用户名: 密码: 验证码:
关角特长铁路隧道不良地质致灾机理及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济发展的需要,公路和铁路选线以长大隧道方式通过越岭地段越来越多,修建长大隧道往往要穿越复杂的地质条件。关角隧道是新建青藏铁路西格二线的重点、难点工程,长32.605km(进口高程为3378.72m,出口高程为3324.10m),是目前世界最长的高原铁路隧道。关角隧道区内地下水发育,岩体节理、裂隙发育,穿越断层破碎带长度达2782m(单线),中等富水区17.760km,突水压力最高达2.6MPa,最大涌水量达9000~9500m3/h,施工中工作面坍塌、支护结构变形开裂、大规模突涌水现象等工程问题频发,施工非常困难和危险。本文深入研究关角隧道不良地质致灾机理及控制技术,得到以下研究成果:
     (1)从资料调研和工程实践入手,以定性分析方法研究关角隧道的突涌水机理。采用流量测试、联通试验等手段,明确突涌水的水源补给。基于典型突涌水实例的地质资料、超前预报资料及设计施工情况,总结出关角隧道的水文地质模型。依据关角隧道地区岩溶发育特点和长距离反坡斜井的涌水、排水特点,提出了掌子面和洞身突涌水模式,并针对突涌水模式的机理,结合理论分析和数值计算方法,提出相应的处治对策,最终形成了一套适用于西北岩溶地区特长隧道的突涌水综合防治技术。
     (2)采用经验总结和现场试验方法,指出裂隙-溶隙水作用在二次衬砌上的水压力分布规律具有局部高压且长期增大的特点。采用ANSYS建立荷载-结构模型,研究局部水压力作用下铁路单线隧道标准设计图的直墙和曲墙形式衬砌的受力特征和安全性,并对衬砌安全系数提高措施的作用效果进行分析,提出了局部高水压作用下衬砌的设计参数,填补了目前在局部水压显现明显地层中衬砌设计依据的不足。
     (3)通过调研和经验总结,定性分析地下水对岩体力学性质的影响程度,对目前常用的规范中关于地下水对围岩等级的修正规定进行了归纳总结,发现了规范中存在的不足并提出改进建议。采用理论分析的方法,推导得到了考虑渗流力时隧洞的弹塑性解。通过数值模拟,基于流固耦合理论,采用ABAQUS得到了地下水位、埋深、初期支护刚度和支护时机不同时围岩-支护结构的应力分布和变形规律,为围岩-支护结构的力学响应分析提供了依据。
     (4)采用现场试验,得到了富水破碎地层隧道的支护受力特征。基于松动圈理论,得到锚杆的设计长度。基于厚壁圆筒理论,得到喷射混凝土、格栅钢架、型钢钢架和组合支护体系的支护特征曲线。结合支护受力特征,提出了富水破碎围岩隧道的支护对策。
     (5)针对断层破碎带出现的失稳现象,采用现场试验手段,得到支护、围岩的力学特性。根据试验数据结合理论分析,对支护方案提出了改进措施。经过采用FLAC3D建立数值模型进行论证,表明改进方案可有效的限制围岩变形,降低围岩的损伤程度和地质灾害发生的可能性。基于保证安全、节省成本、缩短工期的原则,对改进方案中的径向注浆方法进一步优化,提出了纵向分区径向注浆技术。通过数值模拟手段,采用FLAC3D建立三维弹塑性模型,对纵向分区的三个主要设计参数:注浆滞后掌子面距离、注浆段落长度、注浆段落间距进行计算,得到了满足不同变形控制效果的设计参数组合。
With the needs of economic development, road and rail line selection tend to be in the form of a long tunnel through the mountain areas, and the long tunnel is likely to be through complicated geological conditions. GuanJiao tunnel, the emphases and difficulties project of the newly built qinghai-tibet railway second line,32.605km long (entrance at the height of3378.72m, exit at the height of3324.10m), is the world's longest plateau railway tunnel at present. In GuanJiao tunnel region, groundwater, rock joints and fissures rock are well developed, the length of fault fracture zone is2782m (single line), medium rich water area17.760km, water bursting pressure up to2.6MPa, and the Maximum water inflow up to9000-9500m3/h. Collapse, deformation and cracking of supporting structure, large-scale sudden flood water phenomenon were frequent in construction. The construction of GuanJiao tunnel is very difficult and dangerous. This paper studies the disaster causing mechanism and control technology of Guanjiao tunnel unfavorable geology, and obtains the following research results:
     (1) Starting from the data research and engineering practice, water inrush mechanism of GuanJiao tunnel is studied, based on qualitative analysis method. With the surface runoff water test and water link test, supply of water inrush is made clear, On account of geological data, forecast data, design and construction of typical examples of water inrush, hydro geological model of GuanJiao tunnel is summarized. According to the development characteristics of Guanjiao tunnel karst area and the drainage-inrush characteristics of long distance reverse slope inclined shaft, the tunnel face and excavated section inrush mode are put forward. According to the mechanism of water inrush mode, with the theoretical analysis and numerical calculation method, the corresponding countermeasures is put forward. Eventually, a set of comprehensive control technology of water inrush suitable for the long tunnel in northwest karst region is formed.
