用户名: 密码: 验证码:
浅层月壤铲挖动力学建模及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国深空探测任务,特别是嫦娥三期工程的顺利开展,浅层月壤采样成为了当前航天领域的重要研究内容。由于月面1/6重力环境及月壤颗粒间范德华力对月壤力学特性的影响,使得月面环境下的浅层月壤铲挖动力学特性不但难以通过地面试验进行模拟,也无法直接利用传统的铲挖阻力经验公式进行计算。因此,为了深入了解采样器在月壤中的运动阻力及两者间的耦合动力学特性,降低最大铲挖阻力和总能耗,提高柔性采样机械臂的铲挖控制精度,本文在结合已有国内外研究成果的基础上,推导了浅层月壤铲挖阻力公式,并采用离散元法对铲挖阻力参数和月壤流变参数进行回归分析,建立月面环境下的铲挖工程模型,用以实现对不同采样方式下的浅层月壤铲挖动力学分析和应用工作。
     为了解决1/6重力环境下月壤力学特性的分析和计算问题,本文在离散元仿真框架下,通过建立带范德华力的粘-弹颗粒接触关系的离散元模型,利用多输出最小二乘支持向量机(SVM)及自适应遗传算法,以当前已公开的真实月壤地面三轴试验数据为参数标定依据,实现对能够表征月壤宏观力学性质的离散元等效细观参数进行标定,最终建立了浅层月壤离散元模型。
     切削是铲挖过程中的一个重要动作。在浅层月壤铲挖过程中,采样器侧板对月壤进行切削,实现样本月壤与原位月壤的分离。为解决浅层月壤的切削阻力预测问题,本文利用静止土压力理论及Kostritsyn切削阻力理论,分别对切削过程中月壤预应力和挤压变形恢复力导致的侧板压力进行分析,并依据上述分析成果建立平行、直立两种切削模式下的浅层月壤纯切削阻力的计算模型。针对不同月壤基本参数,即不同平均粒径、孔隙率和级配下的浅层月壤具有不同静止土压力系数、变形比阻和外摩擦系数的特点,本文采用离散元法开展了侧限压缩试验和机-土摩擦试验,建立了月壤基本参数与上述宏观力学参数间的回归模型。在此基础上,通过对比月壤切削模型预测结果和月壤离散元仿真结果,验证了切削计算模型的正确性和精度。
     推移是铲挖过程中的另一个重要动作。在浅层月壤推移过程中,采样器铲平面带动月壤向铲挖方向整体运动,实现样本与采样器的随动。为解决浅层月壤在不同运动模式下的推移阻力预测问题,本文结合Rankine被动土压力理论和水平层分析法,建立了针对铲平面整体平移、顶点转动两种模式下的铲面阻力分布方程组,并针对该方程组在DFP求解算法中的不具有全局初值收敛性的特点,提出了DFP+遗传算法的求解方法,实现对铲面阻力分布及月壤滑移线形状的求解,最终建立月壤推移阻力的计算模型。针对不同基本参数的浅层月壤具有不同抗剪强度的特点,本文采用离散元法开展了静三轴试验离散元仿真,建立了月壤基本参数与月壤内聚力、内摩擦角间的回归模型。在此基础上,通过对比月壤推移模型和月壤离散元仿真得出的阻力分布结果,验证了推移计算模型的正确性和精度。
     在实际铲挖过程中,铲斗形状、铲前堆积月壤量、月壤基本参数均会影响对月壤的铲挖阻力。本文对铲挖全过程中铲斗、月壤状态进行分析,并基于Hemami铲挖阻力理论,综合考虑铲挖过程中的切削阻力、推移阻力和月壤滑移体惯性力,建立铲挖全过程中的月壤阻力预测工程模型。在此基础上,以凤凰号上采样器基本结构参数为例,设计独立采样器算例对月壤采样过程进行分析,基于最小阻力和最小功耗分析铲抬模式下的最佳切入角,并分别计算旋刨模式和铲抬模式下的全过程采样阻力变化,分析两模式在不同月壤条件下的适用性。
     除铲挖阻力外,铲挖过程中的变铲挖阻力还会导致铲斗与斗内月壤间的耦合振动问题。本文引入土壤流变理论,利用离散元动三轴试验得出的并联Iwan模型对时变铲挖力造成的月壤激励响应进行研究,实现对月壤机-土耦合作用的分析,最终建立考虑机-土耦合的浅层月壤铲挖动力学模型。在此基础上,分析机械臂铲挖采样过程。由于铲挖控制过程中机械臂末端铲斗对月壤存在时变铲挖力,因此铲斗与月壤间存在一定的耦合作用。应用考虑机-土耦合的浅层月壤铲挖动力学模型分析柔性采样机械臂在铲挖月壤时的动力学及控制问题。基于模态综合法建立包括铲斗在内的4自由度机械臂,设计合理的月壤铲挖策略和轨迹,并采用计算力矩控制器实现柔性采样机械臂的浅层月壤铲挖控制。对于待铲挖月壤的未知参数会影响控制性能的问题,设计在初期阶段通过测量不同铲挖位置的阻力,采用Newton-Raphson法对铲挖点的原位月壤实施参数估计,并利用该估计结果修正控制器参数,提高铲挖后程的轨迹跟踪控制精度。
With a successfully development of deep space exploration mission, especially for the stage III of Chang E project, the excavation of lunar regolith becomes the focus of the current research. It is difficult to simulate or test the dynamics of the lunar regolith excavation on earth environment, because of the influence of1/6gravity and lunar regolith’s adhensive sand type. Moreover, the difference between lunar regolith and earth soil in Marco physical properties will make it hard to use the traditional empirical resistance formula for lunar surface environment. Therefore, to get a grip on the dynamics of the lunar regolith sampler, and for further improvement of the excavation control accuracy, the dynamics modeling of lunar regolith excavation is been researched based on the domestic and foreign research results and the correcting of resistance coefficient and rheometry parameters.
