. Trans. ASCE,1924,87:329-340.
    [59]Tepfers R. Fatigue of plain concrete subjected to stress reversals[J]. ACI Journal SP, 1982,75(9):195-215.
    [60]Zhang B, Philips D V, Wu K. Effects of loading frequency and stress reversal on fatigue life of plain concrete[J]. Mag. Concr. Res.,1996,48(177):361-375.
    [61]宋玉普,吕培印.凝土轴心拉-压疲劳性能研究[J].建筑结构学报,2002,23(4):3641.
    [62]冯秀峰.混合配筋部分预应力混凝土梁疲劳性能研究[D].大连理工大学结构工程,2005.
    [63]张建玲.缓粘结部分预应力混凝土梁疲劳性能试验研究[D].大连理工大学结构工程,2006.
    [64]ACI. Consideration for design of concrete structure subjected to fatigue loading[J]. ACI Jouranl,1974,71(3):97-121.
    [65]车惠民.部分预应力混凝土:理论·设计·工程实践[M].成都:西南交通大学出版社,1992.
    [66]AASHTO. Standard specifications for highway bridges,12th edition[S]. Washington D.C.: AASHTO,1977.
    [67]ACI. Analysis and design of reinforced concrete bridge structures[S]. Detroit:ACI Committe, 1977.
    [68]Nurnberger U. Fatigue resistance of reinforcing steel[J]. Fatigue of steel and concrete structures, IABSE Reports, Lausanne,1982,37:213-220.
    [69]Hanson J M. Design for fatigue[M]//KONG F K, CBE R H E, COHEN E. Handbook of sructural concrete. London:Pitman Books Ltd.,1983:1-35.
    [70]Kakuta Y, Okamura H, Kohno M. New concepts for concrete fatigue design procedures in Japan[J]. Fatigue of steel and concrete structures, IABSE Reports, Lausanne,1982,37:51-58.
    [72]卢树圣,陈国才.国产T20MnSiφ 16螺纹钢筋的疲劳试验研究[J].长沙铁道学院学报,1990,8(1):91-97.
    [73]曾志斌,李之榕.普通混凝土梁用钢筋的疲劳S—-N曲线研究[J].土木工程学报,1999,32(5):10-14.
    [74]马林.国产1860级低松弛预应力钢绞线疲劳性能研究[J].铁道标准设计,2000(5):21-23.
    [75]卢树圣.现代预应力混凝土理论与应用[M].北京:中国铁道出版社,2000.
    [76]中国人民共和国铁道部.铁路桥涵钢筋混凝土和预应力混凝土结构设计规范TB 10002.3-2005[S].北京:中国铁道出版社,2005.
    [77]Warner R F. Fatigue of partially prestressed concrete beams[J]. Fatigue of steel and concrete structures, IABSE Reports, Lausanne,1982:431-438.
    [78]Naaman A E. Fatigue in Partially Prestressed Concrete Beams[J]. ACI Special Pub., 1982,75:25-46.
    [79]程育仁,王家石,李鸿发,等.φ5mm碳素钢丝的疲劳性能[J].铁道学报,1989,11(1):74-80.
    [80]Bennett E W, Chandrasekhar C S. Supplementary tensile reinforcement in prestressed concrete beams[J]. Concr.,1972,6(10):35-39.
    [81]Fauchart J, Kavyrchine M, Trink J. Left braeket performance of prestressed and reinforced concrete joists under repeated loads right bracket[J]. Annales de 1'Institut Technique du Batiment et des Travaux Publics,1975(326):21-31.
    [82]Bennett E W, Yoynes H W. Fatigue strength of cold-worked non-prestressed reinforcement in prestressed concrete beams[J]. Mag. Concr. Res.,1979,31(106):13-18.
    [83]沈在康,孙慧中,马坤贞.允许出现裂缝的部分预应力混凝土梁的疲劳性能冈.北京:中国建筑科学研究院,1981.
    [84]沈在康,孙慧中,马坤贞,等.部分预应力混凝土梁正截面疲劳性能及计算方法[J].建筑结构学报,1981(5):1-13.
