用户名: 密码: 验证码:
严寒地区高速铁路路基冻胀和工程对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
穿越我国东北地区的哈大高速铁路于2007年7月28日开工建设,2012年12月1日开通运营,是世界上第一条在严寒地区新建和开通运营的高速铁路。为确保高速动车组安全平稳运行,采用有效合理措施,把路基冻胀控制在允许范围,是哈大高铁急需解决的关键技术难题。
     哈大高铁路基施工时采用各种措施方法系统处置了许多冻胀防治问题,但由于所处的特殊地理环境,目前路基冻胀变形还无法完全消除,在高速动车冲击荷载以及季节性冻融过程作用下,以冻胀变形为主要表现的路基变形成为影响线路稳定和行车安全的主要问题。因此,研究总结路基冻胀变形和工程对策,为完善路基防冻胀工程措施和线路养护维修提供基础依据及技术支持,同时也为同类工程设计和施工提供指导,具有现实价值。结合2012-2013年哈大高铁开通前后出现的路基冻胀现象及采取的整治措施,通过对路基冻胀变形人工观测数据、长期监测系统监测数据、典型试验断面监测数据和运营部门轨检车数据等的系统分析,研究了严寒地区无砟轨道结构下路基季节冻胀影响过程和冻胀特点及规律、路基冻胀的机理和主要影响因素。通过调研、室内试验、建立现场试验段、理论分析及计算,分析了影响路基冻胀的寒区工程环境、冻土环境特征及施工期已采取的防冻胀措施,研究了高速铁路路基填料冻胀特性、抑制路基季节冻胀的防冻胀措施与工程对策、效果评价。主要有以下创新结论:
     (1)严寒地区高速铁路路基季节冻胀具有普遍性和特殊性。无砟轨道路基结构的特性导致路基基床上部形成接近封闭的冻胀空间,这一封闭空间易造成水分聚集不利于水分散逸,具有离散性,在冻结过程中容易形成不均匀冻胀。
     (2)通过哈大高铁开通后首个冻融期(2012-2013年度)全线路基5000多个断面人工观测数据和42个断面自动监测数据综合分析,哈大高铁路基冻胀变形可分为冻胀初始波动、冻胀快速发展、冻胀稳定发展和波动融沉四个发展阶段,路基普遍发生冻胀但变形处于可控状态;路基冻胀变形以上层冻胀为主,路基的冻胀变形程度与路基结构有关,整体上全线过渡段冻胀轻微,路堤次之,路堑和底座板接缝处较为严重,最大冻胀量沿线路方向波动变化。
     (3)路基季节冻结深度沿线路方向自南至北呈增大趋势,现场观测最大冻深为标准冻深的1.2-1.6倍,平均为1.43倍,设计冻深应根据具体工点情况综合确定。路肩电缆槽的设置增加了地表水渗透至路基本体的通道,改变了路基本体的热对流条件,因此电缆槽不宜设置在无砟轨道路肩上。
     (4)通过室内试验研究、现场调查和观测数据分析表明,含水量是影响路基填料冻胀率的主导因素,掺水泥5%以上级配碎石硬化后基本消除了细粒土冻胀敏感性。在严寒地区高铁设计和路基冻胀整治中,将路基表层改性为不冻胀整体结构的思路可行,并提出两种新型路基防冻胀结构。
     (5)基于路基季节冻胀的普遍性采用了在季节冻深范围设置非冻胀土防冻层、路基表面设置纤维混凝土封闭层、路基基床底部设置两布一膜隔水隔断层、填筑防冻胀护道等防冻胀措施,经对监测数据的系统分析表明,全线冻胀量小于12mm的测点比例为96.9%,已采取的防冻胀措施对季节冻胀变形起到消除、减缓的作用。
     (6)针对路基季节冻胀的特殊性,以控制基床表层冻胀变形为整治工作的主要思路,提出改善基床填料性质、阻隔路基表面水分下渗、降低地下水位、局部保温改变冻胀发生条件是解决运营期路基季节冻胀的主要工程对策,观测数据表明,基床表层采用级配碎石掺水泥地段冻胀量基本都在4mm以下,设置渗沟地段不均匀冻胀降低21.1%,所采取的措施防治季节冻胀初步效果明显。
     (7)对主要防冻胀措施进行的数值计算模拟结果说明,动载作用下经防冻胀措施处理的加固路基在冻胀情况下,冻胀土体的弹性模量得到显著提升;融化季节水分不能瞬时排出,路基上部土体弹性模量降低有可能导致路基沉降变形变大,应引起关注。通过综合分析,提出了严寒地区高速铁路的路基状态评估的基本思路和方法。
     本文研究结果已经在哈大高铁路基设计施工、冻胀整治工程和线路运营维护中得到应用。目前夏季开行300km/h的高速动车组和冬季开行200km/h的动车组列车且安全平稳运行,证明所采取的季节冻胀防治工程对策对于解决严寒地区高速铁路路基冻胀问题是有效的和可靠的,并且能保证行车速度和行车安全。
The Harbin-Dalian High-speed Railway(HDHR), acrossing the Northeast China, started construction in July28th,2007, and opened for operation in December1st,2012. It is the first new-built and operating high-speed railway in cold regions around the world. In order to ensure safety and smooth running of high speed multiple units, it is the key and urgent technical problems that the stringent using reasonable measures to effectively limit subgrade frost heave within allowable range.
