用户名: 密码: 验证码:
并联6-PUS舰载稳定平台机构学基础理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高应对突发事件的能力,各种舰船已将直升机作为不可或缺的重要装备,但是舰船受海洋环境扰动产生的摇荡运动严重限制了直升机作用的发挥。稳定平台用于隔离舰船运动,为直升机提供一个相对稳定的起降平台,具有重大战略意义。为了克服现有舰载稳定平台难于实现多维稳定、大型化及承受重载的制约,本文开展了并联式舰载稳定平台机构学基础理论与实验研究,主要内容如下:
     (1)根据舰船运动参数,定义了稳定平台补偿能力评价指标,讨论了面向任务的稳定平台运动参数设计原则。基于应用需求,综合了一种具有耦合特征的三自由度并联机构,提出了耦合度评价指标,分析了独立自由度参数对机构运动耦合性能的影响;针对Stewart机构存在的技术问题,提出了一种适用于大型、重载场合的6-PUS并联机构。通过对比各备选方案,确定了舰载稳定平台的最终机构方案。
     (2)基于旋量的刚体动力学理论基础,推导了多刚体系统加速度伴随变换及伴随映射表达式。研究了舰载稳定平台各刚体之间的运动变换关系,基于李括弧雅克比矩阵,建立了并联式稳定平台机构在非惯性系中的运动学模型。
     (3)基于刚体加速度的牛顿-欧拉方程分析了构件各惯性力,建立了并联式稳定平台机构在非惯性系中的耦合动力学方程;根据多刚体加速度伴随变换,讨论了舰载机着舰过程的运动学问题;搭建了系统的ADAMS虚拟样机模型,并将仿真结果与理论计算结果进行了对比分析。
     (4)根据6-PUS并联机构特点,提出了基于舰船摇荡运动的构型参数优化方法。以分支输入位移为目标,优化了各结构参数;通过建立导轨轴线多目标优化模型及等效变换支撑杆运动,对各运动副轴线进行了优化设计;建立了包含静载平衡装置的分支动力学模型,研究了配重质量对驱动力的影响程度,优化设计了配重质量。
     (5)在分析海况及连杆重量对机构动力学特性影响的基础上,通过定义各作用力影响因子,提出了非惯性系动力学模型简化策略。通过引入等效运动参数,研究了机构所处坐标系对分支输入性能的影响,在此基础上提出了一种基于地面试验的舰载稳定平台等效模拟方法。
     (6)简要介绍了6-PUS并联机构各部分结构及安全防护装置的设计过程,搭建了控制系统和人机控制界面,参与设计并研制了舰载稳定平台实验样机。在此基础上开展地面实验研究,测试了样机各项运动性能指标,验证了机构学建模理论的正确性。最后,以理论计算模型为依据,对样机舰载实验进行可行性分析。
In order to increase the ability to deal with emergency, all kinds of ships have madehelicopter as integral equipment, but the sway movements of ship produced by marineenvironment restrict the exertion of helicopter badly. Stabilizing platform is used to isolatethe ship’s movement and provide a relatively stable landing platform for helicopter, whichis of great strategic significance. The existing ship-based stabilizing platforms are difficultto realize dimensional stability, large-scale and heavy-duty. To overcome these limitations,the paper investigates the basic theory and experimental investigation of multi-axisship-based stabilizing platform with parallel structure. The main research contents are asfollows:
     (1) According to typical motion parameters of ship, the compensation ability indexesof stabilizing platform was defined, and the design principle of the task-oriented motionparameters of stabilizing platform was discussed. Based on the application requirement, a3-DOF parallel mechanism with coupling characteristic was synthesized; by defining theperformance indices of coupling characteristics, the effect of independent degree ofmechanism on kinematic performance was discussed. As to solve the critical problem ofStewart parallel mechanism, a6-PUS parallel mechanism which can be applied tolarge-scale and heavy-duty occasions was synthesized. By comparing with different typesof configurations, the final topology configuration of ship-based stabilizing platform wasdetermined.
