用户名: 密码: 验证码:
畸变条件下端区流动对压气机稳定性影响的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空发动机是国防工业和国民经济具有重大作用的战略产品,其相关技术是21世纪动力系统的核心技术,直接影响着一个国家的国防、能源、安全和工业竞争能力。因此,先进的航空发动机技术已经成为一个国家科技水平、工业先进水平、军事实力、乃至综合国力的一个重要标志,同时也是各国科技及军事工业优先发展的领域和重点研发的对象。随着军用飞机飞行速度、高度的不断提高,机动性的不断增加以及导弹武器的使用,畸变的影响变得越来越突出,实践中暴露出来的进气道/发动机相容性问题也越来越严重。早期基于均匀进口条件进行的设计所暴露的局限性越来越大,己不再适合高性能发动机的设计。特别是第四代战机的4S要求,即“超机动性”、“超音速巡航”、“隐身能力”和“超高效空战航电设备”,使得压气机大部分时间都在进口畸变条件下工作,对压气机的稳定性和抗畸变能力提出了更高的要求。可见,畸变问题已经成为航空发动机领域重点的研究方向之一,认识畸变条件下压气机内部非定常流动机理以及掌握流场结构变化对畸变来流的响应机制,进而指导压气机的设计具有迫切的现实意义。
     本文在国家自然科学基金青年基金项目(51006014)资助下,以单级跨声速轴流压气机为对象,研究总压畸变条件下的内部流动特性。为了更加准确的给定畸变进口,本文首先采用数值方法对插板式畸变发生器产生的畸变流场进行了研究,并获得压气机进口边界条件。结果表明:压气机进口截面畸变度与来流总压近似成线性关系。插板后的总压分布可以简化为两个各自均匀的高/低压区域。而压气机进口截面的总压分布与插板后相比存在较大差异,低压区范围随插板深度增加而增大,不能简单简化为两个各自均匀的高/低压区域。
     同时,由于压气机内部本身就是十分复杂的三维非定常黏性流动,即使在均匀来流条件下,随着气流在流道内的发展,叶栅流道内也会涉及到各种各样的流动问题,如附面层的转捩、分离和再附等。为了更加准确分析由畸变带来的影响,本文在进行畸变条件下全周非定常三维数值模拟工作的同时,还进行了均匀进口来流条件下压气机全周非定常三维数值模拟工作。结果表明:均匀进口条件下压气机内各流道流场分布均匀,呈现出良好的周期性。最高效率点,动叶前缘形成一道脱体激波,通道内形成一道正激波。静叶吸力面尾缘叶顶、叶根位置形成较小的分离。静叶根部吸力面前缘附近,在动叶尾迹作用下分离形成一个旋涡结构,且随时间不断变化。近失速点,动叶流道内仅有一道激波,静叶各流道叶根附近表现为大范围分离流动。压气机动叶叶顶激波和静叶叶根分离是压气机内,尤其是近失速状态下,重要的流动特征。因此,本文将主要针对动叶内激波和静叶中分离的变化来进行畸变条件下压气机内部流场的分析研究。
     然后,本文先分析了畸变在压气机中的传递规律。研究发现,畸变经过动叶后,总压最低值位置逆旋转方向偏转;损失最大值位置顺旋转方向偏转。通过对比均匀进口和不同畸变度条件下的数值结果,研究了畸变度对压气机性能及内部流场的影响。结果表明:随畸变度提高,压气机性能下降明显,稳定工作流量范围变窄。同时由于畸变的存在,流场内产生了两个方向的压力梯度,即轴向压力梯度和周向压力梯度。轴向压力梯度主要导致动叶流道内激波位置发生偏移,而周向压力梯度产生的周向分速度主要引起气流角发生变化。在此基础上,详细分析了不同状态点时动叶流道内激波和静叶流道内分离的演变规律,阐述了引起动静叶流场参数变化的机理。并通过与均匀进口条件压气机近失速点流动状态对比,分析了畸变条件下压气机失稳诱因的主要来源。
     最后,本文在上述研究的基础上,研究了不同比转速时畸变对压气机流场的影响。根据压气机进口总压的分布情况,将本文所研究的压气机分成两个不同来流总压的子压气机。压气机出口气动参数趋近于所占比例较大的子压气机出口的气动参数,而另一子压气机则可以看作外部激励,即“畸变区”。随比转速增大,激励次数增加,畸变来流对压气机气动性能的影响越来越明显。研究表明,低畸变度、高比转速条件下,压气机性能下降更明显。高畸变度、低比转速条件下,压气机性能下降更明显。综合分析不同比转速条件时,动叶激波位置和静叶通流能力发现:低比转速时,动叶内激波距前缘较远,激波更容易被推出动叶流道,无法形成稳定的激波结构,造成压气机失稳。而此时静叶内流动分离较小,通流能力较好。因此,低比转速条件下,压气机的失稳诱因主要是动叶内激波结构的破坏。而高比转速时,静叶流道内流动分离范围、强度均明显增大,静叶的通流能力减弱,静叶流道内堵塞严重。而对应此时动叶内激波距离前缘较近,激波打到相邻叶片吸力面的位置也更远离前缘,激波结构的稳定性相对较好,即此时压气机的失稳主要源于静叶流道内流动的堵塞。
Aircraft engine is a strategic product which plays a significant role in defense industry and domestic economic, and its related technology is the core of21st century propulsion system, directly influences the defense, energy, secure and industry of a country. Therefore, advanced aircraft engine technology has become an essential mark for measuring the level of national science and technology, industrial advancement, military force and even the comprehensive national power, and meanwhile the priority in the development of technology and military'industry for each country. With the rise of speed, altitude, increasing maneuverability and the use of missile weapon of military aircraft, the influence of distortion is more and more highlighting, and the compatibility of inlet and engine when exposed in practice is more and more serious. The limitation of early stage design which based on the uniform inlet condition is becoming larger, no longer suitable to the high performance engine design. Especially the4S requirements of the fourth fighter, which is "Super maneuverability","Super Sonic Cruise","Stealth" and "Superior Avionics for Battle Awareness and Effectiveness", make the compressor be under distorted inlet conditions for most cases, putting forward more demands on its stability and anti-distortion ability. It is can be foreseen that distortion has become one of the key research areas. Understanding of the unsteady flow mechanism and flow characteristic changes with distorted inflow in compressor is significant and realistic to the design system of compressor.
