用户名: 密码: 验证码:
钢管混凝土拱—连续梁组合体系桥梁损伤识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土拱桥因其高承载力、优良的塑性和韧性、较强的耐火性能和耐冲击性能、良好的施工性及卓越的经济性,在中国甫一出现便得到了广泛的应用,但是其设计理论、计算方法、规范编制等技术发展远落后于实际工程建设。早期建设的钢管混凝土桥梁由于规范缺失导致部分设计或者施工不足产生了一定的缺陷,随着桥梁运营日久,加之环境的影响,这些缺陷导致的桥梁病害也日益显现出来,严重影响桥梁的运营安全。为准确判断桥梁结构的损伤,进而对桥梁的安全状况进行评估,以提出切实可行的应对措施,保证此类桥梁的安全运营,本文以钢管混凝土拱—连续梁组合体系桥梁杜坑特大桥为背景,针对此类桥梁损伤识别工作进行了如下几个方面的研究和探讨:1)结构有限元模型修正研究;2)结构传感器优化布置与结构振型扩阶分析;3)钢管混凝土拱—连续梁组合体系桥梁损伤机理、损伤指标及损伤识别方法研究;4)结构损伤程度评估和损伤结构安全状况评级研究。本文主要研究内容如下:
     (1)结构有限元模型修正研究。将Kriging模型引入结构有限元模型修正领域,采用遗传算法优化Kriging模型参数,以设计参数变量与结构有限元分析频率作为训练样本训练Kriging模型,以实测结构频率作为输入样本,得到优化后设计参数变量。与神经网络方法和遗传算法有限元模型修正方法相比较,基于Kringing模型的有限元模型修正方法采用较少量训练样本即可得到较高精度的修正模型,且具有更高的计算效率。
     (2)结构传感器测点优化布置研究。改进奇异值分解法可以得到最大线性无关的传感器测点布置组合,节点模态应变能则表征了节点的活跃度。以指数函数作为候选测点奇异值信任度计算函数,将测点信任度与节点模态应变能进行融合,取目标值较大的候选测点作为传感器布置测点,该方法得到的传感器测点布置方案能够以较高的信噪比获得尽可能多的模态信息。
     (3)结构振型扩阶分析。介绍了Kidder动态扩阶法、系统等效缩聚扩阶方法及改进缩聚系统方法三种结构振型扩阶方法,并采用一座钢桁架简支梁模型与杜坑桥主梁为例做了振型扩阶比较分析。研究结果表明,对于钢桁架这类简单结构,三种扩阶方法都能得到较高精度的扩阶振型,其中系统等效缩聚扩阶方法扩阶精度最高;对于杜坑桥这类复杂结构,三种振型扩阶方法存在较大误差,说明振型扩阶方法在复杂结构中的应用依然存在局限。
     (4)钢管混凝土拱—连续梁组合体系桥梁损伤机理研究。将钢管混凝土拱—连续梁组合体系桥梁离散成钢管混凝土拱肋、预应力混凝土主梁及吊杆体系三种构件,针对最容易发生的拱肋核心混凝土脱空、主梁预应力混凝土主梁裂缝及吊杆腐蚀三种损伤进行了发生机理分析。重点推导了拱肋核心混凝土在轴向受压、内外温差及核心混凝土收缩徐变三种因素下的脱空临界条件,建立了钢管混凝土构件有限元实体模型,对推导的钢管混凝土在承受轴压与内外温差因素下的脱空临界条件进行了检验。
     (5)钢管混凝土拱—连续梁组合体系桥梁损伤指标研究。比较了常用的几种基于动力、静力的结构损伤指标,针对钢管混凝土拱—连续梁组合体系桥梁提出了需根据不同构件类型采用合适的损伤指标。推导了圆弧拱的波动方程,建议以小波包分解应力波信号得到的能量谱特征频带能量比偏差作为钢管混凝土拱肋的损伤指标;以应变模态差分为预应力混凝土主梁的损伤指标,并定义了有效面积比作为传感器布置密度的建议值;以吊杆内力差作为吊杆体系的损伤指标并运用神经网络方法对吊杆进行损伤识别研究。
     (6)钢管混凝土拱—连续梁组合体系桥梁结构损伤程度研究。建立了钢管混凝土拱—连续梁组合体系桥梁损伤程度评估模型,采用模糊数学理论方法,将确定的各种因素用定量的方法表示出来,通过计算各因素的隶属度,对结构损伤程度进行评级,并对一座实际检测钢管混凝土拱—连续梁组合体系桥梁进行了损伤程度评级。
     (7)损伤结构安全状态评估分级研究。采用基于人工神经网络改进响应面法进行结构极限承载力可靠度分析,提出基于可靠度指标的有效极限承载能力比作为结构安全状况分级指标,对桥梁安全状况进行分级。以杜坑桥为例进行了结构安全状况评估分级。
Concrete filled steel tubular (CFST) arch bridge is the one whose main load-bearingcomponent is arch rib that is composed of steel tubes filled with concrete. Due to its excellentperformance such as superior capacity, good plasticity and toughness, high fire-resistance andimpact-resistance, easy construction and remarkable economical efficiency, CFST arch bridgehas been widely used since it first appeared in China in1990. However, the development ofits technical such as design theory, computational methods, codes establishment fall behind itsconstruction speed. Thus, there are some certain defects in the design and construction ofCFST arch bridges in the early days. With the long time operation and environmental effect,these bridge diseases led by these defects have been appeared increasingly, which seriouslyaffect the operational safety of these bridges. To determine the bridge structural damageaccurately, and then assess security situation, put forward some practical response measures,ensure the operational safety of these bridges, this dissertation took the CFST arch-beamcomposite bridge-Dukeng Bridge as the background, some issues about the damageidentification of this type of bridge were studied as follows:1) model updating of structuralfinite element (FE);2) optimization of sensors placement and Structural modal expansion;3)damage mechanism, damage index and damage identification on CFST arch-beam compositebridge were investigated;4) and structural damage extent assessment and damaged structuresafety condition evaluation. The main content of this dissertation are shown as follows:
     (1) The structural FE model updating. Kriging model is presented for structural FEmodel updating in this dissertation, in which the Kriging model parameters is optimized withgenetic algorithm (GA). Taking the design parameter variables and FE structural analysisfrequency as the training sample to train Kriging model, taking the measured structuralfrequency as input sample, then the optimized design parameter variables are outputted.Compared with neural network (NN) method and GA method, the FE model updating methodbased on Kriging model will obtain the higher accuracy of updated model but using a littleamount of training samples, and less time consumed.