     Although there have solved the problem of subgrade frost prevention by various methods in HDHR, but because of the special geographical environment, the deformations of subgrade frost heave are not completely eliminated. Under the action of impact load at high speed and seasonal freeze-thaw process, the frost heave deformation as the main performance of subgrade deformation become the major problems that affect line stability and driving safety. Therefore, through researching on subgrade frost heave deformation and engineering countermeasures, there would provide the basis and technical support in HDHR to ensure the safe and reliable operation, to improve engineering measures of subgrade frost heave, and to maintenance and repair track, as well as provide guidance for similar engineering design and construction. The dissertation, combining with phenomenon of subgrade frost heave and improvement measures before and after the HDHR opening in2012-2013year, by employing the methods of investigation and analysis, laboratory test, set field-test section, theoretical analysis and calculation, will make an analysis of the surrounding engineering and permafrost environment character in cold regions,anti-freezing measures having been taken during construction period which affect subgrade frost heav of HDHR, research on the process, characteristics and laws of seasonal frost heave on unballasted track subgrade through analysising data of subgrade frost heave deformation include artificial observation, long-term monitoring system, typical test section and track inspection railcar of operations department, etc. explore the mechanism and main factors of subgrade frost heave of high-speed railway,experiment the frost heaving characteristics of subgrade filling of high-speed railway in cold regions,and examine the suppressing anti-freezing measures and engineering countermeasures of seasonal frost heave of subgrade and make an evaluation about engineering effect. The main innovative result are listed as follows:
     (1) The seasonal frost heave of high-speed railway subgrade in cold regions has the particularity and widespread. The specially subgrade structure with ballastless track result in the upper of subgrade bed to form nearly closed frost heaving space. The enclosed space is easy to result in moisture gathering over water loss and it is easy to form the uneven frost in the freezing process.
     (2)The data during the first freeze-thaw period (2012-2013years) from5000artificial and42long-term automatic monitoring sections along the whole line were analyzed after the railway line was opened. The results show that the development of the frost heave includes the frost heaving occurring volatility, the rapid growing stage, the stable frost heaving stage and the thawing settlement stage. Althrough frost heaving deformation occurred along the whole line, the frost heaving values are under controlling. The frost heaving deformation main exists in upper of subgrade bed and deformation level related to the subgrade structures. As a whole, the frost heave in the transition section is slight and the embankments part is middle level and it is most serious in the cutting sections and base-plate jointing parts. The maximum amount of frost heave is fluctuated along the line.
     (3) The seasonally frozen depth of subgrade is increased along the direction of the line from the southern to the northern.The maximum frozen depth of field observation is1.2~1.6times of the statistics frozen depth of meteorological department and it is1.43times of average value, so we should be determined comprehensively the maximum frozen depth according to the specific worksite situation in the design. The shoulder cable groove increases channels of the ground surface water infiltration to the road basic body and result in changes the heat convection of subgrade body road so it is not necessary that track cable groove is arranged on the shoulder of ballastless track line.
     (4) Throught the indoor experimental research, field investigation and observation data analysis, it shows that water content is the dominant factor influencing subgrade frost heaving ratio. After graded crushed stone mixing cement by more than5%, hardening of the rubble basically eliminated the fine grained soil frost heave sensitivity.In cold regions, it is feasible to change the subgrade surface into without frost heave monolithic structure both design and subgrade frost heave control of high-speed railway.There are given two new anti-heaving subgrade structure.
     (5) Because of the universality of seasonal frost heave, non frost heaving soil layer in the seasonal frozen depth and arranging the fiber concrete sealing layer on the subgrade surface and setting two cloth a membrane isolate faults and water filling frost heaving protects measures are all set up. In addition, the system of monitoring data analysis shows that the measuring point of the frost heave less than12mm in the whole line accounted for96.9%, there had effect on eliminating and reducing the deformation of seasonal frost heave.