     (2) Using the experience summary and field test methods, the conclusion that the pressure on secondary lining of Fissure karst water has the characteristics of local high pressure and increase for a long time is made. Using ANSYS to establish the load structure model, the mechanical characteristics and safety of straight wall and curved wall lining from single track railway tunnel standard drawing under local high water pressure is studied. With analysis of the effect on improving measures to safety factor, the lining design parameters under local high pressure are put forward. The research results fill a gap in lining design basis under local high water pressure.
     (3) Through research and experience summary, qualitative analysis of the influence of groundwater on rock mechanical properties, revised provisions of groundwater on surrounding rock mass grade from commonly used code are summarized and some useful suggestions are given for the improvement of the revised provisions. Using the method of theory analysis, elastic-plastic solution considering seepage force on tunnel is derived. Through a numerical simulation using the ABAQUS, based on the fluid solid coupling theory, the stress distribution and deformation law of surrounding rock and support structure, with a difference of underground water level, buried depth, preliminary support stiffness and supporting time, are obtained. Based on the theory of loose ring, the design length of bolts is get. Based on the theory of thick wall cylinder, supporting characteristic curve of shotcrete, grid steel frame steel, steel frame and combined support system is get. In the end, combined with the feature of supporting force, the supporting measures in water rich and broken surrounding rock stratum is put forward.
     (4) Through field test, supporting structure characteristic of the tunnel in water rich and broken surrounding rock stratum is obtained. Based on the loose circle theory, the design length of the bolt is get. Based on the theory of thick wall cylinder, support characteristic curve of shotcrete, grid steel frame, steel frame and composite supporting system is get. Combined with the supporting structure characteristic, some supporting countermeasures for rich water and broken surrounding rock tunnel are put forward.
     (5) Aiming at the instability phenomenon of fault fracture zone, using field test method, the mechanical characteristics of support and surrounding rock is get. According to the experimental data and theory analysis, the improvement measures of support scheme are put forward. The improved scheme can effectively limit surrounding rock deformation, reduce the damage and geological disasters. It is demonstrated by using FLAC3D to establish a numerical model. Based on the principle of ensuring safety, saving cost and shortening the construction period, further optimization of the radial grouting method in improving scheme is made and a longitudinal partition radial grouting method is put forward. By means of numerical simulation, using FLAC3D to establish the three-dimensional elastoplastic model, three main design parameters of longitudinal partition, grouting distance behind tunnel face, grouting length and grouting spacing, is calculated, and design parameters group satisfying different deformation control effect is obtained.
引文
[1]段宝福,朱应磊,吴圣智.隧道穿越富水破碎带施工工艺与数值分析[J].施工技术.2012,(17):84-88.
    [2]刘劲勇,邓凌燕.长埠隧道塌方处治措施探讨[J].公路交通技术,2012,02:106-108+117.