    [85]Naaman A E, Founas M. Partially prestressed beams under random-amplitude fatigue loading[J]. J. Struct. Eng.,1991,117(12):3742-3761.
    [86]钟明全.疲劳加载对部分预应力混凝土梁钢筋应力、裂缝宽度及静力强度的影响[J].西南交通大学学报,1995,30(3):283-290.
    [87]傅日荣,傅传国,童启明,等.部分预应力混凝土梁裂缝闭合的试验研究[J].工业建筑,1995,25(12):9-14.
    [88]吕海燕,戴公连.铁路混凝土桥梁在疲劳荷载作用下正截面应力试验研究[J].长沙铁道学院学报,1996,14(3):17-23.
    [89]吕海燕,戴公连.预应力混凝土梁在疲劳荷载作用下的变形[J].长沙铁道学院学报,1998,16(1):24-28.
    [90]蓝宗建,庞同和.部分预应力混凝土梁裂缝闭合性能的试验研究[J].建筑结构学报,1998,19(1):33-40.
    [91]罗小勇,余志武,聂建国,等.自密实预应力混凝土梁的疲劳性能试验研究[J].建筑结构学报,2003,24(3):76-81.
    [92]冯秀峰,宋玉普,朱美春.随机变幅疲劳荷载下预应力混凝土梁疲劳寿命的试验研究[J].土木工程学报,2006,39(9):32-38.
    [93]Abeles P W, Brown E I, Hu C H. Behavior of under-reinforced prestressed concrete subjected to different stress ranges[J]. ACI SP 41-12,1974:279-300.
    [94]Abeles P W, Brown E I, Hu C H. Fatigue resistance of under-reinforced prestressed beams subjected to different stress range:Miner's Hypothesis[J]. ACI SP 41-11,1974:237-277.
    [95]El Shahawi M, Batchelor B D. Fatigue of partially prestressed concrete[J]. J. Struct. Eng., 1986,112(3):524-537.
    [96]杨顺生.部分预应力混凝土梁在静载及疲劳荷载作用下的挠度的试验研究[1D].成都:西南交通大学,1985.
    [97]中华人民共和国建设部.混凝土结构设计规范GB 50010-2010[S].北京:中国建筑工业出版社,2002.
    [98]中华人民共和国建设部.铁路工程结构可靠度设计统一标准GB 50216-94[S].北京:中国计划出版社,1994.
    [99]冯秀峰,宋玉普,宋元成.预应力混凝土受弯构件疲劳损伤全过程非线性分析[J].大连理工大学学报,2005,45(3):410-15.
    [100]Balaguru P N, Naaman A E, Shah S P. Fatigue behavior and design of ferrocement beams[J]. ASCE J. Struct. Div.,1979,105(7):1333-1346.
    [101]Lovegrove J M, Salah El Din A S. Deflection and cracking of reinforced concrete under repeated loading fatigue[J]. ACI SP 75-6,1982:133-152.
    [102]中国土木工程学会.部分预应力混凝土结构设计建议[M].北京:中国铁道出版社,1985.
    [103]王清湘,赵国藩,王瑞敏.钢筋混凝土板在疲劳荷载作用下裂缝宽度计算[R].北京:中国建筑工业出版社,1994.
    [104]冯秀峰,宋玉普.预应力混凝土构件正截面疲劳抗裂分析[J].哈尔滨工业大学学报,2006,38(3):414-416.
    [105]姚玲森.桥梁工程[M].北京:人民交通出版社,2001.
    [106]中华人民共和国建设部.混凝土结构试验方法标准GB 50152-92[S].北京:中国建筑工业出版社,1992.
    [107]Kachanov L M. Introduction to continuum damage mechanics[M].1st ed. Berlin:Springer, 1986.
    [108]Griffith A A. The phenomena of rupture and flow in solids[J]. Philosophical transactions of The Royal Society of London. Series A, containing papers of a mathematical or physical charater,1921,221:163-198.
    [109]余天庆,钱济成.损伤理论及应用[M].北京:国防工业出版社,1993.