     Sponsored by the NSF-Young Fund (51006014), a single stage transonic axial compressor is studied under distorted inlet conditions in this thesis. In order to gain a more accurate distorted inlet, numerical method is used to investigate the distorted flow field generated by a baffle distortion generator, and obtains the inlet boundary condition of the compressor. The result shows the distortion degree of compressor inlet has an approximately linear relation to inflow total pressure. The total pressure distribution behind the baffle could be simplified into high and low pressure regions (each uniformly distributed). And the total pressure distribution of compressor inlet section differs greatly with that after the baffle:the low pressure region expanses as depth of baffle increases thus could not be simplified to high and low pressure regions.
     Meanwhile, due to the complicated unsteady three dimensional viscous flows inside the compressor, even under the uniform inflow condition, the flow in the passages would involve various phenomena as it develops, such as boundary layer transition, separation and reattachment. In order to accurately analyze the influence caused by distortion, this dissertation carries out full annuls unsteady three-dimension numerical simulation under distorted inlet conditions as well as the uniform inlet condition. Result show that under the uniform inflow condition, the flow in the compressor passage distributes uniformly, and shows a good periodicity. At the maximum efficiency point, a detached shock wave forms at the rotor leading edge and a normal shock wave generates in the passage. A small separation forms at hub and shroud corner near trailing edge of stator suction. Induced by the rotor wake, time-varying vortex forms at the stator hub near leading edge. Near stall point, only one shock wave exists in rotor passage and a wide range of circumferential flow separates near the hub in stator. Shock wave at the rotor tip and separation near the stator hub are important flow characteristics in the compressor, especially at the near stall point. Therefore, this dissertation focuses on studying the changes of shock wave in rotor and separation in stator to analyze flow in the compressor under distortion conditions.
     Before analyzing the influence of distortion to the flow field of compressor, the transfer law of distortion inside the compressor is studied in this dissertation firstly: after the rotor, the location of the lowest total pressure mitigates in the opposite rotating direction while the location of maximum losses mitigates in the rotating direction. Through comparably studying the numerical result of the uniform inflow condition and distorted inflow condition at various degrees, this dissertation studies the influence of compressor performance and internal flow field at different distortion degree. The result shows the compressor performance deteriorates obviously and the stability margin declines when the distortion degree increases. Because of the distortion, there exist two pressure gradients in the flow:axial pressure gradient and circumferential pressure gradient. The axial pressure gradient mainly leads to the mitigation of shock wave in rotor passage while the circumferential pressure gradient mainly causes the change of the flow angle by generating the circumferential velocity. Additionally, this dissertation analyzes the change rule of shock wave in the rotor passage and separation in the stator passage under distorted condition in detail. At last, compared to the flow field of compressor at near stall point in uniform condition, this dissertation analyzes the main source of the compressor stall.
     Based on above results, the internal flow of compressor at different specific speed under distorted inlet is also studied in this dissertation. Firstly, according to the distribution of inlet total pressure, the compressor studied in this thesis can be divided into two sub-compressors with different inlet total pressure. Aerodynamic parameters of the compressor at outlet are close to that of the sub-compressor which has a larger proportion, while the other sub-compressor can be seen as an external stimulus, namely "distortion zone". With the increase of specific speed, the effect of distorted inflow to the aerodynamic performance of the compressor becomes more and more significant. When the distortion intensity is low, the compressor performance deteriorates obviously at high specific speed; when the distortion intensity is high, the compressor performance deteriorates more significantly at low specific speed. Additionally, comprehensive analysis of the shock wave in rotor and flow capacity of stator under different speed conditions shows that at low specific speed, the shock wave is far from the leading edge, easier to put away from the rotor passage, and thus unable to form a stable shock wave structure, causing the compressor instability. At the same time, the stator has a smaller separation and a better flow capacity. Therefore, under low specific speed, the instability of compressor is mainly caused by the break of shock wave structure. While at high specific speed, the separation range and strength in stator passage significantly increase, thus the flow capacity dramatically weakens, and the passage is blocked seriously. Yet this time the distance between shock wave and leading edge is close, and the position of shock wave hitting the adjacent rotor blade suction is far from the leading edge, thus the shock wave is more stable. Therefore the instability of compressor is caused by passage blockage in stator.
引文
[1]苏庆谊,常惠民.飞天的历程:航空百年话百机[M].北京:解放军出版社.2004.
    [2]黄求原.某型发动机平行压气机畸变分析研究[D]:(硕士学位论文).南京:南京航空航天大学.2010.
    [3]Conrad E W, Sobolewski A E. Investigation of effects of inlet-air velocity distortion on performance of turbojet engine[R].NACA.1950.