     (2) Sensors placement optimization. A new approach which combine the improvedsingular value decomposition and modal strain energy (MSE) was proposed in thisdissertation. Improved SVD can get the maximum linearly independent combination ofsensors measuring points. Node MSE characterizes the activity of the node. Exponentialfunction was taken as the belief function to calculate the belief of candidate measuring point.And then measuring points belief and node MSE were fused. The candidate measuring points which have greater targets were set as formal measuring points. The measuring pointplacement scheme obtained by this method can get much more modal information with highersignal to noise ratio (SNR).
     (3) Structural modal expansion analysis. This dissertation introduced three methods ofstructural vibration modal expansion, such as the Kidder dynamic modal expansion method,system equivalent reduction expansion process (SEREP) method and the improved reducedsystem (IRS) method. Implement the modal expansion of a steel truss structure and main girdof Dukeng Bridge by three modal expansion methods. The applicability and accuracy of threemethods was analyzed according to modal expansion results. Modal expansion results showthat all three methods proposed above have high accuracy to simple structures like the trussand SEREP method shows the highest accuracy. However, the accuracy to complex structureslike Dukeng bridge is unsatisfactory. The three modal expansion methods have limitation tocomplex structures real application
     (4) Damage mechanism for CFST arch-beam composite bridge. CFST arch-beamcomposite bridge was dispersed into3main components in this dissertation, which wereCFST arch rib, pre-stressed concrete main girder, and suspenders system. The mechanisms ofCFST arch rib separation, cracks in pre-stressed concrete main girder and suspenderscorrosion were analyzed. These three damage mentioned above were considered to be mostprone to occur. Especially, this dissertation derived the critical condition of axial pressure, thetemperature difference and concrete shrinkage which lead to CFST arch rib separation.Besides, solid FE model was established to test the correctness of CFST componentseparation critical condition that derived.
     (5) CFST arch-beam composite bridge damage index. Several common static/dynamicstructural damage indices and damage identification methods were compared with each otherin this dissertation. The author proposed different type of component should apply appropriatedamage index for component characteristics. Wave equation of arc arch was derived in thisdissertation. Wavelet packet was applied to decompose the stress wave signal. And energyratio variation deviation (ERVD) of wavelet packet energy spectrum was taken as the damageindex of CFST arch rib. Strain mode difference was taken as the damage index of pre-stressedconcrete girder and the effective area ratio was defined as recommended value of sensorsplacement density. Difference of internal forces were taken as the damage index of suspenderssystem and NN was applied to identify suspenders damage.
     (6) CFST arch-beam composite bridge damage extent assessment. A damage extentassessment model of CFST arch-beam composite bridge was established in this dissertation. Fuzzy theory was used to quantify the various factors, then the membership of each factorwas calculated to grade structural damage extent. An actual tested CFST arch bridge damageextent assessment was demonstrated in this dissertation.
     (7) Safety condition evaluation for damaged structure. An improved response surfacemethod with neural network was applied to structural ultimate bearing capacity reliabilityanalysis. Effective ultimate bearing capacity ratio based on reliability index was defined toevaluate the damaged structure safety condition. Dukeng Bridge was taken as an example todemonstrate the process of safety condition evaluation.
引文
[1]陈宝春,刘福忠,韦建刚.327座钢管混凝土拱桥的统计分析[J].中外公路,2011,31(3):96-103.
    [2]易圣涛.日本一座拱桥垮塌施工[J].国外公路,1994,1:13-16.
    [3]殷迅.钢管混凝土拱桥主要病害调查与分析[D].重庆:重庆交通大学,2011.
    [4]陈兵,朱正刚.中、下承式拱桥吊杆体系研究[J].四川建筑,2002,22(4):29-32.
    [5]符晶华,常立新,姜德生.系杆断裂对拱桥健康状况的影响[J].武汉理工大学学报,2006,(10):61-65.
    [6]王莲香.钢管混凝土拱桥吊杆受力行为与更换技术研究[D].重庆:重庆交通学院,2005.
    [7]韩林海.钢管混凝土结构[M].北京:科学出版社,2000.
    [8]周水兴,李炎.钢管混凝土拱桥设计与发展[J].工程力学增刊,1999,225-229.
    [9]韩林海,贺军利,吴海江,等.钢管混凝土柱耐火性的试验研究[J].土木工程学报,2000,30(3):31-36.
    [10]Berman A, Flannelly W.G. Theory of incomplete models of dynamic structures [J]. AIAA,1971,9(8):1481-1487.
    [11]Caesar B. Update and identification of dynamic mathematical models [C]. Proceedings ofthe4th International ModalAnalysis Conference,1986,394-401.
    [12]Baruch M. Damage detection based on reduced measurement [J]. Mechanical Systemsand Signal Processing,1998,12(1):23-46.
    [13]Cha P.D, Gu W. Model updating using an incomplete set of experimental modes [J].Journal of sound and vibration,2000,233(4):587-600.
    [14]Kabe A.M. Stiffness matrix adjustment using mode data [J]. AIAA,1985,23(9):1431-1436.
    [15]向锦武,周传荣,张阿周.基于建模误差位置识别的有限元模型修正方法[J].振动工程学报,1997,10(1):1-7.
    [16]Minas C, Inman D.J. Matching finite element models to modal data [J]. Journal ofVibration and Acoustics,1990,112(1):84-92
    [17]Zimmerman D.C, Widengren M. Correcting finite element models using a symmetriceigen structure assignment technique [J].AIAA,1990,28(9):1670-1676.
    [18]Foster C.D, Mottershead J.E. Method for improving finite element models by usingexperimental data. Application and implications for vibration monitoring [J]. InternationalJournal of Mechanical Science,1990,32(3):191-203.
    [19]Ting T. Design Sensitivity analysis of structural frequency response [J]. AIAA Journal,1993,31(10):1965-1967.