     (2) Based on the screw theoretical basis of rigid dynamics, the acceleration adjointtransformation and adjoint mapping of multi-rigid-body system were derived. The motiontransformation relationship among bodies of the ship-based stabilizing platform wasdeduced, and the kinematics model of parallel ship-based stabilizing platform innon-inertial frame was built based on Lie bracket Jacobian matrix.
     (3) The inertia forces of component was analysised based on the rigid bodyacceleration Newton-Euler equation, and coupling dynamics model of of parallelship-based stabilizing platform in non-inertial frame was proposed. According to the adjoint transformation of multi-rigid-body accelerations, the kinematic problems in theprocess of aircraft approach glide down and landing were studied. A virtual prototypemodel of system was created with ADAMS software, and a contrast analysis was madebetween simulation results and theoretical computation results.
     (4) According to the characteristics of6-PUS parallel mechanism, a configurationparameters optimum design method based on the ship’s motion was proposed. With jointdisplacement as a goal of optimization, the structure parameters which fit practicalrequirement were received. By building slider axis’s multi-objective optimization modeland equivalent transformation of supporting rod’s motion, each joint axis of mechanismwas optimized. Through building the dynamics model of mechanism, the effect ofcounterweight on joint driving force was studied and the counterweight was optimallydesigned.
     (5) Through analyzing the impacts of sea status and weight of rods on dynamiccharacteristics, a strategy for dynamics model reduction in non-inertial frame wasproposed on the basis of the definition of the force impact factor. By introducing theequivalent motion parameters, the effect of coordinate system to the performance ofbranch input was studied, an equivalent simulation method for stabilizing platform basedon ground test was proposed.
     (6) The design process of the structure of each part and safety guards of the6-PUSparallel mechanism was introduced briefly, the control systems and human-computerinterface control were established, and the experiment prototype of ship-based stabilizingplatform was developed. On this basis the prototype ground testing was carried out; theperformance indicator of mechanism was tested and the correctness of mechanicalmodeling theory was verified. Finally, the feasibility of test prototype practically used inships was analyzed based on the theoretical calculation model.
引文
[1]张永花,周鑫.舰载机着舰点垂直运动补偿技术仿真研究[J].系统仿真学报,2013,25(4):826-827.
    [2] Abkowitz M A. Stability and Motion Control of Ocean Vehicles[M]. Cambridge: MIT Press,1969:21-30.
    [3] Zhou X Y, Zhang Z Y, Fan D P. Improved Angular Velocity Estimation Using MEMS Sensorswith Applications in Miniature Inertially Stabilized Platforms[J]. Chinese Journal of Aeronautics,2011,24(5):648-656.
    [4] Han D, Wang H W, Gao Z. Aeroelastic Analysis of a Shipboard Helicopter Rotor with ShipMotions During Engagement and Disengagement Operations[J]. Aerospace Science andTechnology,2012,16(1):1-9.
    [5] Zeng Z G, Chen G H. Adaptive Predection Based on Equal-dimension and New Informatioln forthe Hydraulic Mechansim of Wave Motion Compensating Platform[J]. Applied Mechanics andMaterials,2010,(20):236-242.
    [6] Cook J R, Albertine J R. The Navy’s High-Energy Laser Weapon System[J]. Proceedings of SPIEthe International Society for Optical Engineering,2013,2988(264):264-271.
    [7]樊明迪,林辉.轻型舰载天线双轴稳定平台伺服控制器设计研究[J].计算机测量与控制,2013,21(2):402-408.
    [8]程佳.并联4TPS-1PS型电动稳定跟踪平台的特性及控制研究[D].杭州:浙江大学博士学位论文,2008:76-77,110-113,121-122.
    [9] Hikert J M. Inertially Stabilized Platform Technology:Concepts and Principles[J]. IEEE ControlSystems Magazine,2009,2:26-46.
    [10]李凤英.车载稳定平台试验研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2003.
    [11]吕清利.图像制导药的弹载滚转稳定平台设计[D].南京:南京理工大学博士学位论文,2011:13-24.