    [4]David P Harry I, Robert J L. Inlet-air distortion effects on stall, surge, and acceleration margin of a turbojet engine equipped with variable compressor inlet guide vanes[R].NACA.1955.
    [5]Herrick G P. Effects of Inlet Distortion on Aeromechanical Stability of a Forward-Swept High-Speed Fan[R].NASA.2011.
    [6]Steenken W G, A J G W, Walsh K R. Factors Affecting Inlet-Engine Compatibility During Aircraft Departures at High Angle of Attack for an F/A-18A Airaft[R].NASA.1999.
    [7]Walsh K, Steenken W., Williams J. Summary of Inlet Characteristics of the F/A-18A High Alpha Research Vehicle[R].NASA.1998.
    [8]Walsh K R, Yuhas A J, Williams J G, et al. Inlet Distortion for an F/A-18A Aircraft During Steady Aerodynamic Conditions up to 60°ngle of Attack[R].NASA.1997.
    [9]Norby W P, Ladd J A, Yuhas A J. Dynamic Inlet Distortion Prediction with a Combined Computational Fluid Dynamics and Distortion Synthesis Aaaroach[R].NASA.1996.
    [10]Yuhas A J, Steenken W G, Williams J G, et al. F/A-18A Inlet Flow Characteristics During Maneuvers with Rapidly Changing Angle of Attack[R].NASA.1996.
    [11]Donald L. Hughes L P M K. Effect of Inlet Distortion on a Static Pressure Probe Mounted on the Engine Hub in an F-15 Airplane[R].NASA.1985.
    [12]Hughes D L, Myers L P, Mackall K G. Effects of Inlet Distortion on a Static Pressure Pressure Probe Mounted on the Engine Hub in an F-15 Airplane[R].NASA.1985.
    [13]Williams J G, Steenken W G, Yuhas A J. Estimating Engine Airflow inGas-Turbine Powered Aircraft with Clean and Distorted Inlet Flows[R].NASA.1980.
    [14]Stoll F, Tremback J W, Arnaiz H H. Effect of Number of Probes and Their Orientation Calculation of Several on the Compressor Face Distortion Descriptors[R].NASA.1979.
    [15]Burcham Frank W J, Hughes D L, Holzman J K. Steady-State And Dynamic Pressure Phenomena In The Propulsion System Of An F-111A Airplane[R].NASA.1973.
    [16]Hughes D L, Holzman J K, Johnson H J. Flight-Determined Characteristics Of An Air Intake System On An F-1 11A Airplane[R].NASA.1972.
    [17]Staff of the Lewis Laboratory. Central Automatic Data Processing System[R].NACA Lewis Laboratory Staff.1958.
    [18]Valentine H H B W. Experimental Investigation of Distortion Removal Characteristics of Several Free-wheeling Fans[R].NACA.1958.
    [19]Wingrove R C. A Flight-test Study of Total-pressure Distortion in a Thick-lipped Nose Inlet[R].NACA.1958.
    [20]Gelder T F. Total-pressure Distortion and Recovery of Supersonic Nose Inlet with Conical Centerbody in Subsonic icing Conditions[R].NACA.1957.
    [21]Robert E. English P L Y. Theoretical Analysis of One-stage Windmills for Reducing Flow Distortion[R].NACA.1957.
    [22]Schueller C F S L. An Inlet Design Concept to Reduce Flow Distortion at Angle of Attack[R]. NACA.1957.
    [23]孙鹏.总压畸变对跨声速风扇流场结构影响的全流道数值模拟[D]:(博士学位论文).哈尔滨:哈尔滨工业大学.2007.
    [24]李亮.进口总压畸变稳定性评定方法研究[D]:(硕士学位论文).南京:南京航空航天大学.2008.
    [25]叶培梁.燃气涡轮发动机总压畸变评定标准的发展与现状[J].航空标准化与质量.1990,(5):10-12.
    [26]刘大响,叶培梁等.航空燃气涡轮发动机稳定性设计与评定技术[M].北京:航空工业出版社.2004:5-16.
    [27]都昆.总压畸变对超声速压气机流场结构影响的机理探索[D]:(硕士学位论文).大连:大连海事大学.2012.
    [28]Dragan K, Udo S, Eugen L. Hub-Corner Stall in Compressor Cascades:A Comparison Between Experimental And Numerical Results[J].ISABE.2009.
    [29]Reid, C. The Response of Axial Flow Compressors to Intake Flow Distortion[J].ASME 69-GT-29.1969.
    [30]Calogeras James E., Johnsen Roy L., Burstadt Paul L. Effect of Screen Induced Total Pressure Distortion on Axial Flow Compressor Stability[R].NASA TM X-3017.1974.
    [31]Cossar B. F. J., Peacock R. E., Moffatt W. C.. Compressor Rotating Stall In Uniform and Nonuniform Flow[J].ASME Journal of Energy for Power.1980,102:762-769.
    [32]Stenning A.H.. Inlet Distortion Effects in Axial Compressors[J]. ASME Journal of Fluids Engineering, March.1980,102:7-13.
    [33]Chen F., Li W., Wang Z., Cong M.. An Experimental Investigation of a Turbojet Engine to Inlet Distortion[J].ASME 85-GT-12.1985.
    [34]Hynes T. P., Greitzer E. M.. A Method for Assessing Effects of Circumferential Flow Distortion on Compressor Stability[J].ASME Journal of Turbomachinery.1987,109:371-379.