    [20]Kye S.W, Lin R.M. Frequency selection method for FRF-based model updating [J].Journal of Sound and Vibration,2004,278(1):285-306.
    [21]李伟明,洪嘉振.基于频响函数的模型修正方法[J].上海交通大学学报,2011,45(10):1455-1459.
    [22]Kirkpatric S, Gelatt C.D, Vecchim P. Optimization by simulated annealing[J]. Science,1983,220(4598):671-680.
    [23]Levin R.I, Lieven N.A.J. Dynamic finite element model updating using simulatedannealing and genetic algorithms[J]. Mechanical Systems&Signal Processing,1998,12(1):91-120.
    [24]Ziaei R.S, Ewins D.J. Finite element model updating of rotating structures using adaptivesimulated annealing [C]. Proceedings of the2002International Conference on Noise andVibration Engineering,2002:2281-2284.
    [25]Atalla M.J, Inman D.J. On model updating using neural networks[J]. Mechanical Systems&Signal Processing,1998,12(1):135-161.
    [26]Levin R.I, Lieven N.A.J. Dynamic finite element model updating using neural networks[J]. Journal of Sound and Vibration,1998,210:593-607.
    [27]Levin R.I, Lieven N.A.J, Lowenbrug M H Measuring and improving neural networkgeneralization for model updating [J]. Journal of Sound and Vibration,2000,238(3):401-424.
    [28]段雪平,朱宏平.基于遗传算法的结构破损参数检测[J].工程力学,2001,(A3):422-426.
    [29]闫桂荣,段忠东,欧进萍.遗传算法在结构有限元模型修正中的应用[J].哈尔滨工业大学学报.2007,39(2):181-186.
    [30]Brownjohn J.M.W, Lee J, Cheong B. Dynamic performance of a curved cable-stayedbridge [J]. Engineering structure,1999,21(11):1015-1027.
    [31]范立础,袁万城,张启伟.悬索桥结构基于敏感性分析的动力有限元模型修正[J].土木工程学报,2000,33(1):9-14.
    [32]张启伟.基于环境振动测量值的悬索桥结构动力模型修正[J].振动工程学报,2002,15(1):74-78.
    [33]Hua H.X, Sol H. On a statistical optimization method used in finite element modelupdating [J]. Journal of sound and vibration,2000,231(4):1071-1078.
    [34]Yuen K.V, Lambros S, Katafygiotis B. Bayesian time-domain approach for modalupdating using ambient data [J]. Probabilistic Engineering Mechanics,2001,16:219-391.
    [35]Wu J.R, Li Q.S. Finite element model updating for a high-rise structure based on ambientvibration measurements [J]. Engineering Structures,2004,26:979-990.
    [36]费庆国,张令弥,李爱群,等.基于统计分析技术的有限元模型修正研究[J].振动与冲击,2005,24(3):23-26.
    [37]韩芳,钟冬望,汪君.基于贝叶斯法的复杂有限元模型修正研究[J].振动与冲击,2012,31(1):39-43.
    [38]Kammer D.C. Sensor placement for on-orbit modal identification and correlation of largespace structures [J]. Journal of Guidance, Control and Dynamic,1991,14(2):252-259.
    [39]Guyan R.J. Reduction of stiffness and mass matrices [J].AIAAJournal,1965,3(2):380.
    [40]Callahan J.O. A procedure for an improved reduced system (IRS) model [C].7thInternational ModalAnalysis Conference,1989.
    [41]Paz M. Dynamic condensation [J].AIAAJournal,1984,724-727.
    [42]张德文.改进Guyan-递推减缩技术[J].计算结构力学及其应用,1996,13(1):90-94.
    [43]崔飞,袁万城,史家钧.传感器优化布设在桥梁健康监测中的应用[J].同济大学学报,1999,27(2):165-169.
    [44]Allemang R.J. Investigation of some multiple input/output frequency response functionexperimental modal analysis techniques [D]. USA, University of Cincinnati, Department ofMechanical Engineering, pp.141-214,1980.
    [45]Heo G, Wang M.L, Satpathi D. Optimal transducer placement for health monitoring oflong span bridge [J]. Soil Dynamic and Earthquake Engineering,1997,16:495-502.
    [46]Doebling S.W, Hemez F.M, Peterson L.D, et al. Improved location accuracy using strainenergy based mode selection criteria [J].AIAAJournal,1997,35(4):693-699.
    [47]李宗凯.基于模态应变能理论的传感器优化布置方法及算例[J].建筑结构,2009,39:310-313.
    [48]李戈,秦权,董聪.用遗传算法选择悬索桥监测系统中传感器的最优布点[J].工程力学,2000,17(1):25-34.
    [49]何浩祥,闫维明.基于小波和图论的空间结构传感器优化布置[J].武汉理工大学学报,2005,27(12):41-44.
    [50]吴子燕,简晓红,张彬,等.振动测试中多目标传感器优化配置研究[J].机械强度,2008,30(6):888-892.
    [51]Chen H.P, Nenad B. Assessment of Damage in Continuum Structures Based onIncomplete Modal Information[J].Computers&Structures,2000,74:559-570.
    [52]Kidder R. Reduction of Structural Frequency Equations[J].AIAAJournal,1973,11(6).
    [53]Callahan J.O, P.Avitabile, Riemer R. System equivalent reduction expansion process[C].Proceedings of7th International Modal Analysis Conferences, Las Vegas,1989,29–37.
    [54]Law S.S, Shi Z.Y, Zhang L.M. Structural damage detection from incomplete and noisymodal test data [J]. Journal of Engineering Mechanics,1998,124(11):1280-1288.
    [55]Berman A, Nagy E.J. Improvement of a large analytical model using test data[J]. AIAAJournal,1983,21(8):1168-1173.
    [56]刘福顺,郭鹏,王超,等.一种模态振型的直接扩阶方法[J].工程力学,2012,29(8):28-32.
    [57]Charles W.R, Brad C, Colin B.B. Composite action in concrete filled tubes[J]. ASCE,Journal of structural Engineering,1999,125(5):477-484.
    [58]李悦,胡曙光.钢管混凝土的体积形变及其膨胀模式的改善[J].河北理工学院学报,1999,21(1):70-75.