     (6) Because of the particularity of seasonal frost heave, the main way is to control the frost heaving deformation of subgrade surface layer for the rectification work. It put forward main countermeasures to solve the operating period of the seasonal frost heave of subgrade and that is to improve bed filler properties, to cut off the subgrade surface moisture infiltration, to reduce the underground water level, to change frost heave condition with partial insulation way. Observation data indicates that the frost heave of the bedding surface layer was mixed graded crushed stone with cement are essential below4mm, the uneven frost heave of setted sewer sections reduce21.1%, measures to prevent and treat seasonal frost heave obtained obvious effect.
     (7) Numerical analysis of main engineering countermeasures simulation conclude illustrates that under dynamic loads the modulus of elastic of frost heave is significantly improved in reinforcing subgrade section at frost heaving condition. In melt season because the water was not instantaneous discharged, modulus of elasticity of the subgrade upper part is reduced and it may lead to larger settlement deformation of subgrade, therefore we should pay more attention on it. By means of comprehensive analysis, the basic thought and method of assessment about subgrade status are put forward on high speed railway in cold regions.
     The research results of the project have been applied in design and construction of HDHR subgrade as well as renovation and maintenance of frost heaving. At present, high-speed multiple units are smooth running respectively in300km/h in summer condition and200km/h in winter condition. It proved effective and reliable of prevention measures for solving the issue of high-speed railway subgrade frost heave in cold regions and it can ensure mormal running of multiple units both regular speed and safety.
引文
[1]高速铁路设计规范(试行)[S].北京:中国铁道出版社,2009.
    [2]张鲁新,熊治文,韩龙武.青藏铁路冻土环境与冻土工程[M].北京:人民交通出版社,2011.
    [3]Cheng Guo dong. Glaciology and Geocryology of China during the past 40 years progress andprospects[J]. Journal of Glaciology and Geocryology.1999,21(4):289-309.
    [4]Ma Wei, Cheng Guo dong, Zhu Yuan lin, etal. The State Key Laboratory of Frozen Sail Engineering review and prospect[J]. Journal of Glaciology and Geocryology,1999 21(4):317-325.
    [5]周幼吾,郭东信,邱国庆等.中国冻土[M].北京:科学出版社,2000。
    [6]Harris S A.The permafrost environment[M]. London&Sydney:Croom Helm,1986.
    [7]崔建恒,许东洲,程鸿哲.青藏公路多年冻土路基整治探讨[J].冰川冻土,1993,15(2):357-362.
    [8]吴紫汪.多年冻土的工程分类[J].冰川冻土,1979(2):52-60.
    [9]吴紫汪.冻土工程分类[J].冰川冻土,1982,4(4):43-48
    [10]Johnson G.H., Performance of an insulated roadway on permafrost[M]. Proceeding of the 4th International Conference on Permafrost.1983, Fairbanks, USA.
    [11]Instanes A., Mechaniccal and Thermal Stabilization of Fill Materials for Road Subgrade engineering on Discontinuous Permafrost in Northwest Russia [M], Proceedings of Seventth International Conference on Permafrost,1998.
    [12]吴紫汪,张家懿,王雅卿等.土的冻胀性实验研究[M].中国科学院兰州冰川冻土研究所集刊,北京:科学出版社,1981.
    [13]童长江,王雅卿,刘景寿.涂料法防冻胀的效果[C].青藏冻土研究论文集.北京:科学出版社,1983.
    [14]童长江,多年冻土地区土的冻胀分类[C].青藏冻土研究论文集.北京:科学出版社,1983.
    [15]童长江,管枫年.土的冻胀与建筑物冻害防治[M].北京:水利电力出版社,1985.
    [16]中铁西北科学研究院研究报告.青藏铁路路基冻胀变形特点及防治措施研究[R].兰州,2006.
    [17]徐学祖、王家澄、张立新等.土体冻胀和盐胀机理[M].北京:科学出版社,1995.
    [18]王正秋.粒度成分对细砂冻胀性的影响[J].冰川冻土,1980,2(3):24-28.
    [19]王正秋.细砂土冻胀性分类[C].第二届全国冻土学术会议论文选集.兰州:甘肃人民出版社,1983.
    [20]陈肖柏.祁连山江仓地区冻胀、冻胀力观测研究[J].冰川冻土,1980,2(2):36-40.
    [21]陈肖柏,刘建坤,刘鸿绪等.土的冻结作用与地基[M].北京:科学出版社,2006.