    [35]Graber Jr. E. J., Willis M. Braithwaite. Summary of Recent Investigation of Inlet Flow Distortion Effects on Engine Stability[J]. AIAA Paper 74-236.1974.
    [36]Colpin J., Kool P.. Experimental Study of an Axial Compressor Rotor Transfer Function with Non-Uniform Inlet Flow[C].Gas Turbine Conference and Products Show, London, England. ASME 78-GT-69. April 9-13,1978.
    [37]Colpin J.. Distortions, Rotating Stall and Mechanical Solicitations[J].AGARD Stresses, Vibrations, Struct. Integration and Eng. Integrity.1979.
    [38]Fortin J., Moffatt W.C.. Inlet Flow Distortion Effects on Rotating Stall[C].ASME International Gas Turbine and Aeroengine Congress and Exposition,35th, Brussels, Belgium. ASME 90-GT-215. 1990.
    [39]Schwartz J.R.. An Experimental and Analytical Investigation of Dynamic Flow Response of a Fan Rotor with Distorted Inlet Flow[D].[Master's Thesis].Blacksburg, Virginia:Virginia Polytechnic Institute & State University.1999.
    [40]Biesiadny T.J., Braithwaite W. M., Soeder R. H., Abdelwahab M.. Summary of Investigations of Engine Response to Distorted Inlet Conditions[R].NASA Technical Memo No.87317. Lewis Research Center, Cleveland, Ohio.1986.
    [41]Peacock R. E., Overli J.. Dynamic Internal Flows in Compressors with Pressure Maldistributed Inlet Conditions[J].AGARD Unsteady Phenomena in Turbomachinery.1976.
    [42]Yocum A. M., Henderson R. E.. The Effects of Some Design Parameters of an Isolated Rotor on Inlet Flow Distortions [J].ASME Journal for Engineering for Power. January.1980,102(1): 178-186.
    [43]Kaya T., Carrere A., Barenes R.. Investigation of the Flow Field Through a Variable Pitch Fan Rotor with an Inlet Total Pressure Distortion[J].ISABE 93-7029.1993.
    [44]Jahnen W., Peters T., Fottner L.. Stall Inception in a 5-stage HP-Compressor with Increased Load Due to Inlet Distortion[J].ASME 99-GT-440 ASME/IGTI Turbo Expo'99, Indianapolis, Indiana.1999.
    [45]Andrew P.L.. An Experimental Investigation of Unsteady Loss Variation with Reduced Frequency in a Low Speed, Single Stage Axial Compressor[R]. Von Karmen Institute for Fluid Dynamics Project Report. June,1988.
    [46]S. R. Manwaring,D. C. Rabe,C. B. Lorence,A. R. Wadia. Inlet Distortion Generated Forced Response of a Low Aspect-Ratio Transonic Fan[J]. ASME Journal of Turbomachinery.1997,119(4): 665-676.
    [47]Datko JD, O'Hara JA. The Aeromechanical Response of an Advanced Transonic Compressor to Inlet Distortion[J].ASME 87-GT189.1987.
    [48]Steven, R. Manwaring, Sanford, Fleeter. Inlet Distortion Generated Periodic Aerodynamic Rotor Response[J].ASME Journal of turbomachinery.1989,112(2):298-307
    [49]Ludwig G.R., Nenni J.P., Arendt R.H.. Investigation of Rotating Stall in Axial Flow Compressor and the Development of a Prototype Stall Control System[R].Technical Report USAF-APL-TR-73-45.1973.
    [50]Kozarev L.A., Federov R.M.. Aspects of the Appearance and Elimination of Breakdown in an Axial-Flow Compressor in the Presence of a Rotating Non-Uniformity at the Inlet[J].Izevsinya vuz AviatsionnayaTekhnika.1983,26(1):33-37.
    [51]Chue, R., Hynes, T.P., Greitzer, E.M. Tan, C.S., Longley, J.P., Calculations of Inlet Distortion Induced Compressor Flowfield Instability[J].International Journal of Heat and Fluid Flow.Sept. 1989,10(3):211-223.
    [52]Longley J.P., Shin H.W., Plumley R.E., Silkowski P.D., Day LJ., Greitzer E.M., Tan C.S., Wisler D.C.. Effects of Rotating Inlet Distortion on Multistage Compressor Stability [J]. ASME Journal of Turbomachinery.1996,118(2):181-188.
    [53]Peters T., Fottem L.. Effects of Co-and Counter-Rotating Inlet Distortions on a 5-Stage HP-Compressor[C].ASME 2002-30395.2002.
    [54]赵全春.压气机试验用的三种压力畸变发生器及试验结果[J].航空发动机.1995,(3):28-38.
    [55]陈晓.变唇口模拟器研制技术报告[R].南京:南京航空学院.1991,6.
    [56]王勤.在动态畸变流场中的脉动压力统计特性初探[J].航空发动机.2000,(2):14-20.
    [57]赵全春.压气机“挡板”畸变试验方法[J].航空发动机.1999,(4):17-21.
    [58]李传鹏,胡俊.旋转进气畸变对轴流压气机气动稳定性影响实验研究[J].航空动力学报.2000,8(4):433-437.
    [59]Feng Lin, Meilin Li, Jingyi Chen. Long-to-Short Length Scale Transition:A Stall Inception Phenomenon in An Axial Compressor with Inlet Distortion [J].ASME Journal of turbomachinery. 2006,128(1):130-140.
    [60]童志庭,张靖煊,李美林,聂超群.不同进口畸变下低速压气机近失速状态非定常特征[J].工程热物理学报.2006,27(1):51-53.