    [3]吴世勇,王鸽.锦屏二级水电站深埋长隧洞群的建设和工程中的挑战性问题[J].岩石力学与工程学报,2010,11:2161-2171.
    [4]钟金先.巴朗山隧道涌突水灾害危险性研究[D].成都理工大学2010
    [5]张朋.云雾山隧道浅埋岩溶段地质灾害研究[D].重庆大学2007
    [6]刘会迎.公路隧道病害成因机理及防治措施研究[D].西南交通大学2007
    [7]李显伟.隧道水害与地质灾害相互作用及综合防治研究[D].成都:西南交通大学,2007.
    [8]李显伟.隧道水害与地质灾害相互作用及综合防治研究[D].西南交通大学2007
    [9]胡锋.麻崖子隧道破碎围岩稳定性分析[D].长安大学,2012.
    [10]贾文冬,张健,张一驰.黄沙岭隧道穿越水库富水段及断层破碎带施工技术[J].公路交通科技,2012,(3):171-175
    [11]王齐仁.隧道地质灾害超前探测方法研究[D].中南大学2008
    [12]王建秀,杨立中,何静.大型地下工程岩溶涌(突)水模式的水文地质分析及其工程应用[J],水文地质工程地质,2001,4:49-52.
    [13]樗木武.隧道力学[M],中国铁道出版社,北京:1983.
    [14]邹成杰主编.水利水电岩溶工程地质[M],水利水电出版社,北京:1994.
    [15]Shuster, E.T, White, W.B. Seasonal fluctuations in the chemistry of limestone springs:A possible means for characterizing carbonate aquifers, J. Hydrology, 1971,14:93-128.
    [16]Smart, P.L., Hobbs, S.L. Characterization of carbonate aquifers:A conceptual base, Proceedings of the Environmental Problems in Karst Terranes and Their Solutions Conference, Bowling Green, KY,1986,1-14.
    [17]Jonathan B. Martin, Elizabeth J. Screaton, Exchange of matrix and conduit with example from the Flordian Aquifer, Geological survey karst interest group proceedings, water-resources investigation report,2001,01:38-44.
    [18]钟辉亚,王思敬,顾钟平,等.某大型水电枢纽坝基埋藏型岩溶发育特征及深 层承压水研究[J],工程地质学报,1998,2:51-53.
    [19]William B. White, Conceptual models for karstic aquifers, Speleogenesis and environment of karst aquifers,1(1),2003.8
    [20]张民庆,刘招伟.圆梁山隧道岩溶突水特征分析[J],岩土工程学报,2005,27(4):422-426.
    [21]何发亮,李苍松,陈成宗.岩溶地区长大隧道涌水灾害预测预报技术[J],水文地质工程地质,2001.5:21-23.
    [22]刘招伟,张民庆,王树仁.岩溶隧道灾变预测与处治技术[M],北京:科学出版社,2007:87-89.
    [23]王鹰,陈强,魏有仪,等.岩溶发育区深埋隧道水岩相互作用机理[J],中国铁道科学,2004,25(4):55-58.
    [24]张炜,李治国,王全胜.岩溶隧道涌突水原因分析及治理技术探讨[J],隧道建设,2008,28(3):257-262.
    [25]仵彦卿.岩体水力学导论[M],成都:西南交通大学出版社,1994:78-88.
    [26]王媛,徐志英,速宝玉.复杂裂隙岩体渗流与应力弹塑性全耦合分析[J],岩石力学与工程学报,2000,19(2):177-181.
    [27]黄涛.工程岩体地下水渗流-应力-温度藕合作用数学模型的研究[J],西南交通大学学报,1999,34(1):11-15.
    [28]毕焕军.裂隙岩体数值法预测计算特长隧道涌水量的应用研究[J],铁道工程学报,2000,1:59-62.
    [29]杜炜平.隧道开挖地质灾害规律与防治对策研究[D],中南大学,2001:8-11.
    [30]施龙青.底板突水机理研究综述[J],山东科技大学学报(自然科学版),2009,28(3):17-23.