     To counteract the problems of simulation and analysis of lunar regolith’s mechanical properties in1/6gravity environment, a viscosity-elastic contact model with adhension is established using discrete element method (DEM). By using multiple-output Least Squares Support Vector Machines, self-adaptor Genetic Algorithms (AGA) and real lunar regolith trixial testing data, the sphere particle equivalent micro parameters which can describe lunar regolith’s macroscopic mechanical properties is standardized.
     Penetration is an important phenomenon in lunar regolith excavation. It can separate the sample from lunar regolith in suit by the bucket’s penetration action. In order to predict the penetration resistance of lunar regolith, a penetration resistance model in1/6gravity environment is established by combining the static earth pressure theory and Kostritsyn resistance formula. According to the relevance between porosity, grandation and lunar regolith mechanical properties, the earth pressure coefficient and the specific resistance are corrected by DEM confined compression simulation, and the friction coefficient is corrected by DEM friction testing simulation. On this basis, By comparison an example’s penetration resistance which is calculated respectively by prediction model and discrete element model, the correctness and accuracy of penetration model are verified.
     Cutting is the other important phenomenon in lunar regolith excavation. It can make the lunar regolith moved as an entire substance in cutting action. In order to predict the cutting resistance of lunar regolith, a cutting resistance model,which is suitable for the translation motion and top rotation motion, is establish by using the mothod of level layer element. According to the feature of the non global convergence in the cutting model, a new solving method which integrated the DFP and genetic algorithms is proposed, and it realizes the solution of the resistance distribution. According to the relevance between lunar regolith basic properties and shear strength, the lunar regolith conhesion and internal friction angle are corrected by DEM triaxial testing simulation. On this basis, By comparison the cutting distribution which is calculated respectively by prediction model and discrete element model, the correctness and accuracy of cutting model are verified.
     The actual excavation process is very complicated, the bucket shape and the lunar regolith accumulation influence the excavation resistance. Therefore, an excavation resistance model considing penetration and cutting action is established based on Hemami excavation theory. On this basis, using the excavation resistance model in optimization of bucket penetration angle, calculating the specified lunar regolith’s excavation resistance in condition of the rotation action and shoveling action, and then analyze the optimal structure parameters in minimum resistance using AGA.