    [61]蒋华兵,陆亚钧,袁巍等.进气畸变对低速轴流压气机失速特性的影响[J].航空动力学报.2008,23(2):355-360.
    [62]马燕荣,马明明,王小峰等.某型涡扇发动机扰流板进气总压畸变研究[J].航空动力学报.2009,24(5):1028-1034.
    [63]江勇,陈戈,孔卫东等.某型航空发动机对插板式进气畸变的响应[J].空军工程大学学报(自然科学版).2011,12(3):1-5.
    [64]屠宝峰,胡骏.径向进气总压畸变对压气机气动稳定性的影响[J].推进技术.2012,33(2):167-173.
    [65]李茂义,袁巍,陆亚钧等.进气畸变对跨声速压气机气动影响的机理研究[J].航空动力学报.2014,29(2):374-383.
    [66]黄健,吴虎,杜文海.45。周向压力畸变对轴流压气机影响的实验研究和机理分析[J].航空动力学报.2007,22(3):460-464.
    [67]Ljevar S.,de Lange H.C.,Steenhoven A.A. Rotating Stall Characteristics in A Wide Vaneless Diffuser [C]. ASME paper, GT2005-68194,2005.
    [68]Gunn E.J., Tooze S.E., Hall C.A.. An Experimental Study of Loss Sources in a Fan Operating with Continuous Inlet Stagnation Pressure Distortion [C]. ASME paper, GT2012-68888,2012.
    [69]Maoyi Li, Wei Yuan, Xizhen Song, et al. An Experimental Investigation about the Effect of the Partial Casing Treatment on a Transonic Aixal-Flow Compressor Performance under Inlet Distortion [C]. ASME paper, GT2012-68442,2012.
    [70]Liu H.J., Ouyang H., Wu Y.D., et al. Investigation on Aeroacoustics and Aerodynamics of the Stator Lean Effect for Rotor-Stator Interaction[J].ASME Paper GT-2013-94554.2013.
    [71]赵伟光,金东海,杜幸民.压气机叶栅非轴对称端壁造型的优化设计[J].工程热物理学报.2013,34(6):1047-1050.
    [72]刘波,曹志远,黄建等.跨声速轴流压气机非轴对称端壁造型优化设计[J].推进技术.2012,33(5):689-694.
    [73]Peaeson H., McKenzie A.. Wakes in Axial Compressors J].Journal of the Royal Aeronautical Society.July,1959,63(583):415-416.
    [74]Hale A., O'Brien W.. A Three-Dimensional Turbine Engine Analysis Compressor Code (TEACC) for Steady-State Inlet Distortion[J].ASME Journal of Turbomachinery.1998,120(2): 422-430.
    [75]Davis M., Hale A., Beale D.. An Argument for Enhancement of The Current Inlet Distortion Ground Test Practice for Aircraft Gas Turbine Engines[J].ASME Journal of turbomachinery.2002, 124(2):235-241.
    [76]Rade D., Bolecs A., Russler P.. Influence of Inlet Distortion on Transonic Compressor Blade Loading[J]. AIAA Paper-95-2461.
    [77]赵运生,胡骏,屠宝锋,李亮,罗钜.进气畸变对涡扇发动机稳定性及性能影响[J].航空动力学报.2013,28(6):1298-1304.
    [78]李成龙,李军,强晓明,李凡玉,罗志煌.进口导流叶排角度对轴流压气机总压畸变的影响[J].空军工程大学学报(自然科学版).2013,14(6):13-17.
    [79]乔渭阳,蔡元虎.燃气涡轮发动机压缩系统稳定性数值模拟的研究[J].燃气涡轮试验与研究.2001,(2):19-25.
    [80]Li H.D., He L.. Single-Passage Analysis of Unsteady Flows Around Vibrating Blade of a Transonic Fan under Inlet Distortion[J]. ASME Journal of Turbomachinery.2002,124(2):285-292.
    [81]吴虎等.跨声速双级轴流压气机对周向进气总压畸变的响应特性分析.航空动力学报.2006,21(3):437-441.
    [82]时培杰,乔渭阳,魏佐君等.畸变进气下压气机三维黏性数值计算模型.航空动力学报.2012,27(7):1472-1478.
    [83]蒋康涛,徐纲,张宏武等.单级跨音压气机整圈三维动静叶干涉的数值模拟[J].航空动力学报.2002,17(5):549-555.
    [84]蒋康涛.低速轴流压气机旋转失速的数值模拟研究[D]:(博士学位论文).北京:中国科学院研究生院(工程热物理研究所).2004.
    [85]黄健,吴虎,张晓东,党春宁.轴流压气机对周向总压畸变非定常响应的数值模拟[J].航空动力学报.2008,23(9):1701-1706.
    [86]李美林,林峰,陈静宜等.周向进口畸变对压气机失速过程的影响.中国工程热物理学术会议论文集.2004:453-457.
    [87]张靖煊.畸变条件下轴流压气机叶顶间隙流对流动失稳影响的非定常机制[D]:(博士学位论文).北京:中国科学院研究生院.2007.
    [88]孙鹏.总压畸变对跨声速风扇流场结构影响的全流道数值模拟[D]:(博士学位论文).哈尔滨:哈尔滨工业大学.2007.
    [89]孙鹏,钟兢军,冯国泰.跨声速风扇流场中弯叶片抗畸变能力研究[J].工程热物理学报.2008,29(7):1111-1116.