    [59]童林,夏桂云,吴美君,等.钢管混凝土脱空的探讨[J].公路,2003,5:16-19.
    [60]黄永辉.钢管混凝土拱桥拱肋机理与影响分析及吊杆更换技术研究[D].广州,华南理工大学,2010.12.
    [61]Virdi K. S, Dowling P. J. Bond strength in concrete filled circular steel tubes[J]. CESLICreport CC11, Imperical College, London,1975.
    [62]森下阳一,富井政英,吉村浩二.关于圆钢管混凝土柱内钢管与充填混凝土间粘结性状的研究(日文)[J].混凝土工学年次讲演会讲演论文集,昭和54年,119:473-476.
    [63]Morishita Y, Tomii M. Experimental studies on bond Strength in concrete filled circularsteel tubular columns subjected to Axial loads[J]. Transactions of Japan concrete institute,1979(1):351-358.
    [64]Shakir-Khalil H, Mouli M. Further tests on concrete-filled rectangular hollow sectioncolumns[J]. The Structural Engineer,1990,68(20):405-413.
    [65]姜绍飞,韩林海,乔景川.钢管混凝土中钢与混凝土粘结问题初探[J].哈尔滨建筑大学学报,2000,33(2):24-28.
    [66]周璞.圆钢管混凝土粘结强度的试验研究与理论分析[D].西安建筑科技大学,2007,12.
    [67]李冬生.拱桥吊杆损伤监测与健康诊断[D].哈尔滨工业大学,2007.
    [68]姚志强,阮小平,邓清.拱桥吊杆变形差异引发桥面断裂及类似事故的预防措施[J].公路,2002,7:73-75.
    [69]黄茂忠,张澍曾.钢管拱桥施工中临时预应力束破断原因分析[J].铁道建筑,1996,9:19-20.
    [70]Sanayei M, Saletnik M.J. Parameter estimation of structure from static strainmeasurements I: Formulation [J]. Journal of Structural Engineering, ASCE,1996,122(5):555-562.
    [71]Sanayei M, Saletnik M J. Parameter estimation of structure from static strainmeasurements Ⅱ: Error Sensitivity Analysis [J]. Journal of Structural Engineering, ASCE,1996,122(5):563-572.
    [72]崔飞,袁万城,史家钧.基于静载试验进行桥梁结构损伤识别[J].桥梁建设,2003,2:4-7.
    [73]张家弟,刘军.基于静力响应的桥梁结构损伤识别[J].国外建筑科技,2006,27(2):105-107.
    [74]付春雨,单德山,李乔.基于支持向量机的静力损伤识别方法[J].中国铁道科学,2010,31(5):47-52.
    [75]Cawley P,Adams R.D. The location of defects in structures from measurements of naturalfrequency method [J]. Journal of Stress Analysis,1979,14(2):49-57.
    [76]Stubbs N, Osegueda R. Global nondestructive damage evaluation in solid [J].International Journal ofAnalytical and Experimental Modal analysis,1990,5(2):67-79.
    [77]Hearn G, Testa R.B. Modal analysis for damage detection in structures[J]. Journal ofStructural Engineering,1991;117(11):3042-3063.
    [78]杜思义,殷学纲,陈淮.基于频率二阶摄动的结构损伤识别方法[J].应用力学学报,2006,23(4):613-617.
    [79]Wolf T, and Richardson M. Fault detection in structures from changes in their modalparameters[C]. Proceedings of7th International Modal Analysis Conference, Society forExperimental Mechanics, Bethel, Connecticut,1989,87-94.
    [80]Lieven N.A.J, Ewins D.J. Spatial correlation of mode shapes, the Coordinate ModalAssurance Criterion (COMAC)[C]. Proceedings of6th International Modal AnalysisConference, Society for Experimental Mechanics, Bethel, Connecticut,1988,690-695.
    [81]Charles R.F, David A.J. Comparative study of damage identification algorithms appliedto a bridge: I. Experiment[J]. Smart Materials of Structures,1998,7:704-719.
    [82]陈淮,何伟,王博,等.基于频率和振型摄动的结构损伤识别方法研究[J].工程力学,2010,27(12):244-249.
    [83]Chen C.J, Garba A.J. On-orbit damage assessment for large space structures[J]. AIAAJournal,1988,26(9):1118-1126.
    [84]史治宇,张令弥,吕令毅.基于模态应变能诊断结构破损的修正方法[J].东南大学学报(自然科学版),2000,30(3):84-87.
    [85]袁明,贺国京.基于模态应变能的结构损伤检测方法研究[J].铁道学报,2002,24(2):92-84.
    [86]陈晓强,朱宏平,王丹生,等.基于动能密度和完全弹簧模型的裂纹梁损伤识别[J].华中科技大学学报(城市科学版),2008,25(1):51-53.
    [87]曹茂森.基于动力指纹小波分析的结构损伤特征提取与辨识基本问题研究[D].南京,河海大学,2005.
    [88]Lew J.S.Using transfer function parameter changes for damage detection of structures[J].AIAAJournal,1995,33(11):2189-2193.
    [89]Zimmerman D.C, Simmermacher T, Kouk M. Structural damage detection usingfrequency response function[C]. Proceedings-SPIE. The International Society for OpticalEngineering,1995,179-184.
    [90]Maia N.M.M. Location of damage using curvature of the frequency responsefunctions[C]. Proceedings of15th IMAC, Florida,1997,942-946.
    [91]Schula, M.J, Naser A.S, Pai P.F, et al. Detecting structural damage using transmittancefunction[C]. Proceedings-SPIE. The International Society for Optical Engineering,1997,638-644.
    [92]王步宇.基于分形的结构损伤检测方法[J].振动与冲击,2005,24(2):87-88.
    [93]苏娟,陆秋海,管笛华.神经网络法在定量损伤识别研究中的应用[J].清华大学学报(自然科学版),1999,39(4):68-70.
    [94]万祖勇,朱宏平,余岭.基于改进PSO算法的结构损伤检测[J].工程力学,2006,23(增刊I):73-78.
    [95]吴森,韦灼彬,王绍忠,等.基于AR模型和主成分分析的损伤识别方法[J].振动、测试与诊断,2012,32(5):841-845.