    [31]郭富利,张顶立,苏洁,肖丛苗.地下水和围压对软岩力学性质影响的试验研究[J].岩石力学与工程学报.2007(11):2324-2332
    [32]黄宗英.支护阻力抑制围岩饱水软化作用研究[J].华东公路,2012,(3):85-87
    [33]侯艳娟,张顶立,郭富利.涌水隧道支护对围岩力学性质的影响[J].中南大学学报(自然科学版).2010(03):1152-1157
    [34]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1996:311-324.
    [35]Park K H, Tontavanich B, Lee J G. A simple procedure forground response curve of circular tunnel in elastic-strainsoftening rock masses[J]. Tunneling and Underground Space Technology,2008,23(2):151-159.
    [36]Lee Y K, Pietruszczak S. A new numerical procedure forelastic-plastic analysis of a circular opening excavated in astrain-softening rock mass[J]. Tunneling and Underground Space Technology,2008,23(5):588-599.
    [37]李佳伟,徐进,王璐,等.砂板岩岩体力学特性的水岩耦合试验研究[J].岩土工程学报,2013,03:599-604.
    [38]徐慧宁,周钟,徐进.锦屏一级水电站软弱岩体高水头弱化效应的试验研究[J].岩石力学与工程学报,2013,(z2):4207-4214
    [39]李天一,徐进,王璐,冉杰.高孔隙水压力作用下岩体软弱结构面(带)力学特性的试验研究[J].岩石力学与工程学报,2012,S2:3936-3941.
    [40]刘毅.浅埋隧道破碎带岩体注浆技术[D].中南大学,2010.
    [41]朱维申,何满潮,复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1995
    [42]张倬元,王士天,等.工程地质分析原理[M].北京:地质出版社,1997:382-429.
    [43]于学馥,郑颖人,刘怀恒,等.地下工程围岩稳定分析[M].北京:煤炭工_业出社,1980
    [44]朱素平,周楚良,地下圆形隧道围岩稳定性的粘弹性力学分析.[J].同济大学学报,1994,22(2):329-333.
    [45]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版,1999.
    [46]T. Kawamoto, YIchikawa. T.Kyoya. Deformation and Fracturing Behaviour of Discontinous Rock Mass and Damage Mechanics Theory[J].Int.J. Num. Analy. Geo,1988,12(4):321-327.
    [47]李术才,李树忱,朱维申,等.三峡右岸地下电站厂房围岩稳定性断裂损伤分析.[J]岩土力学,2000,21(3):193-197.
    [48]林韵梅,实验岩石力学[M],北京:煤炭工业出版社,1984.
    [49]吴梦军,黄伦海,刘新荣.特大断面隧道施工方法试验研究[J].重庆建筑大学学报,2005,27(5).
    [50]赵明阶,敖建华,刘绪华,等.岩溶尺寸对隧道围岩稳定性影响的模型试验研究[J].岩石力学与工程学报,2004,23(2).
    [51]林刚,何川.双连拱公路隧道支护结构体系试验研究[[J].西南交通大学学报,2004,39(3).
    [52]陶志平,周德培.滑坡地段隧道变形机理的模型试验研究.[J].工程地质学报,2003,11(3).
    [53]B.Singh, M.N. Viladkar, V. K. Mehrotra, Rock Mass Strength Parameters Mobilised in Tunnels[J],Tunneling and Underground Space Technology,1997, 12(1):47-54.
    [54]李世辉.隧道支护设计新论[M].北京:科学出版社,1999.
    [55]谷河正也,北条明,樱井春辅.关于用隧道位移量测结果作反分析中若干问题的考察[J].隧道译丛,1992(8).
    [56]辛凯维奇著,尹泽勇,江伯南译.有限单元法[M].科学出版社,1985.
    [57]王芝银,李云鹏.地下工程位移反分析法及程序[M].陕西科技出版社,1993.
    [58]陆明万,罗学富.弹性理论基础[M].清华大学出版社,施普林格出版社,2001.
    [59]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    [60]朱合华,陈清军,杨林德.边界元法及其在岩土工程中的应用[M].1996.上海,同济大学出版社,1997.