    [22]Zabolotnik.S.I. Conditions of Permafrost formation in the zone of the Baikal-Amur Railway, Permafrost.4th Int. Conf.1983, Fairbanks:National Academy Press. Washington, D.D.1451-1456.
    [23]吴青柏,程国栋,马巍.青藏铁路路基工程可靠性分析思路浅析[J].科技导报-交通,2005,23(4):29-31.
    [24]吴青柏,童长江.冻土变化和青藏公路的稳定性问题[J].冰川冻土,1995,17(4):350-355.
    [25]章金钊,李祝龙,武敬民.冻土路基稳定性主要影响因素探讨[J].公路,2002,2:17-20.
    [26]武敬民,汪双杰,章金钊.多年冻土地区公路工程[M].北京:人民交通出版社,2005.
    [27]朱林楠,吴紫汪,刘永智.多年冻土退化对214国道路基稳定性的影响[J].公路,1995(4):4-7.
    [28]李东庆.青海省214国道(青康公路)多年冻土退化与路基稳定性分析研究[D].中国科学院兰州冰川冻土研究所博士学位论文,1999.
    [29]王绍令,赵林,李述训等.青藏公路多年冻土段沥青路面热量平衡及路基稳定性研究[J].冰川冻土,2001,23(2):111-118.
    [30]中铁西北科学研究院.青藏铁路清水河、沱沱河试验段路基变形分析报告[R].兰州:2003.
    [31]蒋富强,杨永鹏、杨印海等,高原多年冻土区路基沉降及开裂的理论分析与计算探讨[J].铁道工程学报(增刊).2003,5-8.
    [32]王小军,韩文峰,蒋富强等.青藏铁路片石通风试验路基沉降与普通路基裂缝解剖分析[J].岩石力学与工程学报,2006,25(9)1904-1911.
    [33]王引生,李永强.青藏铁路热棒试验路基裂缝形成原因分析[J].甘肃科学学报,2003,15(4):79-82.
    [34]苏艺、许兆义、王连俊.青藏铁路不同路基工程结构对路基裂缝的影响研究[J].工程地质学报,2004,12(3):292-297.
    [35]满高峰,刘建坤.多年冻土地区路基纵向裂缝形成机理的数值分析[J].铁道建逐,2007(5):51-54.
    [36]Gangqiang Shi, Yuzhi Zhang, Shiyun Zhao, et al. Analysis of high-speed railway roadbed settlement in seasonally frozen regions[J]. Applied Mechanics and Materials.2012. 204-208:1740-1743.
    [37]张喜发,辛德刚,张冬青等.季节冻土区高速公路路基土中的水分迁移变化[J].冰川冻土,2004,26(4):454-460.
    [38]李东庆,常法,张坤等.青藏公路黑马河试验段碎石垫层路基工程效果初步分析[J].冰川冻土,2011,33(5):1082-1087.
    [39]屈振学,季节性冻土区铁路客运专线路基的冻胀特性分析与措施[J].铁道标准设计,2009,12:3-11.
    [40]江涛.季节性冻土路基的冻胀机理及其防治措施[J].土工基础.2013,2:93-96.
    [41]祁辉,胡相钰,李廷刚,程爱君.高速铁路路基防冻胀结构设计方法的研究[J].铁道建筑,2013,4:93-100.
    [42]王仲锦,叶阳升,闫宏业,张千里,程爱君.寒区铁路路基防冻胀设计中冻深计算方法的探讨[J].铁道建筑,2013,2:57-59.
    [43]石刚强,张先军.严寒地区客运专线路基冻胀影响因素及防治技术[J].铁道建筑,2011,6:93-95.
    [44]赵世运,张先军,石刚强.严寒地区高速铁路关键施工技术综述[J].铁道标准设计,2012,5:1-10.
    [45]石刚强,王殉.哈大铁路客运专线路基填料冻胀性试验研究[J].铁道建筑,2011,10:61-63.
    [46]叶阳升,王仲锦,程爱君,罗梅云.路基的填料冻胀分类及防冻层设置[J].中国铁道科学,2007,1:1-7.
    [47]刘华,牛富俊,牛永红等.季节性冻土区高速铁路路基填料及防冻层设置研究[J].岩石力学与工程学报,2011,12:2549-2557.
    [48]许健,牛富俊,李爱敏,林战举.季节冻土区保温法抑制铁路路基冻胀效果研究[J].铁道学报,2010,6:124-131.
    [49]许健,牛富俊,牛永红,刘华.换填法抑制季节冻土区铁路路基冻胀效果分析[J].中国铁道科学,2011,5:1-7.