    [96]李裕河,浦聿修.应用多元隶属函数评价结构构件的损伤程度[J].建筑结构,1991,11:14-17.
    [97]王利恒,周锡元,阎维明.用锤击试验反应最大值监测钢筋混凝土简支梁结构损伤程度的试验研究[J].振动与冲击,2006,25(1):90-94.
    [98]闵志华,孙智,孙利民.基于小波包指纹空间分析的结构损伤评估方法研究[J].振动与冲击,2008,27(11):1-5.
    [99]张效忠,姚文娟.基于敏感模态单元应变能法结构损伤识别[J].中南大学学报(自然科学版),2013,44(7):3014-3023.
    [100] Enrigh M.P, Frangopol D.M. Reliability-based condition assessment of deterioratingconcrete bridges considering load redistribution[J]. Structural safety,1999,21(2):159-195.
    [101]刘均利,方志.基于灰色关联度的在役双曲拱桥耐久性综合评估[J].湖南大学学报:自然科学版,2010,37(009):1-6.
    [102]刘沐宇,袁卫国.基于模糊神经网络的大跨度钢管混凝土拱桥安全性评价方法研究[J].中国公路学报,2004,17(4):55-58.
    [103] Mottershead J.E, Friswell M.I. Model updating in structural dynamics: a survey [J].Journal of Sound and Vibration,1993,167(2):347~375.
    [104] H W. Multivariate geo-statistics[M]. Heidelberg: Springer-Verlag,1995.
    [105] Sacks J, Schiller S.B, Welch W.J. Designs for computer experiments[J].Technometrics,1989,31(1):41-47.
    [106] Romero V.J, Swiler L.P, Giunta A.A. Construction of response surfaces based onprogressive-lattice-sampling experimental designs with application to uncertainty propagation[J]. Structural Safety,2004,26(2):201-219.
    [107]贾布裕.组合梁斜拉桥的可靠度分析[D].广州:华南理工大学,2011.
    [108]王小平,曹立明.遗传算法——理论、应用于软件实现[M].西安:西安交通大学出版社,2002.
    [109]傅荟璇,赵红. MATLAB神经网络应用设计[M].北京:机械工业出版社,2010.
    [110]叶锡钧.基于环境激励的大型土木结构模态参数识别研究[D].广州:华南理工大学,2012.
    [111] Thomas. G.C, Clark R.D.A Modal Test Design Strategy for Model Correlation [C].Proc13th International Modal Analysis Conference, New York:Union College, Schenectady,1995:927-933.
    [112] Link M, Friswell M.I. Working group1:Generation of validated structural dynamicmodels-results of a benchmark study utilizing the GARTEUR SM-AG19test-bed[J].Mechanical Systems and Signal Processing,2003,17(1):9-20.
    [113] Ewins D.J. Model validation: Correlation for model updating [J]. Sadhana,2000,25(3):221-234.
    [114]张德文,魏阜旋.模型修正与破损诊断[M].北京:科学出版社,1999.
    [115] Golub G.H., Reinsch C. Singular value decomposition and least squares solutions [J].Math,1997,14:403-420.
    [116]王蕴红,谭铁牛,朱勇.基于奇异值分解和数据融合的脸像鉴别[J].计算机学报,2000,23(6):649-653.
    [117]罗小桂,何雁.矩阵奇异值分解在计算机技术中的应用[J].计算机与现代化,2006,6:67-68.
    [118]张波,李健君.一种基于小波变换与奇异值分解对振动系统模态频率进行识别的新方法[J].振动与冲击,2006,25(6):88-91.
    [119] John Y, Liang W. An SVD-based fuzzy model reduction strategy[C]. IEEE,1996,835-841.
    [120] Luk F.T. Computing the singular value decomposition on the ILLIAC IV, ACMtrans[J]. Math. Software,1980,6:524-539.
    [121] Demmel J, Veselic K. Jacobi's method is more accurate than QR[D]. New YorkUniversity, NY,1989.
    [122]戴亚平,刘征,郁光辉译.多传感器数据融合理论及应用[M].北京:北京理工大学出版社,2004.
    [123]刘同明,夏祖勋,解洪成.数据融合技术及其应用[M].北京:国防工业出版社,1998.
    [124]严怀成,黄心汉,王敏.多传感器数据融合技术及其应用[J].传感器技术,2005,24(10):1-4.
    [125] Juang J.N, Pappa R.S. An eigensystem realization algorithm for modal parameteridentification and model reduction[J]. Journal of Guidance,1985,8(5):620-627.
    [126]张德文.结构动力分析中的逐级近似缩聚法[J].固体力学学报,1994,15(4):360-364.
    [127] Irons B. Structural eigenvalue problems: Elimination of unwanted variables[J]. AIAAJournal,1965,3(5):961-962.
    [128] Yan Y.J, Cheng L, Wu Z.Y, et al. Development in vibration-based structural damagedetection technique[J]. Mechanical Systems and Signal Processing,2007,21:2198-2211.
    [129]王福敏,杨世聪.应用病理解剖学基本原理揭示钢管混凝土拱桥主要病害本质[C].第十七届全国桥梁学术会议,重庆,2006.
    [130]徐芝纶.弹性力学简明教程[M].高等教育出版社,2004.
    [131]涂光亚.脱空对钢管混凝土拱桥受力性能影响研究[D].湖南大学,2007.11.
    [132]中华人民共和国行业标准.公路钢筋混凝土及预应力混凝土桥涵设计规范[S].(JTG D62-2004).人民交通出版社,2004.
    [133]钟善桐.钢管混凝土结构(第三版)[M].北京:清华大学出版社,2003.
    [134]杨世聪,王福敏,渠平.核心混凝土脱空对钢管混凝土构件力学性能的影响[J].重庆交通大学学报(自然科学版),2008,27(3):360-365.
    [135]陈肇元,崔京浩,朱金铨,等.钢筋混凝土裂缝机理与控制措施[J].工程力学,2010,23:86-107.
    [136]黄军生.钢筋混凝土桥梁裂缝成因综述[J].世界桥梁,2002,2:59-63.
    [137]赵英策.预应力混凝土箱梁的裂缝-刚度及承载力关系研究[D].长安大学,2007,6.