    [61]K.-J. Shou.A Three-Dimensional Hybrid Boundary Element Method for Non-Linear Analysis of a Weak Plane Near an Underground Excavation[J], Tunneling and Underground Space Technology,2000,15(2):215-226.
    [62]Charles Fairhurst, Juemin Pei.A Comparison Between the Distinct Element Method and the Finite Element Method for Analysis of the Stability of an Excavation in Jointed Rock[J], Tunneling and Underground Space Technology, 1990,5(1):111-117.
    [63]Y.Yang, Q. Zhang. A Hierarchical for Rock Engineering Using Artificial Neural Networks[J], Rock Mechanics and Rock Engineering 1997,30(4):207-222.
    [64]安红刚,冯夏庭.大型洞室群稳定性与优化的进化有限元方法研究,[J].岩土力学,2001,22(4):373-377.
    [65]胡建华,王福寿,张世雄,等.地下工程围岩稳定性的MBP神经网络识别[J].岩土工程界,2001,4(12):63-64.
    [66]冯夏庭,马平波.基于数据挖掘的地下铜室围岩稳定性判别[J].岩石力学与工程学报,2001,20(3):306-309.
    [67]刘光亚,岩溶地下水径流带系统[J].河北地质学院学报,1986,9(3-4)
    [68]郭佳奇.岩溶隧道防突厚度及突水机制研究[D].北京交通大学,2011
    [69]杨耀乾.平板理论[M].北京:中国铁道出版社,1984
    [70]高新强,刘志春,韩现民.山岭隧道水压力分布对围岩稳定性及结构受力影响研究[J].铁道建筑,2012,06:74-77.
    [71]毕永光.廖俊晟.高寒隧道防排水处理分析-以关角隧道为例[J].市政技术,2013,2(3):79-83.
    [72]邹育麟,何川,周艺,等.重庆高速公路现役营运隧道渗漏水病害统计及成因分析[J1.公路交通科技.2013(01):86-93+101.
    [73]李苍松,胡元芳,丁建芳,等.隧道地下水处治的设计理论及方法研究[J].工 程地质学报,2012,05:832-840.
    [74]袁慧.高水压岩溶隧道衬砌水压力特征研究[D].北京:北京交通大学,2009.
    [75]郑波,王建宇,吴剑.水底隧道衬砌水压力折减系数估算[J].隧道建设,2012,(4):474-478+494
    [76]高新强,仇文革,高扬.山岭隧道突水对衬砌结构受力影响数值分析[J].中国铁道科学,2004,06:55-59.
    [77]中华人民共和国行业标准.TB10003-2005铁路隧道设计规范[S].北京,中国铁道出版社,2005
    [78]高新强,仇文革.深埋单线铁路隧道衬砌高水压分界值研究[J].岩土力学,2005,10:154-159.
    [79]张兴.基于流固耦合的隧道断层破碎带注浆加固圈厚度分析[J].科技资讯,2013,16:41-44.
    [80]李波.忻保高速公路芦芽山隧道断层破碎带围岩稳定性分析[D].长安大学,2011.
    [81]王璞,李立新,邹金锋.寒岭界隧道断层破碎带水压力分布及病害处治[J].中外公路,2013,02:211-213.
    [82]王鲁南.隧道穿越断层破碎带施工风险分析及围岩变形规律研究[D].山东大学,2012.
    [83]李五红.构造交汇区变质岩隧道突水涌泥机理及控制措施研究[J].铁道建筑,2013,03:62-65.
    [84]《工程地质手册》编委会.工程地质手册[M].北京:中国建筑工业出版社,2007
    [85]郑永学.矿山岩体力学[M].北京:冶金工业出版社,1988
    [86]铁道部第一勘测设计院.铁路工程地质手册[M1.北京:中国铁道出版社,1999
    [87]水利水电科学研究院.岩石力学参数手册[M].北京:水利水电出版社,1991.
    [88]徐礼华,刘素梅,李彦强.丹江口水库区岩石软化性能试验研究[J].岩土力学,2008,29(5):1430-1434.