     Meanwhile, according to the soil rheological theory, a variable excavation force makes the lunar regolith vibrate. So a lunar regolith’s parallel connection Iwan model is established, and the Iwan parameters are calculated by DEM dynamic trixial testing. Finally, a lunar regolith simple substance2-DOF vibration equation which is used in soil-tool interaction is established by using this Iwan model. On this basis, using the excavation dynamics model in control algorithm design of sample manipulator. With this object, a4-DOF flexible manipulator model is created using modal synthesis method, an excavation strategy is designed, and an excavation controller based on computed torque method is achieved. In view of the characteristic that different lunar regolith owns differnet marco parameters, this paper estimates the regolith in suit in early stage of the excavation, making use of Newton-Raphson method, then corrects the controller parameters by this estimation value, to improve the excavation control accuracy.
引文
[1] Howser WA. Lunar excavating bucket[R]. Georgia Institute of Technology,1987:11-17.
    [2]卢波.21世纪空间探测的发展趋势及其小型化技术研究[C].中国空间科学学会空间探测专业委员会第十五次学术会议,北京,2002.28.
    [3]欧阳自远.我国月球探测的总体科学目标与发展战略[J].地球科学进展,2004,03:351-358.
    [4] Kurt R Sacksteder, Gerald B Sanders. In-Situ Resource Utilization forLunar and Mars Exploration [J]. American Institute of Aeronautics andAstronautics,2007:345-350.
    [5]刘志全,庞彧,李新立.深空探测自动采样机构的特点及应用[J].航天器工程,2011,20(03):120-125.
    [6] Gerald B Sanders, William E Larson, Kurt R Sacksteder, et al. NASAIn-Situ Resource Utilization (ISRU) Project–Development&Implementation [J]. American Institute of Aeronautics and Astronautics,2008:7853-7868.
    [7] Beilock M. Surveyor lander mission and capability [R]. NASAN64-228969,1964.
    [8] Jaffe LD, Batterson SA, Brown WE, et al. Principal scientific results ofthe Surveyor3Mission [J]. Journal of Geophysical Research,1968,73(12):3983-3987.
    [9] Larson WJ, Pranke LK. Human spaceflight: mission analysis and design
    [M]. McGraw-Hill Companies,1999.
    [10] Taback I, Goodlette J. The Viking lander–Then and Now [J]. Mars: Past,Present and Future, Progress in Astronautics and Aeronautics,1992:145.
    [11] Robert Shotwell. Phoenix–the first Mars Scout mission [J]. ActaAstronautica,2005,57(2-8):121-134.
    [12] Smith PH, Tamppari L, Arvidson RE, et al. Introductin to special sectionon the Phoenix Mission: Landing Site Characterization Experiments,Mission Overviews, and Expected Science[J]. Journal of GeophysicalResearch: Planets (1991-2012),2008,113(E3):2156-2202.
    [13] Hayati S, Volpe R, Backes P, et al. The Rocky7rover: a Mars sciencecraftprototype[C]. Proceedings of the1997IEEE International Conference onRobotics and Automation, Albuquerque, New Mexico,1997,2458-2464.
    [14] Apostolopoulos DS, Liam Pedersen, Shamah BN, et al. Robotic antarcticmeteorite search: outcomes[C]. Proceedings of the2001IEEEInternational Conference on Robotics and Automation, Seoul,2001,4174-4179.
    [15] Takashi Kubota, Yasuharu Kunii, Yoji Kuroda, et al. Japanese lunarrobotics exploration by co-operation with lander and rover [J]. Journal ofEarth System Science,2005,114(6):777-785.
    [16]紫晓.嫦娥工程二、三期研究展望[J].中国航天,2007,355(11):58-62.
    [17] Shkuratov YG, Bondarenko NV. Regolith layer thickness mapping of themoon by radar and optical data [J]. Icarus,2001,149(2):329-338.
    [18] Taylor SR. Planetary science: A lunar perspective [M]. Houston, Texas:Lunar and Planetary Institute,1982.