    [138]曹双寅.裂缝对结构耐久性损伤程度评估方法的探讨[J].工业建筑,1992,1:8-12.
    [139]屈文俊,车惠民.裂缝对混凝土桥梁耐久性影响的评估[J].铁道学报,1997,19(4):90-98.
    [140]鹿建阁.钢管混凝土拱桥的吊杆破损行为分析[D].天津大学,2005,6.
    [141]唐寰澄.斜拉索隐患剖析[J].桥梁,2005,1:80-82.
    [142]陈宜言,汤国栋,廖光明,等.拱式桥梁破损安全吊杆及其系统研究[J].四川大学学报(工程科学版),2008,40(1):44-50.
    [143]张涛.大跨径集束钢管混凝土拱桥病理分析与处治方法[D].重庆交通学院,2005.
    [144]陈孝珍.基于静态测量数据的桥梁结构损伤识别研究[D].华中科技大学,2005.
    [145]何伟,何容,李亚伟.中、下承式拱桥吊杆损伤对吊杆系力学性能影响[J].噪声与振动控制,2011,6:24-28.
    [146]胡波,王建国.钢管与混凝土粘结—滑移相互作用的数值模拟[J].中国公路学报,2009,22(4):84-91.
    [147]薛立红,蔡绍怀.钢管混凝土柱组合界面的粘结强度(上)[J].建筑科学,1996(3):22-28.
    [148]刘永健,池建军.钢管混凝土界面抗剪粘结强度的推出试验[J].工业建筑,2006,36(4):78-80.
    [149] Friswell M.I, Penny J.E.T. The practical limits of damage detection and locationusing vibration data [C].11th VPI&SU symposium on structural dynamics and control.Blacksburg, Virginia, USA, VPI&SU,1997:31-40.
    [150]陶恒亮.频率平方变化比和小波变化在压力管道损伤诊断中的应用研究[D].大连,大连理工大学,2001.
    [151] Pandey A.K, Biswas M. Damage detection in structures using changes inflexibility[J]. Sound Vibration,1994,169:3-17.
    [152]刘晖,瞿伟廉,袁润章.基于模态应变能耗散率理论的结构损伤识别方法[J].振动与冲击,2004,23(2):118-121.
    [153]严平,李胡生,葛继平,等.基于模态应变能和小波变换的结构损伤识别研究[J].振动与冲击,2012,31(1):121-126.
    [154]丁幼亮,李爱群.基于振动测试与小波分析的结构损伤预警[J].力学学报,2006,38(5):639-644.
    [155] Sun Z, Chang C.C. Structural damage assessment based on wavelet packettransform[J]. Journal of Structure Engineering,2002,128(10):1354-1361.
    [156] Sun Z, Chang C.C. Statistical wavelet-based method for structural healthmonitoring[J]. Journal of Structure Engineering,2004,130(7):1055-1062.
    [157]李爱群,丁幼亮.工程结构损伤预警理论及其应用[M].北京:科学出版社,2007.
    [158]张俊兵,朱宏平,閤东东,等.基于波谱单元法的结构动力响应分析[J].华中科技大学学报(自然科学版),2010,38(7):62-65.
    [159]孙增寿,范科举.基于提升小波熵指标的梁板组合桥损伤识别研究[J].振动与冲击,2012,31(11):114-117.
    [160] Hajela P, Soerio F.J. Recent developments in damage detection based on systemidentification methods[J]. Structural Optimization,1990,(2):1-10.
    [161] Banan M.R, Hjelmstad K.D. Parameter estimation of structures from static responseⅠ: Computational Aspects[J].Journal of Structural Engineering, ASCE,1994,120(11):3243-3258.
    [162] Banan M.R, Hjelmstad K.D. Parameter estimation of structures from static responseⅡ: Numerical Simulation Studies[J]. Journal of Structural Engineering, ASCE,1994,120(11):3259-3283.
    [163] Sanayei M, Imbaro G.R. Structural model updating using experimental staticmeasurements[J]. Journal of Structural Engineering,ASCE,1997,123(6):792-798.
    [164]王帮峰,陈仁文.基于应力波检测的输油管道泄漏定位监测系统[J].仪器仪表学报,2007,28(6):1012-1017.
    [165] Lamb H. On the propagation of tremors over the surface of an elastic solid[J].Philosophical Transactions of the Royal Society,1994, A203:1-42.
    [166] Beta M. Effect on buildings of vibrations caused by traffic[J]. Building Science,1985,99(1):1-12.
    [167] Degrande C. A special and finite element method for wave propagation in dry andsaturated poroclastic media[D]. Belgium, K. U. Leuven,1992.
    [168] Xia H. A study of vibration effects of underground trains upon surroundingenvironments. Advances in Structural Engineering[M]. Beijing Railway Publishing House,1995.
    [169]吴世明.土介质中的波[M].北京:科学出版社,1997.
    [170]潘南泉.冲击荷载作用下自由场地振动分析[D].北京交通大学,2010.
    [171] Olsen L.D, White C, Stokoe K.H. The Progress of nondestructive testing using stresswaves[J]. Civil Engineering, ASCE,1992,5.
    [172]卜楠楠.基于应力波与小波分析的低速滚动轴承故障诊断研究[D].沈阳工业大学,2005.
    [173]余艳华.机械冲击荷载对临近埋地管道的影响及控制研究[D].中国工程物理研究院,2012.
    [174]吴斌,韩强,李悦.结构中的应力波[M].北京:科学出版社,2001.
    [175]张金序,彭明祥.钢管混凝土柱混凝土质量应力波检测法[J].建筑技术,2002,33(4):284-285.
    [176]叶伟,凡友华,赵文光,等.钢管壁厚对应力波检测钢管混凝土桩长的影响[J].哈尔滨工业大学学报,2005,37:552-554.
    [177]张东方,王运生.冲击回波法在钢管混凝土拱桥检测中的研究[J].工程地球物理学报,2009,6(3):364-367.
    [178]王礼立.应力波基础[M].北京:国防工业出版社,第二版,2005.
    [179]王新敏.ANSYS工程结构数组分析[M].北京:人民交通出版社,2007.
    [180]刘晶波,杜修力.结构动力学[M].北京:机械工业出版社,2005.