    [89]李克钢,侯克鹏,张成良.饱和状态下岩体抗剪切特性试验研究[J].中南大学学报(自然科学版),2009,40(2):528-542.
    [90]刘新荣,傅晏,王永新,等.水-岩作用下砂岩抗剪强度劣化规律的试验研究[J].岩土工程学报,2008,30(9):1298-1302.
    [91]王军,何淼,汪中卫.膨胀砂岩的抗剪强度与含水量的关系[J].土木工程学报,2006,39(1):98-102.
    [92]李克钢,许江,李树春,等.三峡库区岩体天然结构面抗剪性能试验研究[J].岩 土力学,2005,26(7):1063-1067.
    [93]曾纪全,贺如平,王建洪.岩体抗剪强度试验成果整理及参数选取[J].地下空间与工程学报,2006,S2:1403-1407.
    [94]周庆华.边坡岩体抗剪强度计算参数取值方法的探讨[J].矿业快报,2006,22(4):19-21.
    [95]贾洪强,曹平,蒲成志,等.岩石在饱和状态下的抗剪强度参数变化研究[J].矿业工程研究,2010,25(3):29-32.
    [96]陈寿堂.水岩耦合作用对隧道稳定性影响分析及隧道围岩分级修正方法研究[D].西南交通大学,2012.
    [97]李俊亭,王愈吉.地下水动力学[M].北京:地质出版社,1987,27-33
    [98]沈明荣.岩体力学[M].上海:同济大学出版社,1999,132-137
    [99]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994,68-71
    [100]李玉杰,王连国,陆银龙,等.地下水对巷道围岩稳定性影响的数值模拟[J].徐州工程学院学报(自然科学版),2011,01:34-39.
    [101]王震.正阳隧道围岩变形与支护结构受力特性研究[D].重庆交通大学,2009.
    [102]林银飞,郑颖人.弹塑性有限厚条法及工程应用[J].工程力学,1997,14(2):108-112
    [103]马显春,石碧波,李军伟.赤平极射投影在隧道围岩稳定性评价中的应用[J].山西建筑,2009,35(4):340-341.
    [104]Gunter G. Gschwandtner, Robert Galler. Input to the application of the convergence confinement method with time-dependent material behaviour of the support[J]. Tunnelling and Underground Space Technology,2011,13(7).
    [105]Kumar P. Infinite elements for numerical analysis of under-ground excavations[J]. Tunneling and Underground Tech-nology,2000,15(1):117-124.
    [106]Shou K J. A three-dimensional hybrid boundary element method for non-linear analysis of a weak plane near an underground excavation [J]. Tunneling and UndergroundSpace Technology,2000,15(2):215-226
    [107]C. Carranza-Torres, C. Fairhurst. Application of the Convergence-Confinement Method of Tunnel Design to Rock Masses That Satisfy the Hoek-Brown Failure Criterion[J]. Tunnelling and Underground Space Technology,2000,15(2): 187-213.
    [108]Oreste.P.P. Analysis of structural interaction in tunnels using the covergence-confinement approach[J].Tunnellingand Underground SPaee Technology.2003, 18(4):347-63.
    [109]C. Gonza'lez-Nicieza, A.E. A'lvarez-Vigil, A. Mene'ndez-Di'az, et al. Influence of the depth and shape of a tunnel in the application of the convergence-confinement method[J]. Tunnelling and Underground Space Technology,2008,23(1):25-37.
    [110]Daniel Dias. Convergence-confinement approach for designing tunnel face reinforcement by horizontal bolting[J]. Tunnelling and Underground Space Technology,2011,26(4):517-523.
    [111]张素敏,宋玉香,朱永全.隧道围岩特性曲线数值模拟与分析[J].岩土力学.2004,25(3):455-458.
    [112]陈峰宾,张顶立,扈世民.基于收敛约束原理的大断面黄土隧道围岩与初支稳定性分析[J].北京交通大学学报,2011,35(4):28-32.