    [12] Hadden S, Davis T, Buchele P, et al. Heavy Loadvibration Isolation System for AirbornePayloads[J]. Proceedings of SPIE the International Society for Optical Engineering,2001,4332:171-182.
    [13]董美华,马汝建,赵东.船舶减摇技术研究进展[J].济南大学学报,2008,22(2):183-188.
    [14]吴鹏.船用卫星天线姿态稳定系统关键技术研究[D].哈尔滨:哈尔滨工程大学博士学位论文,2012:3-4.
    [15]姬伟.陀螺稳定光电跟踪平台伺服控制系统研究[D].南京:东南大学博士学位论文,2006:1-7,38-40.
    [16]舒金龙,陈良瑜,朱振福,等.国外红外搜索跟踪系统的研制现状与发展趋势[J].现代防御技术,2003,31(4):48-50.
    [17] Special Service Vessels for Wind Turbines[OL].(2013-3-20)[2013-11-2].http://odfjellwind.com/ny/fob_jr.php.
    [18] Fischer P A. Safety Advances in Marine Personnel Transfer-A Dutch Invention Makes OffshoreAccess from a Moving Vessel to a Fixed Platform Much Safer[J]. World Oil,2008:67.
    [19] X-Y两轴稳定平台[OL].(2008-2-20)[2013-11-2]. http://www.tutoluoyi.com.
    [20] CWWP、CJWP稳定跟踪平台产品手册[OL].(2007-1-20)[2013-11-2]. http://www.sipat.com/.
    [21]詹银芳.船载三轴稳定控制系统的研究与设计[D].南京:南京理工大学硕士论文,2013:5-7.
    [22]王海东,杨炳恒,毕玉泉,等.一种可用于“菲涅耳”光学助降装置稳定平台的并联机构设计[J].科学技术工程,2010,10(22):5599-5601.
    [23]罗二娟.耦合型3自由度并联舰载稳定平台研究[D].秦皇岛:燕山大学硕士学位论文,2011:12-14,27-28.
    [24] Hunt K H. Structural Kinematics of In-parallel-actuated Robot Arms[J]. ASME of Mechanisms,Transmissions, and Automation in Design,1978,105:705-712.
    [25] Dasgupta B, Mruthyunjays T S. The Stewart Plaftorm Manipulator: A Review[J]. Mechanism andMachine Theory,2000,35:15-40.
    [26] Yao R, Tang X Q, Li T M, et al. Error Analysis and Distribution of6-SPS and6-PSSReconfigurable Parallel Manipulators[J]. Tsinghua Science&Technology,2010,15(5):547-554.
    [27] Bosscher P, Ebert-Uphoff I. Wrench-Based Analysis of Cable-Driven Robots[C]//Proceedings ofIEEE International Conference on Robotics and Automation,2012:4950-4955.
    [28]黄琴,郑亚青,林麒.6自由度绳牵引并联机构飞行器模型单自由度振荡运动的动力学分析[J].工程力学,2013,27(10):230-232.
    [29]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997:3-8,18-21,65-78,135-147,179-186.
    [30] Upgraded MH-60S Operational Flight Trainer for United States Navy Re-Enters Service at NASNorth Island[OL].(2013-4-24)[2013-11-2]. http://www.cae.com/mh-60/.
    [31]6-DOF Systems[OL].(2009-12-24)[2013-11-2]. http://www.ckas.com.au.
    [32] Electric and Hydraulic Motion Systems for A Wide Range of Payload Applications[OL].(2012-3-10)[2013-11-2]. http://www.moog.com.cn.
    [33]韩俊伟,姜洪洲.用于航海模拟的六自由度并联机器人的研究[J].高技术通讯,2011,(3):88-90.
    [34]刘军.高精度、重载荷三自由度摇摆台的闭环控制设计与研究[D].上海:上海交通大学硕士学位论文,2009.
    [35] Zhao J, Shield C, French C, et al. Nonlinear System Modeling and Velocity FeedbackCompensation for Effective Force Testing[J]. Journal of Engineering Mechanics,2012,131:244.