    [90]张皓光,楚武利,吴艳辉等.进口总压畸变对压气机性能及流场影响的机理研究[J].机械科学与技术.2010,29(7):880-885.
    [91]芮长胜,吴虎.周向总压畸变条件下多级轴流压气机失速首发级预测分析[J].航空发动机.2011,37(5):49-52.
    [92]屠宝锋,胡骏.旋转总压畸变对压气机稳定性影响的三维非定常模型.航空动力学报.2011,26(2):255-261.
    [93]史亚锋,吴虎,黄健等.周向总压畸变进气下叶片前掠对转子稳定性的影响[J].航空动力学报.2012,27(3):657-665.
    [94]都昆.总压畸变对超声速压气机流场结构影响的机理探索[D]:(硕士学位论文).大连:大连海事大学.2012.
    [95]安玉戈,刘火星.压气机进气畸变数值模拟技术研究.航空学报.2012,33(9):1624-1632.
    [96]刘永泉,刘火星,郑宁.某发动机风扇进气畸变数值模拟.航空动力学报.2012,27(9):2099-2105.
    [97]胡骏,赵运生,丁宁等.进气畸变对大涵道比涡扇发动机稳定性的影响.航空发动机.2013,39(6):6-12.
    [98]Hu J., et al. A Simple Solution of Post-Stall Transients in Axial Compression Systems[J]. Proceedings of the First International Symposium on Experimental and Computational Aerothermodynamics of Internal Flow.1990.
    [99]Hu J., et al. Numerical Simulation of Stall Transients of Axial Compression Systems with Inlet Distortion[J]ASME 91-GT-100.1991.
    [100]Hu J, Tang G. C., Zhang H. M.. An Investigation of Post-Stall Transients and Recoverability of Axial Compression Systems:Part I-A Simplified Method[J]. SME 92-GT-55.1992
    [101]Hu J, Tang G. C., Zhang H. M.. An Investigation of Post-Stall Transients and Recoverability of Axial Compression Systems:Part II-Numerical Simulations[J].ASME 92-GT-56.1992.
    [102]胡骏等.轴流压气机中旋转失速的研究[J].航空学报.1994,15(4):481-487.
    [103]Hu J., Fottner L.. Calculations of Effects of Rotating Inlet Distortion on Flow Instabilities in Compression Systems[J].ASME 95-GT-196.1995.
    [104]Hu J., Fottner L.. Numerical Simulation of Active Suppression of Rotating Stall in Axial Compression Systems[J]Journal of Thermal Science.1996,5(4):231-242.
    [105]Hu J., Peters T., Fottner L.. Numerical Simulation of Flow Instabilities in High Speed Multistage Compressors [J] Journal of Thermal Science.1999,8(1):23-31.
    [106]胡骏.旋转总压畸变对压气机稳定性影响数值模拟[J].工程热物理学报.2000,21(2):161-165.
    [107]张环,胡骏,李传鹏,王英锋.轴向间距对压气机气动稳定性的影响[J].航空动力学报.2005,20(1):120-124.
    [108]赵勇,胡骏.某风扇/增压级非设计点性能计算及进气畸变影响分析[J].航空动力学报.2007,22(7):1087-1092.
    [109]Ljevar S., de Lange H. C., Van Steenhoven A. A.. Rotating Stall Characteristics in a Wide Vaneless Diffuser[C].Proceedings of ASME Turbo Expo 2005, Reno-Tahoe, Nevada, USA. GT2005-68194.2005.
    [110]Javier Castaneda, Ahad Mehdi, Domenico di Cugno, et al. A Preliminary Numerical CFD Analysis of Transonic Compressor Rotors when Subject to Inlet Swirl Distortion [C]. ASME paper, GT2011-46560,2011.
    [111]Taieb Ben Sghaier, Ahad Mehdi, Vassilios Pachidis, et al. A Parametric Numerical Study of the Effects of Inlet Swirl Distortion on a Transonic Compressor Stage [C]. ASME paper, GT2013-94374,2013.
    [112]Defoe J.J., Spakovszky Z.S.. Shock Propagation and MPT Noise From a Transonic Rotor in Non-Uniform Flow [C]. ASME paper, GT2011-45645,2011.
    [113]张皓光,吴俊,楚武利等.进口畸变对轴流压气机流场影响的全通道数值研究.推进技术.2013,34(8):1056-1063.
    [114]Hirai K., Kodama H., Nozaki O., et al. Unsteady Three-Dimensional Analysis of Inlet Distortion in Turbomachinery[C].AIAA, The 33rd Joint Propulsion Conference & Exhibit. AIAA-97-2735.1997.
    [115]Steven E. Gorrell, David Car, Steven L. Puterbaugh, Jordi Estevadeordal. An investigation of wake-shock interactions in a transonic compressor with DPIV and time-accurate CFD[C]. ASME Turbo Expo 2005, Reno-Tahoe, Nevada, USA. GT2005-69107.2005.
    [116]张士杰,袁新,叶大均.跨音速轴流压气机级三维黏性流场全工况数值模拟[J].工程热物理学报.2003,24(1):43-45.
    [117]刘前智.双级风扇三维黏性非定常流动的数值解[J].航空动力学报.2003,18(6):768-771.
    [118]丁可金,楚武利,卢新根等.单级轴流压气机内部三维流动的数值模拟[J].流体机械.2005,33(8):21-23.
    [119]曹国强,梁冰,包明宇.基于FLUENT的叶轮机械三维紊流流场数值模拟[J].机械设计与制造.2005,(8):22-24.