    [19]欧阳自远.天体化学[M].北京:科学出版社,1988.93-145.
    [20] Carrier WIII, Mitchell J K, Mahmood A. The nature of lunar soil [J].Journal of the Soil Mechanics and Foundations Division,1973,99(10):813-832.
    [21] Scott RF. Failure [J]. Geotechnique,1987,37(4):423-466.
    [22] Gromov VV. Physical and mechanical properties of lunar and planetarysoils [J]. Earth, Moon and Planets,1998,80(1):51-72.
    [23] Bazilevskiy AT, Grebennik NN, Gromov VV, et al. Physical andmechanical properties of lunar soil as function of specifics of relief andprocesses in vicinity of operation of Lunokhod-2[J]. USSR Report Space,1984,2:65-66.
    [24] Cherkasov II, Gromov VV, Zobachev NM, et al. Soil-density meterpenetrometer of the automatic lunar station Luna-13[J]. Soviet PhysicsDoklady,1968,(13):336.
    [25] Mckay DS, Carter JL Boles WW, et al. JSG-1: a new lunar soil simulant[J]. Engineering, Construction, and Operations in Space IV: AmericanSociety of Civil Engineers,1994:857-866.
    [26]郑永春,王世杰,冯俊明,等. CAS-1模拟月壤[J].矿物学报,2007,27(3):571-578.
    [27]肖龙,贺新星,吴涛,等.月壤的性质与模拟月壤CUG-1A[C].中国空间科学学会第七次学术年会,中国辽宁大连,2009.391.
    [28]蒋明镜,李立青. TJ-1模拟月壤的研制[J].岩土工程学报,2011,33(2):209-214.
    [29] Richard AS. Cam cap models for lunar soil: a first look[C]. Earth andSpace2006: Engineering, Construction, and Operations in ChallengingEnvironment. Houston: ASCE,2006:1-7.
    [30]尹忠旺,丁希仑,郑岳山.基于Abaqus的月壤有限元建模及仿真分析[J].军民两用技术与产品.2008,246(11):46-48.
    [31]李立春,月球探测器软着陆缓冲机构缓冲性能分析研究[D].南京:南京航空航天大学,2009.
    [32]杨艳静,向树红.模板壤力学性质的试验和仿真研究[J].航天器环境工程.2009,26(S1):1-4.
    [33]杨艳静,向树红.月球车刚性车轮与模拟月壤相互作用有限元仿真和试验验证[J].强度与环境.2010,37(01):47-52.
    [34]刘琳琳,月球车轮壤系统仿真分析[D].长春:吉林大学,2012.
    [35]梁东平,柴洪友.着陆冲击仿真月壤本构模型及有限元建模[J].航天器工程.2012,21(01):18-24.
    [36] Shkuratov YG, Bondarenko NV. Regolith layer thickness mapping of themoon by radar and optical data [J]. Icarus,2001,149(2):329-338.
    [37] Yosio Nakamura, James Dorman, Frederick Duennebier, et al. Shallowlunar structure determined from the passive seismic experiment [J]. Themoon,1975,13(1-3):57-66.
    [38] Heiken GH, Vaniman DT, French BM. Lunar Sourcebook [M]. London:Cambridge University Press,1991.
    [39] Graf John C. Lunar soil grain size catalog [M]. National Aeronautics andSpace Administration, Office of Management, Scientific and TechnicalInformation Program,1993.
    [40]肖乾信,畅启仁.剪式抓斗挖掘曲线与抓货量[J].上海海运学院学报.1979,(2):18-32.
    [41]畅启仁.论抓斗的抓取阻力[J].上海海运学院学报.1981,(2):43-61.
    [42]王文隆.拖拉机形态学[M].北京:科学技术出版社.1981.
    [43]杨晋生.铲土运输机械设计[M].北京:机械工业出版社.1989.
    [44] Kostritsyn AK. Resisance of Soil to Tillage Tools of Soil-workingImplements [M]. Al Ahram Center for Scientific Translations,1981.