    [181]百度百科.http://baike.baidu.com/view/83268.htm.
    [182]任宜春.小波分析在土木工程结构损伤识别中的应用[M].湖南:湖南师范大学出版社,2010.
    [183]孙国,李桂华,顾元宪.基于小波包分解的应力波无损检测分析方法[J].振动工程学报,2002,15(4):488-491.
    [184]范显峰,姜兴渭.基于小波包变换的信号去噪方法研究[J].哈尔滨工业大学学报,2003,35(7):809-811.
    [185]陈逢时.子波变换理论及其在信号处理中的应用[M].北京:国防工业出版社,1998.
    [186]丁幼亮,李爱群,嫪长青.基于小波包能量谱的结构损伤预警方法研究[J].工程力学,2006,23(8):42-48.
    [187]村井,伊藤,内海.ダイナテクデザインァナリツスの研究[J].小松技报,1979,25(2):73.
    [188]李德葆,诸葛鸿程,王波.实验应变模态分析原理和方法[J].清华大学学报(自然科学版),1990,30(2):105-112.
    [189]周先雁,沈蒲生.用应变模态对混凝土结构进行损伤识别的研究[J].湖南大学学报,1997,24(5):69-74.
    [190]赵才友,王平,全顺喜,等.基于应变模态变化率的钢轨损伤检测[J].振动、测试与振动,2012,32(5):723-729.
    [191]顾培英,陈厚群,李同春,等.基于损伤应变模态的结构损伤识别直接指标法[J].自然科学进展,2007,17(2):240-247.
    [192]朱宏平,余璟,张俊兵.结构损伤动力监测与健康监测研究现状与展望[J].工程力学.2011,28(2):1-11.
    [193] Povich C.R,Lim T.W. An artificial neural network approach to structural damagedetection using frequency response functions[C]. Proceedings of the1994AIAA/ASMEAdaptive Structures Forum,1994,151-159.
    [194]孙宗光,高赞明,倪一清.基于神经网络的桥梁损伤位置识别[J].工程力学,2004,1:42-47.
    [195]何浩祥,闫维明,彭凌云.基于支持向量机的钢筋混凝土桥梁损伤识别[J].公路交通科技,2008,25(3):65-69.
    [196] Mares C, Surace C. An application of genetic algorithms to identify damage in elasticstructures[J]. Journal of Sound and Vibration,1996,195(2):195-215.
    [197] Friswell M.I, Penny J.E.T, Garvey S.D. A combined genetic and eigensensitivityalgorithm for the location of damage in structures[J]. Computers&Structures,1998,69:547-556.
    [198]袁颖,林皋,周爱红,等.基于改进遗传算法的桥梁结构损伤识别应用研究[J].应用力学学报,2007,24(2):186-190
    [199]于繁华,刘寒冰.基于支持向量机和粒子群算法的结构损伤识别[J].吉林大学学报(工学版),2008,38(2):434-438.
    [200]朱军华,余岭.结构损伤响应时程主成分及其相关性分析[J].振动与冲击,2012,31(19):156-159.
    [201] Hou Z, Noori M, Amand R, et al. Wavelet-based approach for structural damagedetection [J]. Journal of Engineering Mechanics,2000,126(7):677-683.
    [202] Han J.G, Ren W.X, Sun Z.S. Wavelet packet based damage identification of beamstructures [J]. Solids and Structures,2005,42:6610-6627.
    [203]刘涛,李爱群,嫪长青,等.基于数据融合的结构损伤识别方法研究[J].工程力学,2008,25(1):16-21.
    [204]焦莉,张海,伊廷华,等.一种基于数据融合的结构损伤识别方法[J].沈阳建筑大学学报(自然科学版),2010,26(6):1101-1105.
    [205] Cortes C, Vapnik V. Support-Vector Networks[J]. Machine learning,1995,20,273-297.
    [206]陈永义,俞小鼎,高学浩,等.处理非线性分类和回归问题的一种新方法(I)—支持向量机方法简介[J].应用气象学报,2004,15(3):345-353.
    [207] Kennedy J, Eberhart R.C. Particle swarm optimization[C]. IEEE, InternationalConference of Neural Networks, Perth,Australia,1995.
    [208] Pearson K. On lines and planes of closest fit to systems of points in space[J].Philosophical Magazine,1901,2(6):559-572.
    [209]邓聚龙.灰色系统基本方法[M].武汉,华中理工大学出版社,1996.
    [210] Choung J, Nam J M, Tayyar T. Residual ultimate strength of a very large crudecarrier considering probabilistic damage extents[J]. International Journal of NavalArchitecture and Ocean Engineering,2014,6(1):14-26.
    [211] Belleri A, Moaveni B, Restrepo J I. Damage assessment through structuralidentification of a three‐story large‐scale precast concrete structure[J]. EarthquakeEngineering&Structural Dynamics,2014,43(1):61-76.
    [212] Farhidzadeh A, Dehghan-Niri E, Moustafa A, et al. Damage assessment of reinforcedconcrete structures using fractal analysis of residual crack patterns[J]. ExperimentalMechanics,2013,53(9):1607-1619.
    [213] Bandara R P, Chan T H T, Thambiratnam D P. Structural damage detection methodusing frequency response functions[J]. Structural Health Monitoring,2014:1-12.
    [214] Moustafa A, Mahmoud S. Damage assessment of adjacent buildings underearthquake loads[J]. Engineering Structures,2014,61:153-165.
    [215] Majumdar A, De A, Maity D, et al. Damage assessment of beams from changes innatural frequencies using ant colony optimization[J]. Structural Engineering and Mechanics,2013,45(3):391-410.
    [216]强士中,郑凯峰.铁路桥梁损伤评估分析[J].桥梁与专家系统论文集,西南交通大学,1989.
    [217] Park T H, Kim J M, Moon J S, et al. Structural Safety Assessment of FLNG CargoContainment Systems Against Sloshing Loads[C]//Offshore Technology Conference. OffshoreTechnology Conference,2013.
    [218] Rodrigues J F S, Casas J R, Almeida P A O. Fatigue-safety assessment of reinforcedconcrete (RC) bridges: application to the Brazilian highway network[J]. Structure andInfrastructure Engineering,2013,9(6):601-616.