    [50]许健,牛富俊,牛永红等.季节冻土区防冻胀护道对保温路基地温特征影响效果研究[J].铁道学报,2011,3:84-90.
    [51]张西泽.哈齐铁路客运专线路基地段无砟轨道线间排水方案研究[J].铁道标准设计,2013,1:31-35.
    [52]张先军,哈大高速铁路路基冻胀规律及影响因素分析[J].铁道标准设计,2013,7:3-12.
    [53]杨雍.严寒地区客运专线路基冻胀原因及处治措施[J].路基工程,2013,1:183-192.
    [54]卢祖文.高速铁路基础设施的重大技术问题[J].中国铁路,2004,8:11-13.
    [55]常杰峰.秦沉客运专线路基主要技术标准与设计[J].路基工程,2002,5:6-12.
    [56]孙红林,李丹,京沪高速铁路路基工程主要技术标准研究[J].铁道建筑,2009,(7):5-10.
    [57]陈善雄,王小刚,姜领发,戴张俊.铁路客运专线路基面沉降特征与工程意义[J].岩土力学,2010,3:702-706.
    [58]菅磊.高速铁路路基的变形与控制[J].铁道勘测与设计,2003,4:20-22.
    [59]赵晓彦,张书琴,熊自英.高速铁路路基工程几个问题的分析[J].路基工程,2007,6:19-20.
    [60]周全能,姜领发.客运专线路基沉降特征及其影响因素分析[J].铁道标准设计,2010,2:15-19.
    [61]尤昌龙,李殿龙.铁路客运专线路基沉降特性及其对策[J].铁道科学与工程学报,2005,5:9-12.
    [62]尤昌龙,刘彬,孙红林.客运专线路基沉降问题探讨[J].铁道标准设计,2006,7:3-10.
    [63]尹银轩,崔俊杰,李国和.路基工后沉降控制技术在秦沈客运专线的应用[J].铁道工程学报,2007,2:32-35.
    [64]张远荣.京沪高速铁路软土路基允许工后沉降的研究[J].铁道建筑,2000,9:24-26.
    [65]李丹.京沪高速铁路路基工程沉降控制设计技术[J].路基工程,2010,3:195-197.
    [66]郭建湖,詹学启,李小和.武广铁路客运专线无砟轨道路基变形控制设计关键技术[J].铁道标准设计,2010,1:46-48.
    [67]王基全.哈大铁路客运专线桥梁、路基沉降变形曲线收敛规律研究[J].铁道标准设计,2012,5:5-9.
    [68]张扬.杭甬客运专线深厚软土工程实践及沉降控制[J].中国铁路,2012,11:22-26.
    [69]杜彦良,姬来,刘新福.高速铁路路基施工期沉降量的灰色预测模型及应用[J].铁道科学与工程学报,2009,1:36-40.
    [70]董亮,蔡德钧,叶阳升等.列车循环荷载作用下高速铁路路基累积变形预测方法[J]土木工程学报,2010,6:100-108.
    [71]赵洪勇,刘建坤.高速铁路路基沉降监测方法的认识与评价[J].路基工程,2001, 6:15-17.
    [72]王炳龙,杨龙才,周顺华,孙宏林.CFG桩控制深厚层软土地基沉降的试验研究[J].铁道学报,2006,6:112-116.
    [73]李献民,王永和,杨果林等.高速下过渡段路基动响应特性研究[J].岩土工程学报,2004,1:100-104.
    [74]边学成,曾二贤,陈云敏.列车交通荷载作用下软土路基的长期沉降[J].岩土力学,2008,(11):2990-299.
    [75]Kontratjev, V. G, New methods of strengthening roadbed bases on very icy permafrost soils. In:Proceedings of international symposium on cold regions engineering,1996, Harbin, China,7-10.
    [76]Reckard M., White paint for highway thaw settlement control, Federal Highway Administration Report No. FHWA-AK-RD-85-16.1985.
    [77]Zarling J. P. and W. A. Braley, Thaw stabilization of roadway embankments constructed over permafrost, Federal Highway Administration Report No. FHWA-AK-RD-87-20,1986.
    [78]Gandahl R., Some aspects of the design of roads with boards of plastic foam. Proceeding of the 3rd International Conference on Permafrost.1978, Edmonton, Canada.792-797.
    [79]Olson M.E. Synthetic insulation in arctic roadway embankments. Proceedings of the 3rd International Cold Regions Engineering Specialty Conference.1984, Canidian Society of Civil Engineering.739-752.