    [45] Osman M. The mechanics of soil cutting blades [J]. Journal of AgriculturalEngineering,1964,9(4):313–328.
    [46] Gill W, VandenBerg G. Agriculture handbook no.316[M]. AgriculturalResearch Service US Department of Agriculture,1968.
    [47] Muff T, King RH, Duke MB. Analysis of a small robot for Martian regolithexcavation [C]. American Institute of Astronautics and Aeronautics;2001.
    [48] Swick WC, Perumpral JV. A model for predicting soil–tool interaction [J].Journal of Terramechanics1988,25(1):43–56.
    [49] McKyes E. Soil cutting and tillage [M]. Developments in agriculturalengineering, vol.7. Amsterdam: Elsevier,1985.
    [50] Zeng XW, Louis Burnoski, Agui JH, et al. Calculation of excavation forcefor ISRU on lunar surface[C].45th AIAA Aerospace Sciences MeetingExhibit. Reno, NV,2007.
    [51] Hemami A, Daneshmend L. Force analysis for automation of the loadingoperation in an LHD-loader [C]. IEEE international conference on roboticsand automation,1992.
    [52] Balovnev VI. New methods for calculating resistance to cutting of soil [J].Amerind Publishing (Translation), P. Datta translator and Rosvuzizdat,New Delhi, Available from National Technical Information Service,Springfield, VA22161,1983and1963, respectively.
    [53] Bernold LE. Experimental studies on mechanics of lunar excavation [J].Journal of Aerospace Engineering,1991,4(1):9-22.
    [54] Boles WW, Scott WD, Connolly JF. Excavation force in reduced gravityenvironment [J]. Journal of Aerospace Engineering,1997,10(2):99-103.
    [55] Bucek M, Agui JH, Zeng X, et al. Experimental measurements ofexcavation forces in lunar soil test beds [C]. Proceedings of the11thAerospace Division International Conference on Engineering, Science,Construction, and Operations in Challenging Environments. Long Beach,California, USA.2008:1-10.
    [56] Agui JH, Wilkinson RA. Granular flow and dynamics of lunar simulants inexcavating implements [J]. Earth and Space,2010:84-94.
    [57] Green A, Zacny K, Pestana J, et al. Investigating the effects of percussionon excavation forces [J]. Journal of Aerospace Engineering,2013,26(1):87-96.
    [58]欧阳自远.月球探测的进展与我国月球探测的科学目标[J].贵州工业大学学报(自然科学版),2003,(06):1-7,17.
    [59] Volpe R, Ohm T, Petras R, et al. A prototype manipulation system for Marsrover science operations [C]. Proceedings of the1997IEEE/RSJInternational Conference on Intelligent Robots and System,1997,3:1486-1492.
    [60]洪嘉振,尤超蓝.刚柔耦合系统动力学研究进展[J].动力学与控制学报,2004,2(2):1-6.
    [61]宋轶民,余跃庆,张策,等.柔性机器人动力学分析与振动控制研究综述[J].机械设计,2003,20(4):1-5.
    [62] Bai Z, Han X, Chen W. Study of a3-DOF parallel manipulator dynamicsbased on Lagrange equation [J]. Journal of Beijing University ofAeronautics and Astronautics,2004,30(1):51-54.
    [63] Pendar H, Vakil M, Zohoor Hassan.Efficient dynamic equations of3-RPSparallel mechanism through Lagrange method[C].2004, Singapore:Institute of Electrical and Electronics Engineers Inc, New York, NY10016.5997, United States.
    [64] Pratiber B, Dwivedy SK. Non-linear dynamics of a flexible single linkCartesian manipulator [J]. International Journal of Non-LinearMechanics,2007,42(9):1062-1073.
    [65] You CL, Hong JZ, Cai GP. Modeling study of planar flexible manipulatorundergoing large deformation [J]. Journal of Shanghai Jiaotong University(Science),2007,12(E6):824-830.
    [66] Liu WF, Gong ZB, Wang QQ. Investigation on Kane dynamic equatiosbased screw theory for open-chain manipulators. Applied Mathematics andMechanics (English Edition),2005.