    [36] Ahmadizadeh M, Mosqueda G, Reinhorn A M. Compensation of Actuator Delay and Dynamicsfor Real-Time Hybrid Structural Simulation[J]. Earthquake Engineering&Structural Dynamics,2013,37(1):21-42.
    [37]史巧硕.并联机器人机构构型方法研究[D].天津:河北工业大学博士学位论文,2008:6-15.
    [38] Ball R S. The Theory of Screws[M]. England: Cambridge University Press,1900.
    [39] Hunt K H. Kinematic Geometry of Mechanism[M]. Oxford: Claredon Press,1978.
    [40] Phillips J R. Freedom in Machinery[M]. England: Cambridge University Press,1990.
    [41] Gibson C G, Hunt K H. Geometry of Screw Systems-1Crews Genesis and Geometry[J].Mechanism and Machine Theory,1990,25(1):1-10.
    [42] Gibson C G, Hunt K H. Geometry of Screw Systems-2Crews Genesis and Geometry[J].Mechanism and Machine Theory,1990,25(1):11-27.
    [43] Martinez J M R, Duffy J. Classification of Screw Systems I One-and Two-Systems[J]. Mechanismand Machine Theory,1992,27:459-470.
    [44]于靖军,赵铁石,毕树生.三维平动并联构型综合研究[J].自然科学进展,2003,13(8):843-850.
    [45] Kong X W, Gosselin C M, Richard P L. Type Synthesis of Parallel Mechanisms with MultipleOperation Modes[J]. ASME Journal of Mechanical Design,2007,129(6):595-601.
    [46] Fang Y F, Tsai L W. Sreucture Synthesis of a Class of3-DOF Rotational Parallel Manipulators[J].IEEE Transactions on Robotics and Automation,2004,20(1):117-121.
    [47] Huang Z, Li Q C. Gereral Methodology for Type Synthesis of Lower-Mobility SymmertricalParallel Manipulators and Several Novel Manipulators[J]. International Joural of RoboticsResearch,2002,21(2):131-145.
    [48] Li Q C, Huang Z. Type Synthesis of5-DOF Parallel Manipulators[C]. Proceedings of the2003IEEE International Conference on Robotics and Automation, Taipei, Taiwan,2003:1203-1208.
    [49]赵铁石.空间少自由度并联机器人机构分析与综合的理论研究[D].秦皇岛:燕山大学博士学位论文,2000.
    [50]李秦川.对称少自由度并联机器人型综合理论及新机型综合[D].秦皇岛:燕山大学博士学位论文,2004.
    [51]赵铁石,黄真.欠秩空间并联机器人输入选取理论与应用[J].机械工程学报,2000,36(10):81-84.
    [52] Zhao T S, Dai J S, Huang Z. Geometric Synthesis of Spatial Parallel Manipulators with FewerThan Six Degree-of-Freedom[J]. International Journal of Mechanical Engineering Science,2002,216(12):1175-1185.
    [53] Zhao T S, Dai J S, Huang Z. Geometric Synthesis of Overconstrained Parallel Manipulators withThree and Four Degrees-of-Freedom[J]. JSME International Journal Series C,2002,45(3):1-11.
    [54]张耀军,张玉茹,戴晓伟.基于工作空间最大化的平面柔索驱动并联机构优化设计[J].机械工程学报,2011,47(13):29-34.
    [55] Zhao T S, Dai J S, Huang Z. Geometric Analysis of Overconstrained Parallel Manipulators withThree and Four Degrees of Freedom[J]. JSME international Journal,2002,45(3):730-740.
    [56] Merlet J P. Designing a Parallel Robot for a Specific Workspace[D]. France: INRIA,1995:13-35.
    [57] Cm G, M G. The Synthesis of Manipulators with Prescribed Workspace[J]. ASME Journey ofMechanical Design,2000,113(1):451-455.
    [58] Murray A P, Pierrot F, Dauchez P. A Planar Quaternion Approach to the Kinematic Synthesis of aParallel Manipulator: Parallel Manipulators[J]. Robotica,1997,15(4):361-365.