    [80]Cheng. K. T., Tung. P. L, Lo. H. B. Experimental research on an area with massive ground ice at the lower limit of alpine permafrost. In:Proceeding of the Third Int. Conf. On Permafrost.1978, National Research Council of Canada.199-222.
    [81]He Guisheng, Ding Jingkang, Li Yongqiang,2000. Heat transmission properties and application of the dump filling crushed stone layer. Journal of glaciology and geocryology, 22 (Suppl).34-37.
    [82]Jahns. W.O., Miller, T.W., Power, L.D. et al. Permafrost protection for pipeline. Proceeding of Ind. International Conf. On Permafrost.1973, Yakutsk.. U.S.S.R.673-684.
    [83]Wayne Tobiasson. Permafrost of the Thule hangar soil cooling systems. Proceedings of Ind. International. Conf. On permafrost.1973, Yakutsk, U.S.S.R.752-758.
    [84]Heuer, C.E., E.L. Long, and J.P. Zarling. Passive techniques for ground temperature control. Thermal Considerations in Frozen Ground Engineering, Monograph Series by ASCE Technical Council on Cold Regions Engineering,1985, New York,72-154.
    [85]Anna Forsstrom, Erwin L.Long, John P.Zarling,Sven Knutsson. Thermosyphon cooling of Chena Hot Springs Road. Cold Regions Engineering.2003.
    [86]Yarmak Jr., Edward;Long,Erwin L.Recent developments in thermosyphon technology.Cold Regions Engineering Cold Regions impacts on Transportation and Infrastructure: Proceedings of the Eleventy International Conference,May,2002.
    [87]Shiraish M, et al. Investigation of heat transfer characteristics of a two phase closed thermosyphon[A].In:Reag D A.Advance in Heat Pipe Technology. London:Pergamon Press,1982.
    [88]л.H.斯洛耶夫,配备有冷却装置的柱式桥墩地基土的温度状况计算,童伯良等译自:
    [89](?).(?).瓦西里耶夫,(?).Π.格拉科维奇,B.Π.科瓦利科夫,用倾斜热棒冻结土的效果,童伯良译自俄地基基础与力学,1983,20-21。
    [90]Hayley D.W., Roggensack W.D., Jubien W.E., et al. Stabilization of sinkholes on the Hudson Bay Railway. Proceedings of the 4th international conference on permafrost. National academy press,1983,468-473.
    [91]Allen, T.M., Bathurst, R.J., "Characterization of Geosyn-thetic Load-Strain Behavior after Installation Damage", Geosynthetics International,1994,1(2):181-199.
    [92]Shrestha, S.C., Bell. J.R., Creep behavior of geotextiles under sustained loads. In: Proceedings of the Second International Conference on Geotextiles, Las Vegas, USA,1982. vol. Ⅲ,769-774.
    [93]Konami. T, Design and Practice of Web Reinforced Soil Wall. Recent Case Histories 7 of Permanent Geosynthetic. reinforced Soil retainingWalls. TatsuoKa & LeshchinsKy feds).1994. BalKema. Rotterdam.,243-246.
    [94]Wong, KSandBmms, BB., Failure Model at Model Text of a Geotextile Reinforcemend Wall, Geotextile and Geomem. brances,1994,13:475-493.
    [95]Christopher.B R. et al, Design, Construction and Monitoring of Full ScaleTestof Reinforced Soil Walls. Recent Case Histories of Permanent Geosynthetic-reinforced Soil Retaining Walls TatsuoKa & LeshehinsKy (eds).1994. BalKenm Rotterdam,253-257.
    [96]张鲁新.青藏铁路高原冻土区地温变化规律及其对路基稳定性影响[J].中国铁道科学,2000,21(1):37-47.
    [97]张鲁新,原思成,杨永平.青藏铁路多年冻土区路基变形裂缝发生机理及其防治[J].第四纪研究.2003,23(6):604-610.
    [98]张鲁新.冻土路基工程状态咨询报告[R].青藏铁路建设总指挥部专家组,内部资料,2003.
    [99]张鲁新.冻土区路基变形和路基地温场综合分析[R].青藏铁路建设总指挥部专家组,内部资料,2005.
    [100]张鲁新.青藏铁路冻土路基工程沉降变形和工程裂缝分析[R].青藏铁路建设总指挥部专家组,内部资料,2005.
    [101]张鲁新.青藏铁路冻土工程评价[R].青藏铁路建设总指挥部专家组,内部资料,2005.