    [67] Tanner HG, Kyriakopoulos KJ. Kane’s approach to modeling mobilemanipulators. Advanced Robotics,2002.16(1):57-85.
    [68]王琪,陆启韶,黄克累.多体系统动力学Lagrange方法的进展[J].力学与实践,1997,19(3):2-7.
    [69]刘明治,刘春霞.柔性机械臂动力学建模和控制研究[J].力学进展,2001,31(1):1-8.
    [70]王树国,丁希仑,蔡鹤皋.机器人柔性臂动力学有限元建模方法的研究[J].哈尔滨工业大学学报,1996,29(1):114-116.
    [71] Guo J, Li CHm, Dai GC. Dynamic simulation of two links flexiblemanipulator[J]. Journal of Astronautics,2006,27(5):1044-1049.
    [72] Loke VKY, Nieminen TA, Branczyk AM, et al. Modeling opticalmicro-machines[C]. Nikolai Voshchinnikov,9th International Conferenceon Electromagnetic and Light Scattering by Non-Spherical Particles:Theory, Measurements, and Applications, Petersburg,2006:163-166.
    [73]何勇,袁茹,王三民.结构参数对双柔性臂的动力学性能影响的研究[J].振动与冲击,2007,26(4):90-93.
    [74]刘锦刚,洪嘉振.温度场中的柔性梁系统动力学建模[J].振动工程学报,2006,19(4):469-474.
    [75] Ho MT, Tu YW. Position control of a single-link flexible manipulatorusing H∞-based PID control[C]. IEEE Proceedings on Control Theory andApplications,2006,153(5):615-622.
    [76] Jnifene A, Andrews W. Experimental study on active vibration control of asingle-link flexible manipulator using tools of fuzzy logic and neuralnetworks[C]. IEEE Transactions on Instrumentation and Measurement,2005,54(3):1200-1208.
    [77] Usoro PB, Nadira R, and Mahil SS. A finite element/Lagrange approach tomodeling light weight flexible manipulators [J]. ASME J. Dyn. Syst.,Meas., Control,1986,108(3):198-205.
    [78] Ge SS, Lee TH. Zhu CA. Nonlinear feedback controller for a single-linkflexible manipulator based on a finite element model[J]. Journal ofRobotics Systems,1997,14(3):165-178.
    [79]岳士岗,余跃庆,白师贤.多杆柔性机器人动力学方程的瞬态动响应数值求解方法[J].机器人,1995,17(5):269-273.
    [80]岳士岗,余跃庆,白师贤.重载下的柔性机械臂的动力学耦合特性[J].机器人,1996,18(4):33-36.
    [81]田志祥,自由漂浮空间机器人多体动力学及目标捕获研究[D].南京:南京航空航天大学,2012.
    [82]蔡国平,洪嘉振.柔性悬臂梁的离散变结构控制[J].空间科学学报,2004,24(2):145-151.
    [83]胡庆雷,马广富.带有输入非线性的挠性航天器姿态机动变结构控制[J].宇航学报,2006,27(4):630-634.
    [84]张铁民,李贵涛,梁莉.带有加速度反馈的柔性机械臂开关变结构控制[J].机械工程学报,2002,38(3):39-41.
    [85]张铁民,梁莉.带有应变反馈控制的柔性机械臂开关变结构控制的实验研究[J].中国机械工程,2001,12(8):849-851.
    [86] Hogan N. Impedance control: An approach to manipulation: Theory (Part1); Implementation (Part2); Applications (Part3)[J]. ASME J of DynamicSystem, Measurement and Control,1985,107(11):1-24.
    [87] Kazerooni H, Sheridan TB, Houpt PK. Robust compliant motion formanipulators: The fundamental concepts of compliant motion (PartⅠ);Design method (PartⅡ)[J]. IEEE J of Robotics Automation,1986,2(2):83-105.
    [88] Mark W Spong. On the force control problem for flexible jointmanipulators[J]. IEEE Transactions on Automatic Control,1989,34(1):107-111.