    [120]贾海军.轴流压气机跨声速三维流场数值模拟[D]:(博士学位论文).西安:西北工业大学.2006.
    [121]Emmons H W, Pearson C E, Grant H P C. Compressor Surge and Stall Propagation [J].Transactions of the ASME.1955,77(3):455-469.
    [122]Stenning A., Kriebel A., Montgomery S.. Stall Propagation in Axial Compressors[R].NACA TN 3580. May 1955.
    [123]Marble F.E.. Propagation of Stall in a Compressor Blade Row[J].Journal of the Aeronautical Sciences.1955,22(8):541-544.
    [124]Sears W.R.. Rotating Stall in Axial Compressors[J].Zeitschrift fur angewandte Mathematik und Physik(ZAMP).1955,6(6):429-455.
    [125]Kriebel A.R., Schuuind R.G.. Stall Propagation in a Cascade of Airfoils[R]. NACA TR R 61. 1960
    [126]Dunham J.. Non-Asymmetric Flows in Axial Compressors[J].Mechanical Engineering Science Monograph No.3,Institution of Mechanical Engineers.1965
    [127]Leiblein Seymour, Roudebush William H.. Theoretical Loss Relations for Low-speed Two-Dimensional-Cascade Flow[R]. NACA TN-3662.1956
    [128]Koch C.C.. Stalling Pressure Rise Capability of Axial Flow Compressor Stages[J].ASME Journal of Engineering for Power.1981,103(4):645-656
    [129]Moore F.K., Greitzer E.M.. A Theory of Post Stall Transients in Axial Compression Systems: Part I Development of the Equations[J].ASME Journal of Engineering for Power.1986,108(1): 68-76.
    [130]Greitzer E.M., Moore F.K.. A Theory of Post Stall Transients in Axial Compression Systems: Part II:Application[J]. ASME Journal of Engineering for Power.1986,108(2):231-239.
    [131]Lin F., Chen J.. Theoretical Study of Inlet-Distortion-Induced Axial Compression Systems[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy.2006, 220(4):327-342
    [132]刘志伟.小扰动理论预测轴流压气机旋转失速起始点的研究[J].工程热物理学报.1981,2(3):230-236.
    [133]Takata H., Nagano S.. Nonlinear Analysis of Rotating Stall[J].ASME Journal of Engineering for Power.1972,94(4):279-293.
    [134]陆亚钧.叶轮机非定常流动理论[M].北京:北京航空航天大学出版社.1990:90-109.
    [135]Greitzer E.M.. Surge and Rotating Stall in Axial Flow Compressors:Part Ⅰ[J].ASME Journal of Engineering for Power.1976,98:190-198.
    [136]Greitzer E.M.. Surge and Rotating Stall in Axial Flow Compressors:Part Ⅱ[J].ASME Journal of Engineering for Power.1976,98:199-217.
    [137]Cumpsty N.A.,Greitzer E.M.. A Simple Model for Compressor Stall Cell Propagation[J]. Transactions of the ASME Journal of Engineering for Power.1982,104(1):170-176
    [138]Moore F.K.. A Theory of Rotating Stall of Multistage Axial Compressors:Part I:Small Disturbances[J]. ASME 83-GT-44.1983,106(2):313-320.
    [139]Moore F.K.. A Theory of Rotating Stall of Multistage Axial Compressors:Part Ⅱ:Finite Disturbances[J]. ASME 83-GT-45.1983,106(2):321-326.
    [140]Moore F.K.. A Theory of Rotating Stall of Multistage Axial Compressors:Part III:Limit Cycles[J]. ASME 83-GT-46,1983,106(2):327-334.
    [141]胡骏.轴流压缩系统动态失速特性的研究[D]:(博士学位论文).南京:南京航空航天大学.1991.
    [142]Ishii H., Kashiwabara Y.. Numerical Investigation of Surge and Rotating Stall in Multistage Axial Compressors[J]. AIAA 92-3193.1992
    [143]Escuret J.F., Gamier V.. Numerical Simulations of Surge and Rotating Stall in Multi-Stage Axial-Flow Compressors[J]. AIAA 94-3202.1994
    [144]He,1-ccedil, Saxer-Felici M, et al. Numerical and Experimental Study of Rotating Stall in an Axial Compressor Stage[J].AIAA Journal.2000,38(7):1132-1141.
    [145]Gourdain N., Burguburn, Leboeuf F., Miton H. Numerical Simulation of Rotating Stall in a Subsonic Compressor[J]. Aerospace science and technology.2006,10(1):9-18.
    [146]许开富,乔渭阳,罗华玲.风扇/压气机稳定性三维模型的研究[J].推进技术.2008(3).
    [147]苏中亮,吴艳辉,楚武利等.影响某双级跨声风扇流动稳定性的关键因素分析[J].航空动力学报.2010,(2).
    [148]屠宝锋.风扇/压气机动态失速过程和多尺度非定常气动稳定性研究[D]:(博士学位论文).南京:南京航空航天大学.2009.
    [149]McFougall N M, Cumpsty N A, Hynes T P. Stall Inception in Axial Compressors[J].ASME Journal of Turbomachinery.1990,112:116-125.
    [150]Gamier V.H., Epstein A.H., Greitzer E.M.. Rotating Waves as a Stall Inception Indication in Axial Compressors [J]. ASME Journal of Turbomachinery.1991,113(2):290-302.
    [151]Paduano J.D., Valavani L,. Epstein A.H.. Parameter Identification of Compressor Dynamics During Closed-Loop Operation[C]. American Control Confeerence, Boston. IEEE.1991:2379-2385.