    [113]刘宝许,乔兰,李长洪.基于动态围岩分类的高速公路隧道围岩稳定性评价方法[J].北京科技大学学报,2005,27(2):146-149.
    [114]金丰年.考虑时间效应的围岩特征曲线[J].岩石力学与工程学报,1997,16(4):344-353.
    [115]Ahmad Fahimifar. Masoud Ranjbarnia. Analytical approach for the design of active grouted rockbolts in tunnel stability based on convergence-confinement method[J]. Tunnelling and Underground Space Technology,2009,24(4):363-375.
    [116]Arild Palmstrom. Characterizing rock mass by the RMI for use in practical rock engineering [J].Tunneling and Underground Space Technology,1996,11(2): 175-188.
    [117]关宝树.隧道工程施工要点集[M].北京:人民交通出版社,2002:207-209
    [118]李晓红.隧道新奥法及其量测技术[M].北京:科学技术出版社,2002:26-27
    [119]王明恕.锚喷支护理论研究论文集[C].1987
    [120]孔恒,王梦恕.岩体锚固系统的作用机理认识[J].西部探矿工程,2002(3)
    [121]王建宇.锚杆支护作用原理和设计原则的探讨[J].铁道科学研究院西南研究所油印本,1976
    [122]王焕文.锚喷支护[M].北京:煤炭工业出版社,1989:227-229
    [123]陈建华.实验应力分析[M].北京:中国铁道出版社,1984
    [124]王戍平.破碎围岩隧道的模拟试验研究[D].浙江大学,2004.
    [125]Y.泰撒瓦,软岩中锚杆和薄层衬砌支护效应研究[J].隧道译从,1983(9)
    [126]王建宇.隧道工程的技术进步[M].北京:中国铁道出版社,2004:47-48
    [127]房倩.高速铁路隧道支护与围岩作用关系研究[D].北京:北京交通大学,2010.
    [128]刘志春,李文江,孙明磊,等.乌鞘岭隧道F4断层区段监控量测综合分析[J]. 岩石力学与工程学报,2006,07:1502-1511.
    [129]常燕庭.喷射混凝土早期材料性质对支护效果的影响[J].长江科学院院报,1992,9(3):8-16
    [130]关宝树.隧道力学概论[M].成都:西南交通大学,1993.
    [131]齐明山.大变形软岩流变性态及其在隧道工程结构中的应用研究[D].上海:同济大学,2006.
    [132]Chern, J.C., F.Y.Shiao, C.W.Y u.An empirical safety criterion for tunnel construction[C].In:Regional Symposium on Sedimentary Rock Engineering. T aipei, Taiwan.1998:222-227.
    [133]冯仲仁,张兴才,张世雄,等.大冶铁矿巷道变形监测研究[J].岩石力学与工程学报,2004,23(3):483-487
    [134]刘泉声,白山云,肖春喜,等.基于现场监控量测的龙潭隧道施工期围岩稳定性研究[J].岩石力学与工程学报,2007,26(10):1982-1990
    [135]陈建勋,乔雄,王梦恕.黄土隧道锚杆受力与作用机制[J].岩石力学与工程学报,2011,30(8):1690-1697.
    [136]谭忠盛,渝渝,王明年,等.大断面深埋黄土隧道锚杆作用效果的试验研究[J].岩石力学与工程学报,2008,27(8):1618-1625.
    [137]铁道部第二勘察设计院.铁路工程设计技术手册[M].北京:中国铁道出版社,1999
    [138]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009
    [139]白明洲,许兆义,时静.复杂地质条件下浅埋暗挖地铁车站施工期地面沉降量FLAC3D分析[J].岩石力学与工程学报,2006,25(z2):4254-4259.
    [140]李术才,朱维申,陈卫忠,等.弹塑性大位移有限元方法在软岩隧道变形预估系统研究中的应用[J].岩石力学与工程学报,2002,21(4):466-470.
    [141]铁道第一勘察设计院.青藏铁路西宁至格尔木段增建二线关角隧道工程地质勘察报告[R].西安:铁道第一勘察设计院,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700