    [219] Merkulov S I, Lesovik R V, Metrohin A A, et al. Development of Theory of SafetyStructural for Buildings and Construction[J]. World Applied Sciences Journal,2014,31(4):531-533.
    [220] Goller B, Pradlwarter H J, Schu ller G I. Reliability assessment in structuraldynamics[J]. Journal of Sound and Vibration,2013,332(10):2488-2499.
    [221]刘沐宇,袁卫国,任飞.大跨度钢管混凝土拱桥安全性模糊综合评价[J].武汉理工大学学报,2003,25(5):33-36.
    [222]张劲泉,徐岳,叶见曙,等.公路旧桥检算分析指南及工程实例[M].北京,人民交通出版社,2007.
    [223]张劲泉,李万恒,任红伟,等.公路旧桥承载力评定方法及工程实例[M].北京,人民交通出版社,2007.
    [224]李钊.基于动载试验的桥梁结构检测评估[J].交通科技,2009,2:7.
    [225]李全旺,李春前,孙健康.基于结构可靠性理论的既有桥梁承载能力评估[J].工程力学,2010,27(2):142-150.
    [226] Guo H, Wang W, Guo W, et al. Reliability analysis of pedestrian safety crossing inurban traffic environment[J]. Safety Science,2012,50(4):968-973.
    [227]韩大建,杨炳尧,颜全胜.用人工神经网络方法评估桥梁缺损状况[J].华南理工大学学报(自然科学版),2004,32(9):72-75.
    [228]中国交通部.(JTG-H11-2004)公路桥涵养护规范[S].北京:人民交通出版社,2004.
    [229]张玲玲,马建劭.服役结构可靠性的模糊综合评判法及其应用[J].土木工程学报,2001,34(5):20-23.
    [230] Zadeh L.A.. Fuzzy sets[J]. Information and Control,1965,8(3):338-353.
    [231] He H, Cong M, Lv Y. Earthquake Damage Assessment for RC Structures Based onFuzzy Sets[J]. Mathematical Problems in Engineering,2013,1-11.
    [232] Hakim S J S, Razak H A. Adaptive Neuron Fuzzy Inference System (ANFIS) andArtificial Neural Networks (ANNs) for structural damage identification[J]. StructuralEngineering and Mechanics,2013,45(6):779-802.
    [233]梁保松,曹殿立.模糊数学及其应用[M].北京:科学出版社,2007.
    [234]中国交通运输部.(JTG H21-2011)公路桥梁技术状况评定标准[S].北京:人民交通出版社,2011.
    [235]许树柏.实用决策方法——层次分析法原理[M].天津:天津大学出版社,1988.
    [236]中国交通运输部.(JTG/G J21-2011)公路桥梁承载能力检测评定规程[S].北京:人民交通出版社,2011.
    [237]刘奕.钢管混凝土拱桥检测加固及荷载试验研究[D].长沙:湖南大学,2008.
    [238] Salawn O.S. Assessment of bridges: use of dynamic testing[J]. Canadian Journal ofCivil Engineering,1997,24(2):218-228.
    [239]肖盛燮.桥梁承载力演变理论及其应用技术[M].北京:科学出版社,2009.
    [240]张明.结构可靠度分析——方法与程序[M].北京,科学出版社,2009.
    [241]中国建筑科学研究院.工程结构可靠性设计统一标准(GB50153-2008)[S].北京,中国建筑工业出版社,2009.
    [242] Li D, Chen Y, Lu W, et al. Stochastic response surface method for reliability analysisof rock slopes involving correlated non-normal variables[J]. Computers and Geotechnics,2011,38(1):58-68.
    [243] Zhang J, Du X. Time-dependent reliability analysis for function generatormechanisms[J]. Journal of Mechanical Design,2011,133(3):031005.
    [244] Jiang C, Li W X, Han X, et al. Structural reliability analysis based on randomdistributions with interval parameters[J]. Computers&Structures,2011,89(23):2292-2302.
    [245] Jiang C, Bi R G, Lu G Y, et al. Structural reliability analysis using non-probabilisticconvex model[J]. Computer Methods in Applied Mechanics and Engineering,2013,254:83-98.
    [246] Hasofer A.M, Lind N.C. Exact and invariant second-moment code format[J]. Journalof the Engineering Mechanics Division,ASCE,1974,100(1):111-121.
    [247] Rackwitz R, Flessler B. Structural reliability under combined random loadsequences[J]. Computers&Structures,1978,9(5):489-494.
    [248] Hohenbichler M, Rackwitz R. Non-normal dependent vectors in structural safety[J].Journal of the Engineering Mechanics Division,1981,107(6):1227-1238.
    [249] Paloheimo E, Hannus M. Structural design based on weighted fractiles[J]. Journal ofthe Structural Division,1974,100(7):1367-1378.
    [250]赵国藩.结构可靠度的实用分析方法[J].建筑结构学报,1984,5(3):1-10.
    [251]赵维涛,安伟光,严心池.二阶二次可靠性指标[J].哈尔滨工程大学学报,2004,25(2):240-242.
    [252]张建仁,刘扬,许福友,等.结构可靠度理论及其在桥梁工程中的应用[M].北京,人民交通出版社,2002.
    [253] Bennett R.M, Ang A.H.S. Investigation of methods for structural systemreliability[D]. University of Illinois at Urbana-Champaign, September,1983.
    [254] Ma H.F, Ang A.H.S. Reliability of redundant ductile structural system[D]. Universityof Illinois at Urbana-Champaign,August,1981.
    [255]余晓琳.自锚式悬索桥静力可靠度研究[D].广州:华南理工大学,2010.
    [256] Deng J, Gu D, Li X, et al. Structural reliability analysis for implicit performancefunctions using artificial neural network[J]. Structural Safety,2005,35(3):459-467.
    [257]李生勇.自锚式悬索桥结构可靠性研究[D].大连:大连理工大学,2007.
    [258]中铁工程设计咨询集团有限公司.(TB10002.3-2005)铁路桥涵钢筋混凝土和预应力混凝土结构设计规范[S].北京:中国铁道出版社,2005.
    [259]中国铁道第三勘察设计院.(TB10002D1-2005)铁路桥涵设计基本规范[S].北京:中国铁道出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700