    [110]匡震邦.非线性连续介质力学基础[M].西安:西安交通大学出版社,1989.
    [111]王军.损伤力学的理论与应用[M].北京:科学出版社,1997.
    [112]楼志文.损伤力学基础[M].西安:西安交通大学出版社,1991.
    [113]曾攀.材料的概率疲劳损伤特性及现代结构分析原理[M].北京:科学技术文献出版社,1993.
    [114]Lemaitre J. Mechanics of solid materials[M]. Cambridge:Cambridge university press,1994.
    [115]Chaboche J L. Continuum Damage Mechanics-A Tool to Describe Phenomena Before Crack Initiation[J]. Nucl. Eng. Design,1981(64):233-247.
    [116]Wang J. Low cycle fatigue and cycle dependent creep with continuum mechanics[J]. Int. J. Damage Mech.,1992,1(2):237-244.
    [117]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [118]李灏.损伤力学基础[M].济南:山东科学技术出版社,1992.
    [119]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.
    [120]易成,谢和平,孙华飞.钢纤维混凝土疲劳断裂性能与工程应用[M].北京:科学出版社,2003.
    [121]潘华.混凝土受弯构件疲劳性能的试验研究[D].南京:东南大学防灾减灾与防护工程,2006.
    [122]欧进屏,林燕青.混凝土高周疲劳累积损伤的性能劣化研究[J].土木工程学报,1999,32(5):16-22.
    [123]林燕青.混凝土疲劳累积损伤与力学性能劣化研究[D].哈尔滨:哈尔滨建筑大学,1998.
    [124]王瑞敏.混凝土结构的疲劳性能研究[D].大连:大连理工大学,1989.
    [125]傅国如.疲劳失效件断口定量计算初探[C].北京:中国航空学会,1997,347-355.
    [126]钟群鹏,赵子华.断口学[M].北京:高等教育出版社,2006.
    [127]刘新灵,张峥,陶春虎.疲劳断口定量分析[M].北京:国防工业出版社,2010.
    [128]张栋,钟培道,陶春虎,等.机械失效的实用分析[M].北京:国防工业出版社,1997.
    [129]张栋,钟培道,陶春虎,等.失效分析[M].北京:国防工业出版社,2004.
    [130]Neumann P. Coarse slip model of fatigue[J]. Acta. Metallugica,1969,17:1219-1225.
    [131]郑修麟.疲劳的定量理论[M].西安:西北工业大学出版社,1994.
    [132]Haibach E. Modifizierte lineare Schadensakkumulations-Hypothese zur Berucksichtigung der Dauefestigkeit mit fortschreitender Schadigung[J]. Technische Mitteilungen,1970.LBF TM:50-70.
    [133]Marco S M, Starkey W L. A concept of fatigue damage[J]. Trans. ASME, 1954,76(4):627-632.
    [134]Newmark N M. A review of cumulative damage in fatigue[M]. University of Illinois,1950.
    [135]Corten H, Dolan T. Cumulative fatigue damage[J]. Proceedings of the International Conference on Fatigue of Metals,1956,1:235.
    [136]Manson S S, Freche J C, Ensign C R. Application of a double linear damage rule to cumulative fatigue[J]. Fatigue crack propagation, ASTM STP NO.415,1967:384-412.
    [137]Crespo-Minguillon C, Casas J R. Fatigue Reliability Analysis of Prestressed Concrete Bridges[J]. J. Struct. Eng.,1998,124(12):1458-1466.
    [138]Maes M A, Wei X, Dilger W H. Fatigue reliability of deteriorating prestressed concrete bridges due to stress corrosion cracking[J]. Canadian J. Civil Eng.,2001,28(4):673-683.
    [139]侯杰,程赫明,王时越,等.预应力钢纤维混凝土板弯曲疲劳挠度试验研究[J].建筑结构学报,2007,S 1:219-223.
    [140]李朝阳,宋玉普.混凝土的单轴抗压疲劳损伤累积性能研究[J].土木工程学报,2002,35(2):38-40.