    [152]Paduano J.D., Valavani L., Epstein A.H., et al. Modeling for Control of Rotating Stall[J]. Automatic.1994,30(9):1357-1373.
    [153]Mansoux C.A., Cysling D.L., Setiawan J.D., et al. Distribution Nonlinear Modeling and Stability Analysis of Axial Compressor Stall and Surge[C].American Control Conference,IEEE, Baltimore.1994,2:2305-2316.
    [154]Bonnaure L.P. Modeling High Speed Multistage Compressor Stability[D].[Master's Thesis]. Massachusetts:MIT, Department of Aeronautics and Astronautics.1991.
    [155]Hendricks G.J., Bonnaure L.P., Longley J.P., et al. Analysis of Rotating Stall Onset in High-Speed Axial Flow Compressors[J].AIAA paper 93-2233.The 29th Joint Propulsion Conference, Monterey.1993.
    [156]Feulner M. R., Hendricks G.J., Paduano J.D. Modeling for Control of Rotating Stall in High Speed Multi-Stage Axial Compressors[J].ASME Journal of Turbomachinery.1996,118:1-15.
    [157]Frechette L G. Implications of Stability Modeling for High-Speed Axial Compressor Design[D]. [Master's Thesis]. Massachusetts:MIT.Dept. of Aeronautics and Astronautics.1997.
    [158]张环.旋转总压畸变对压气机稳定性影响的研究[D]:(博士学位论文).南京:南京航空航天大学.2009.
    [159]张环,胡骏,刘大响等.旋转总压畸变对压气机稳定性影响的二维不可压缩模型[J].航空动力学报.2009,24(8).
    [160]陈策,聂超群,李军.基于三阶MG模型的轴流压气机过失速的非线性分析[J].应用力学学报.2008,25(3):355-360.
    [161]徐纲,李军,朱俊强等.压气机系统的非线性对失速模式的影响[J].西北工业大学学报.2000,18(4):572-576.
    [162]张春梅,张超,徐自立等.压缩机系统高阶Moore-Greitzer模型的动态行为分析[J].西安交通大学学报.2007,41(1):4145.
    [163]Camp T.R., Day I.J. A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor[J].ASME Journal of Turbomachinery.1998,120:393-401.
    [164]Day I.J.. Stall Inception in Axial Flow Compressors[J].ASME Journal of Turbomachinery. 1993,115(1):1-9.
    [165]Park, H.G. Unsteady Disturbance Structures in Axial Flow Compressor Stall Inception[D]: [Master's Thesis]. Massachusetts:MIT. Dept. of Mechanical Engineering.1994.
    [166]Day I. J.. Active Suppression of Rotating Stall and Surge in Axial Compressors[J].ASME Journal of Turbomachinery.1993,115(1).
    [167]Day I.J., Freeman, C.. The Unstable Behavior of Low and High Speed Compressors[J]. ASME Journal of Turbomachinery.1994,116(2):194-201.
    [168]Day I.J., Breuer T., Escuret J., Cherett M., Wislon A.. Stall Inception and the Prospects for Active Control in Four High-Speed Compressors[J].ASME Journal of Turbomachinery.1999,121(1): 18-27.
    [169]Silkowski. Measurments of Rotor Stalling in a Matched and Mismatched Multistage Compressor[J].GTL Report No.221, Gas Turbine Laboratory, Massachusetts Institute of Technology. 1995.
    [170]Vo H.D., Tan C.S., Greitzer E.M.. Criteria for Spike Initiated Rotating Stall[J].ASME Journal of Turbomachinery.2008,130:1-9.
    [171]Chen J.P., Hathaway M.D., Herrick G.P.. Prestall Behavior of a Transonic Axial Compressor Stage via Time-Accurate Numerical Simulation[R].NASA TM-215163.2008.
    [172]吴艳辉,李清鹏,楚武利等.亚声速压气机转子失速先兆诱发机制的非定常机理分析[J].西北工业大学学报.2011,(3).
    [173]Tong Z.T., Lin F., Chen J.Y., et al. The Self-Induced Unsteadiness of Tip[J].ASME Journal of Turbomachinery.2008,130:1-9.
    [174]胡书珍,张燕峰,卢新根等.跨声速轴流压气机间隙泄漏流触发旋转失速[J].推进技术.2010,31(1):47-51.
    [175]Hah C., Bergner J., Schiffer H.P.. Short Length-Scale Rotating Stall Inception in a Transonic Axial Compressor Criteria and Mechanisms[J].ASME Paper GT2006-90045.2006.
    [176]Joslyn H.D., Dring R.P.. Axial Compressor Stator Aerodynamics[J].ASME Journal of Engineering for Gas Turbines and Power.1985,107:485-492.
    [177]Gbadebo S.A, Cumpsty N.A., Hynes T.P.. Three Dimensional Separations in Axial Compressors[J].ASME Journal of Turbomachinery.2005,127:331-339.
    [178]田江涛,吴艳辉,李清鹏等.静子轮毂角区失速与尖隙流动相互作用机理分析[J].工程热物理学报.2011,32(12):2034-2039.
    [179]Weber A., Schreiber H.A., Fuchs R., et al.3-D Transonic Flow in a Compressor Cascade with Shock-Induced Corner Stall [J].A SME Journal of Turbomachinery.2002,124:358-365.
    [180]罗钜,胡俊,李亮等.弯曲叶片对压气机轮毂-角区失速的影响[J].南京航空航天大学学报.2012,44(2):139-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700