    [102]张鲁新.不冻泉-斜水河地段冻土路基病害原因和整治措施[R].青藏铁路建设总指挥部专家组,内部资料,2005.
    [103]赵世运.青藏铁路冻土区工程设计和施工技术理论的研究和实践[D].中国科学院寒区旱区环境与工程研究所博士学位论文,2007
    [104]拉有玉,张鲁新.青藏铁路建设冻土工程问题的深入研究和实践[J].冰川冻土,2005,27(1):46-49.
    [105]冉理.青藏铁路多年冻土工程的探索与实践[J].铁道工程学报,2007,100(1):32-40,59.
    [106]钱征宇.青藏铁路多年冻土区主要工程问题及其对策[J].中国铁路,2002(8):23-27.
    [107]马巍,刘端.吴青柏,青藏铁路冻土路基变形监测与分析[J].岩土力学,2008,(29)3,571-578.
    [108]吴志坚.青藏铁路冻土区路基稳定性研究[D].中国科学院寒区旱区环境与工程研究所博士学位论文,2005.
    [109]潘卫东.青藏高原多年冻土区铁路路基热稳定性研究[D].兰州大学资源环境学院博士学位论文,2002.
    [110]张明义,赖远明,刘志强等.气候变暖条件下青藏铁路新型路基结构温度场特征特性非线性分析[J].土木工程学报,2006,39(2):93-97.
    [112]许兰民,原思成,沈宇鹏,魏庆朝.青藏铁路典型地段变形特征分析[J].北京交通大学学报,2008,32(4):43-52.
    [113]Liu Jiankun, Wu Ziwang, Ma Wei.Prediction of temperature regime of roadbed on permafrost considering water filtration[J].Ground Freezing and Frost Action in Soil.1997, Lulea, Sweden.121-125.
    [114]令锋.青藏铁路格尔木-拉萨段冻土路基热状况变化趋势的数值分析[R].中国铁道科学研究院博士后研究工作报告.2002.
    [115]Zhang Jinzhao, Study on the application of industrial insulation material to permafrost regions[C].Proceeding of the 1st National Young People Conference on Cold Regions Environment and Engineering. Lanzhou:Lanzhou University Press, 1994.
    [116]Liu Yongfeng, Ding Jingkang, He Guisheng, et al. application of expandable polystyrene insulation layer to roadbed engineering over permafrost regions[J].Proceedings of the 4th international symposium on permafrost engineering, 2000,26-32.
    [117]Li Yongqiang.Stability of cut slope covered with heat-insulating material in thick ice section of permafrost region in Qinghai-Tibet plateau[J]. Proceedings of the 4th international symposium on permafrost engineering,2000,6-11.
    [118]黄小铭.青藏高原多年冻土区铁路路基临界高度的确定[C].第二届全国冻土学术会议论文选集.兰州:甘肃出版社,1983.
    [119]朱林楠,多年冻土路基的临界高度[C].中国地理学会冰川冻土学术会议论文选集(冻土学,北京:科学出版社,1982.
    [120]吴紫汪,刘永智,石勤生等.青藏公路多年冻土区铺设沥青路面路基高度的确定[C].第二届全国冻土学术会议论文选集.兰州:甘肃人民出版社,1983.
    [121]袁筱林,冻土路基临界高度二维数值计算[M].冻土路基工程,兰州:兰州大学出版社,1988.
    [122]程国栋.用冷却路基的方法修建青藏铁路[J].中国铁道科学[J].2003,24(3):1-4.
    [123]程国栋,孙志忠,牛富俊.冷却路基方法在青藏铁路上的应用[J].冰川冻土,2006,28(6):797-808.
    [124]马巍,程国栋,吴青柏.多年冻土地区主动冷却地基方法研究[J].冰川冻土,2002,24(5):579-587.
    [125]吴志坚,马巍,盛煜等.通风管、抛碎石和保温材料保护冻土路堤的工程效果分析[J].岩土力学,2005,26(8):1 288-1 293.
    [126]赖远明,张鲁新,张淑娟等.气候变暖条件下青藏铁路抛石路基的降温效果[J].科学通报,2003,48(3):292-297.
    [127]赖远明,张鲁新,徐伟泽,等.青藏铁路抛石路基的温度特性研究[J].冰川冻土,2003,25(3):291-295.
    [128]赖远明,张鲁新,张淑娟,等.利用抛石护坡调节冻土路基阴阳坡的温度分布[J].岩石力学与工程学报,2004,23(24):4 212-4 220.
    [129]马巍,吴青柏,程国栋.青藏铁路块石气冷结构路堤下冻土温度场变化分析[J].冰川冻土,2006,28(4):586-595.