    [59]周兵.三自由度平动并联机构结构参数的优化[J].机械设计与研究,2010,(2):25-26.
    [60]段艳宾,梁顺攀,赵永生,等.6-PUS/UPU并联机器人运动学及工作空间分析[J].机械设计,2011,28(3):36-40.
    [61]汪满新,黄田.面对称3-S*R并联机构的运动学分析与尺度综合[J].机械工程学报,2013,49(15):22-27.
    [62] Kim H S, Tsai L. Kinematic Synthesis of a Spatial3-RPS Parallel Manipulator[J]. ASME Journalof Mechanical Design,2003,125(1):92-97.
    [63] Huang T, Whitehouse D J, Wang J S. Local Dexterity, Optimum Architecture and Design Criteriaof Parallel Machine Tools[J]. Annals of CIRP,1998,47(1):347-351.
    [64] Liu X J, Wang J S, Gao F, etal. The Mechanism Design of a Simplified6-DOF6-RUS ParallelManipulator[J]. Robotica,2002,20(1):81-91.
    [65] Hong K S. Manipulability Analysis of a Parallel Machine Tool: Link Length Design[J]. Journal ofRobotic System,2000,17(8):403-415.
    [66] Liu X J, Pritschow, Wang J S. Performance Atlases and Optimum Design of Planar5RSymmetrical Parallel Mechanisms[J]. Mechanism and Machine Theory,2006,41:119-144.
    [67] Shao H, Wang L P, Guan L W, et al. Dynamic Manipulability and Optimization of a RedundantRhree DOF Planar Parallel Manipulator[C]//Proceedings of the ASME/IFToMM InternationalConference on Reconfigurable Mechanisms and Robots, London,2009,7:302-308.
    [68] Lou Y J. Optimal Design of Parallel Manipulators[D]. Hong Kong: The Hong Kong University ofScience and Technology,2006.
    [69] Roth B. Performance Evaluation of Manipulators from a Kinematic Viewpoint[J]. Nbs SpecialPublication No.459, Performance Evaluation of Programmable Robots and Manipulators,1975:39-61.
    [70] Jihou Y. The Space Model and Dimensional Types of the Four-Bar Mechanism Das RaummodellUndie Abmessungstypen Des Viergelenkgetriebes[J]. Mechanism and Machine Theory,1987,22(1):71-76.
    [71] Gao F, Zhang X Q, Zhao Y S. A Physical Model of the Solution Space and the Atlases of theReachable Workspace for2-DOF Parallel Plane Wrists[J]. Mechanism and Machine Theory,1996,31:173-184.
    [72] Liu X J, Wang J S, Gao F. Performance Atlases of the Workspace for Planar3-DOF ParallelManipulators[J]. Mechanism and Machine Theory,2000,18(5):563-568.
    [73]张立杰.两自由度并联机器人的性能分析及尺寸优化[D].秦皇岛:燕山大学博士学位论文,2006:10-11.
    [74]马小姝,李宇龙,严浪.传统多目标优化方法和多目标遗传算法的比较综述[J].电气传动自动化,2012,32(3):48-50.
    [75] Stoughton R S, Arai T. A Modified Stewart Platform Manipulators with Improved Dexterity[J].IEEE Trans on Robotics and Automation,2010,9(2):166-172.
    [76] Bhattacharya S, Hatwal H, Ghosh A. On the Optimum Design of a Stewart Platform Type ParallelManipulators[J]. Robotica,1995,13(2):133-140.
    [77] Gosselin C, Angles J. A Global Performance Index for the Kinematic Optimization of RoboticManipulators[J]. Journal of Mechanical Design,1991,9:113-221.
    [78]郝齐.一种两自由度并联机构优化设计及动力学控制研究[D].北京:清华大学博士学位论文,2011:113-114.
    [79] Hao F, Merlet J P. Multi-Criteria Optimal Design of Parallel Manipulators Based on IntervalAnalysis[J]. Mechanism and Machine Theory,2013,40(2):157-171.