    [141]王时越,张立翔,徐人平,等.混凝土疲劳刚度衰减规律试验研究[J].力学与实践,2003,25(5):55-57.
    [142]易成,朱红光,王青,等.疲劳荷载下混凝土梁弯曲损伤指标的探究[J].应用力学学报,2009,26(1):71-75.
    [143]逯静洲,林皋.人工神经网络技术在混凝土本构模型中的应用[J].土木工程学报,2003(4):38-42.
    [144]王雷,王德俊.疲劳损伤过程的计算机仿真[J].东北大学学报,2001(6):678-681.
    [145]易当祥,吕国志.基于神经网络的材料非稳态疲劳损伤可靠性研究[J].海军工程大学学报,2005(2):67-71.
    [146]朱劲松,宋玉普.混凝土疲劳损伤累积神经网络模型[J].大连理工大学学报,2003(3):332-337.
    [147]中华人民共和国交通部.公路钢筋混凝土及预应力混凝土桥涵设计规范JTGD62-2004[S].北京:人民交通出版社,2004.
    [148]李星新,任伟新,钟继卫.西南山区高速公路桥梁标准疲劳车辆荷载研究[J].振动与冲击,2012,31(15):90-100.
    [149]周泳涛,翟辉,鲍卫刚,等.公路桥梁标准疲劳车辆荷载研究[J].公路,2009(12):21-25.
    [150]刘延芳,周泳涛,鲍卫刚,等.公路钢桥疲劳标准荷载推导方法研究[J].中外公路,2012,32(1):164-169.
    [151]刘延芳,鲍卫刚,周泳涛,等.公路钢桥疲劳荷载研究[J].公路,2013(1):1-7.
    [152]张明.结构可靠度分析一方法与程序[M].北京:科学出版社,2009.
    [153]International Orgranization for Standardization. General principles on reliability for structures[S]. ISO 2394,1998.
    [154]GB50153-92工程结构可靠度统一标准[S].北京:中国计划出版社,1992.
    [155]Breitung K. Asymptotic approximation for multinormal integrals[J]. J. Eng. Mech., 1984,110(3):357-366.
    [156]Bucher C G, Bourgund U. A fast and effcient response surface approach for structural reliability problems[J]. Struct. Safety,1990,7(1):115-127.
    [157]Das P K, Zheng Y. Cumulative formation of response surface and its use in reliability analysis[J]. Probab. Eng. Mech.,2000,15(4):309-315.
    [158]Faravelli L. A response surface approach for reliability analysis[J].J. Eng. Mech., 1989,115(12):2763-2781.
    [159]Kim S H, Na S W. Response surface method using vector projected sampling points[J]. Struct. Safety,1997,19(1):3-19.
    [160]Schueller G I, Bucher C G, Bourgund U. On effcient computational schemes to calculate structural failure probabilities[J]. Probab. Eng. Mech.,1989,4(1):10-18.
    [161]Zheng Y, Das P K. Improved response surface method and its application to stiffened plate reliability analysis[J]. Eng. Struct.,2000,22(5):544-551.
    [162]Augusti G, Baratta A, Casciati F. Probabilistic Methods in Structural Engineering[M]. London: Chapman and Hall,1984.
    [163]Rubinstein R Y, Kroese D P. Simulation and the Monte-Carlo Method.2nd edition[M].2nd edition. New York:Wiley,2007.
    [164]Shinozuka M. Basic analysis of structural safety[J]. J. Struct. Eng. ASCE, 1983,109(3):721-740.
    [165]中华人民共和国铁道部.铁路桥涵设计基本规范TB10002.1-2005[S].北京:中国铁道出版社,2005.
    [166]张建仁,刘扬,许福友,等.结构可靠度理论及其在桥梁工程中的应用[M].北京:人民交通出版社,2003.
    [167]李扬海,鲍卫刚.公路桥梁结构可靠度与概率极限状态设计[M].北京:人民交通出版社,1997.
    [168]中华人民共和国建设部.公路工程结构可靠度设计统一标准GB/T 50283-1999[S].北京: 中国计划出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700