    [130]吴青柏,赵世运,马巍等.青藏铁路块石路基结构的冷却效果监测分析[J].岩土工程学报,2005,27(12):1386-1390.
    [131]吴青柏,董献付,蒋观利.开放和封闭条件下块石结构路基下部土体降温效果差异[J].岩石力学与工程学报,2006,25(12):2565-2571.
    [132]冯文杰,马巍,张鲁新,等.碎块石护坡在寒区道路工程中的应用[J].冰川冻土,2003,25(6):632-637.
    [133]何平.程国栋,马巍等.块石通风性能实验研究[J].岩土工程学报,2006,28(6):789-792.
    [134]王爱国,马巍,王大雁.不同厚度块石路堤对冻土路基冷却效果对比研究[J].岩石力学与工程学报,2006,25(z1):3283-3288
    [135]王小军,韩文峰,蒋富强等.青藏铁路片石通风试验路基沉降与普通路基裂缝解剖分析[J].岩石力学与工程学报,2006,25(9):1904-1911.
    [136]李宁,魏庆朝,魏静.青藏铁路片石气冷路基工程试验研究[J].冰川冻土,2005,27(5):686-693.
    [137]喻文兵,赖远明,张学富等.多年冻土区抛石护坡路基室内试验研究[J].岩土工程学报,2005,27(10):1 233-1 236.
    [138]孙志忠,马巍,李东庆.多年冻土区块、碎石护坡冷却作用的对比研究[J].冰川冻土,2004,26(4):435-439.
    [139]孙意,碎石护坡厚度对冻土地区路基稳定性的影响[J].四川建筑,2004,24(6):62-63.
    [140]中铁西北科学研究院.路基新结构—片石气冷路基试验研究[R].青藏铁路试验工程科研项目研究成果报告,2006.
    [141]中铁西北科学研究院.路基新结构—片石保温护坡路基试验研究[R].青藏铁路试验工程科研项目研究成果报告,2006.
    [142]丁靖康.冻土地区热桩技术的应用[M].兰州:中铁西北科学研究院,1990.
    [143]潘卫东,连逢愈.寒区工程中热棒技术的应用原理和前景[J].岩石力学与工程学报,2003.22(增2):2673-2676.
    [144]潘卫东,赵肃菖,徐伟泽等.热棒技术加强高原冻土区路基热稳定性的应用研究[J].冰川冻土,2003,25(4):433-438.
    [145]李永强,吴志坚,王引生,孙军杰.青藏铁路冻土路基热棒应用效果试验研究[J].中国铁道科学,2008,29(6):6-11.
    [146]李永强,韩龙武,崔珑等.热棒在青藏高原风火山地区的实测效果分析[J].岩石力学与工程学报,2003,22(z2):2669-2672.
    [147]李永强.青藏铁路多年冻土区热棒路基裂缝产生原因分析[J].兰州大学学报(自然科学版).2006,42(专辑):100-103、107,
    [148]徐兵魁,熊治文.青藏高原多年冻土区热棒路基设计计算[J].中国铁道科学,2007,27(5):17-22.
    [149]段东明,杨永平,魏庆朝,张鲁新.利用热管-保温材料复合结构提高冻土区路基稳定性研究[J].北京交通大学学报,2008,32(1):51-55.
    [150]杨永平,魏庆朝,周顺华等.热管技术及其在多年冻土工程中的应用研究[J].岩土工程学报,2005,27(6):693-706.
    [151]杨永平.热管技术及其在青藏铁路多年冻土路基稳定性中的应用研究[D].北京:北京交通大学土木建筑工程学院博士学位论文,2004.
    [152]杨永平,魏庆朝,张鲁新等.青藏铁路多年冻土区热管路基三维数值分析[J].中国铁道科学,2005,26(2):20-24.
    [153]汪双杰,黄晓明,陈建兵等.无动力热棒冷却冻土路基研究[J].公路交通科技,2005,22(3):1-4、20.
    [154]潘阳,吴存真.饱和水土体冻结过程中与热管耦合传热的数值分析[J].江西科学,1998,16(3)
    [155]中铁西北科学研究院.路基新结构一通风管路基试验研究[R].青藏铁路试验工程科研项目研究成果报告,2006.
    [156]米隆,赖远明,张克华.冻土通风路基温度场的三维非线性分析[J].冰川冻土,2002,24(6):765-769.
    [157]喻文兵,赖远明,牛富俊等.多年冻土区铁路通风路基室内模型试验的温度场特征[J].冰川冻土,2002,24(5):601-607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700