    [80] Altuzarra O, Pinto C, Sandru B, et al. Optimal Dimensioning for Parallel Manipulators:Workspace, Dexterity, and Energy[J]. Journal of Mechanical Design,2013,133:104-120.
    [81]林富生,黄其柏,黄新乐等.非惯性系动力学研究综述[J].武汉理工大学学报:信息与管理工程版,2007,29(4):67-69.
    [82]苏云荪.理论力学[M].北京:高等教育出版社,1990.
    [83]王世来.拉格朗日方程在非惯性系中的推广及应用[J].浙江海洋学院学报,2012,(3):57-59.
    [84]尹析明.非惯性系中质点的动能定理及机械能守恒条件[J].电子科技大学学报,2011,26(8):250-252.
    [85] Luo S, Chen X, Fu J. Stability Theorems for The Equilibrium State Manifold of NonholomicSystems in A Non-Inerrtial Reference Frame[J]. Mechanics Research Communications,2012,28(4):463-469.
    [86]梁立孚,王鹏,宋海燕.在非惯性系中研究动力刚化问题[J].哈尔滨工程大学学报,2012,33(8):1052-1056.
    [87] Lopez C A, Wells V L. Dynamics and Stability of an Autoroating Rotor/Wing UnmannedAircraft[J]. Journal of Guidance, Contron, and Dynamics,2012,27(2):258-270.
    [88] Ananthan S, Leishman J G. Rotorwake Aerodynamics In Large Amplitudemaneuvering Flight[J].Journal of The American Helicopter Society,2013,51(3):225-243.
    [89]林富生,孟光.飞行器内等速初始弯曲转子动力学特性的研究[J].武汉理工大学学报:交通科学与工程版,2011,28(2):201-204.
    [90] Schiehlen W. Research Trends In Multibody System Dynamics[J]. Multibody System Dynamics,2012,(1):3-13.
    [91]邵兵.基于李群李代数的统一开闭环机械多体系统递推动力学研究[D].南京:南京航空航天大学博士学位论文,2010:1.
    [92] Adrian S, Corina S, Mehdl A. Modeling Multibody Systems with Uncertainties. Part I: Theoreticaland Computational Aspects[J]. Multibody System Dynamics,2013,(4):369-391.
    [93] Aslanov V, Kruglov G. Newton-Euler Equations of Multibody Systems with Changing Structuresfor Space Applications[J]. Acta Astronautica,2011,68(12):2080-2087.
    [94] Ploen S R, Park F C. Coordinate-Invariant Algorthms for Robot Dynamics[J]. IEEE Trans. Robot.Autom.,1999,15(6):1130-1135.
    [95] Lee D J. Passive Decompositon and Control of Nonholonmic Mechanical Systems[J]. IEEE Trans.Robot.,2012,26(6):978-992.
    [96] Mabrouk M. Triangular from for Euler-Lagrange Systems with Application to the Global OutputTracking Control[J]. Nonlin. Dyn.,2012,60(2):87-98.
    [97] Jazar R N. Theory of Applied Robotics[M]. Nes York: Springer-Verlag,2010:641-623.
    [98]胡继云.建立多刚体系统动力学方程的坐标变换法及其应用[D].重庆:重庆大学博士学位论文,2004:4.
    [99] Kane T R, Levinson D A. The Use of Kane’s Dynamical Equations in Robotics[J]. InternationalJournal of Robotics Research,1983,2(3):3-21.
    [100] Ding X, Dai J S. Compliance Analysis of Mechanisms with Spatial Continuous Compliance in theContext of Screw Theory and Lie Groups[J]. Proc. Inst. Mech. Eng. C, Mech, Sci.,2010,224(11):2493-2504.
    [101]王国彪,刘辛军.初论现代数学在机构学研究中的作用与影响[J].机械工程学报,2013,49(2):1-7.
    [102] Aspragathos N A, Dimitros J K. A Comparative Study of Three Methods for Robot Kinematics[J].IEEE Trans. Syst., Man, Cybern.,1998,28(2):135-145.
    [103] Ball R S. A Treatise on the Theory of Screws [M]. England: Cambridge University Press,1900:62-67.
    [104] Sugimoto K. Existence Criteria for Over-constrained Mechanisms: An Extension of MotorAlgebra[J]. ASME Journal of Mechanical Design,1990,112:295-298.
    [105] Bokelberg E H, Hunt K H, Ridley P R. Spatial Motion-I. Points of Inflection and the DifferentialGeometry of Screws[J]. Mechanism and Machine Theory,1992,27(1):1-16.
    [106] Ridley P R, Bokelberg E H, Hunt K H. Spatial Motion-II. Acceleration and the DifferentialGeometry of Screws[J]. Mechanism and Machine Theory,1992,27(1):17-36.
    [107] Martinez J M R, Duffy J. An Application of Screw Algebra to the Acceleration Analysis of SerialChains[J]. Mechanism and Machine Theory,1996,21(4):445-457.
    [108] Rico J M, Gallardo J, Duffy J. Screw Theory and Higher Order Kinematic Analysis of OpenSerial and Closed Chains[J]. Mechanism and Machine Theory,1999,34:459-598.
    [109]黄晓华,王兴成.机器人动力学的李群表示及其应用[J].中国机械工程,2012,18(2):201-206.
    [110] Park F C, Bobrow J E. A Recursive Algorithm for Robot Dynamics Using Lie Groups[J]. IEEEInternational Conference on Robotics and Automation,1994:1535-1540.
    [111] Park F C. Computational Aspects of the Product-of-Exponentials[J]. IEEE Trans. On Roboticsand Automation,1994,39(3):643-647.
    [112]理查德.摩雷,李泽湘,夏恩卡.萨斯特.机器人操作的数学导论[M].徐卫良,钱瑞明译.北京:机械工业出版社,1998:11-80.
    [113]丁希伦.空间弹性变形构件的李群和李代数分析方法[J].机械工程学报,2005,(1):17-23.
    [114]丁希伦,刘颖.用李群李代数分析具有空间柔性变形杆件的机器人动力学[J].中国机械工程,2007,21(12):184-189.
    [115] Zhao T S, Dai J S. Dynamic and Coupling Actuation of Elastic Underactuated Manipulators[J].Journal of Robotic system,2003,20(3):135-146.
    [116]赵延治.大量程柔性铰并联六维力传感器基础理论与系统研制[D].秦皇岛:燕山大学博士学位论文,2009:67-80.
    [117]皮阳军.电液伺服并联六自由度舰船运动模拟器轨迹跟踪控制及其应用研究[D].杭州:浙江大学博士学位论文,2010:90-95.
    [118]冯铁城.船舶摇摆与操纵[M].北京:国防工业出版社,1980:1-2.
    [119]韩东,王浩文,高正.舰船纵横摇运动对旋翼瞬态气弹响应影响分析[J].直升机技术,2007,(3):34-38.
    [120]王昭.某天线稳定平台的结构设计[J].电子机械工程,2012,28(4):25-28.
    [121]郑相周.大洋采矿补偿平台串并联机构的运动学研究[D].武汉:华中科技大学学位论文,2003:76-77.
    [122]李学忠,黄守训,林其生.船用摇摆试验台建模和控制系统设计[J].电气传动,2006,36(11):11-15.
    [123]洪超,陈莹霞.船舶减摇技术现状及发展趋势[J].船舶工程,2012,34(2):236-244.
    [124]赵铁石,赵永生,黄真.欠秩并联机器人能连续转动转轴存在的物理条件和数学判据[J].机器人,1999,21(5):347-351.
    [125] Dasgupta B, Mruthyunjaya T S. A Newton-Euler Formulation for The Inverse Dynamics of TheStewart Platform Manipulator[J]. Mechanism and Machine Theory,1998,33(8):1135-1152.
    [126]张立新,汪劲松,王力平.加减速运动条件下6-UPS型并联机床刚体动力学模型简化研究[J].机械工程学报,2003,39(11):117-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700