    [89] Alin Albu-Schaffer, Christian Ott, Udo Frses, et al. Cartesian impedancecontrol of redundant robots: Recent results with theDLR-light-weight-arms [C]. Proc of2003IEEE Int Conf on Robotics andAutomation.Taipei,2003:3704-3709.
    [90] Christian Ott, Alin Albu-Schaffer, Andreas Kugi.Decoupling basedcartesian impedance control of flexible joint robots [C]. Proc of2003IEEE Int Conf on Robotics and Automation. Taipei,2003:3101-3107.
    [91] Christian Ott, Albu-Schaffer, Andreas Kugi, et al. On the passivity-basedimpedance control of flexible joint robots[J]. IEEE Trans on Robotics,2008,24(2):416-429.
    [92]王文琰.柔性机械臂的建模与智能控制[D].兰州:兰州理工大学,2005.
    [93]刘德满,刘宗富.机器人自适应控制-计算力矩法[J].机器人,1989,3(6):1-5.
    [94] Jack Zhijie Xia, Chia-Hsiang Menq. Real time estimation of elasticdeformation for end-point tracking control of flexible two-linkmanipulators [J]. Journal of Dynamic Systems, Measurement, and Control,2008,113(3):385-393.
    [95] Lucibello P. Output tracking for a nonlinear flexible arm. ASME. Journalof Dynamic Systems [J], Measurement and Control,2010,115:75-78.
    [96]张承龙,王从庆.空间柔性双臂机器人的动力学建模及控制[J].南京理工大学学报,2005,29(增刊):70-72.
    [97]龚捷,鲍金锋,衣冠超,等.基于计算力矩法的装载机工作装置轨迹控制[J].机械工程学报,2012,46(13):141-146.
    [98]郑敏,蒋明镜,申志福.简化接触模型的月壤离散元数值分析[J].岩土力学,2011,(S1):766-771.
    [99] Cundall PA, Strack ODL. A discrete numerical model for granularassemblies [J]. Geotechnique,1979,29:47-65.
    [100] Derjaguin BV, Muller VM, Toporov YUP. Effect of contact deformation onthe adhesion of particles [J]. Journal of colloid and interface science,1975,52:105-108.
    [101] Johnson KL. In contact mechanics [M]. Cambridge: Cambridge UniversityPress,1987.
    [102] Mindlin RD. Compliance of elastic bodies in contact [J]. Appl. Mech.,1949,16:256-270.
    [103] Chang CS, Hicher PY. Model for granular materials with surface energyforces [J]. Journal of Aerospace Engineering,2009,22(1):43-52.
    [104] Walton OR. Numerical simulation of inclined chute flows of monodisperse,inelastic, frictional spheres [J]. Mech. Mat.,1993,16:239-247.
    [105] Vaclav Smilauer. Cohesive particle model using the discrete elementmethod on the Yade platform [D]. Prague: Czech Technical University,2010.
    [106]南京水利科学研究院.土工试验规程[M].北京:中国水利水电出版社,1999.
    [107]夏之宁,谌其亭,穆小静,等.正交设计与均匀设计的初步比较[J].重庆大学学报(自然科学版),1999,22(5):112-117.
    [108]郭新辰.最小二乘支持向量机算法及应用研究[D].长春:吉林大学,2008.
    [109]陈超.自适应遗传算法的改进研究及其应用[D].广州:华南理工大学,2011.
    [110]曾德超.机械土壤动力学[M].北京:北京科学技术出版社,1995.
    [111]强跃,赵明阶,林军志,等.静止土压力系数探究[J].岩土力学,2013,34(3):727-730.
    [112]彭明祥.挡土墙被动土压力的库仑统一解[J].岩土工程学报,2008,30(12):1783-1788.
    [113]李兴高,刘维宁.关于水平层分析法的讨论[J].岩土力学,2009,(S2):79-82.
    [114]欧明喜,刘新荣,钟祖良.考虑位移影响的被动土压力计算方法[J].中国公路学报,2011,24(5):6-10.
    [115]尹红霞,韩继业. DFP算法全局收敛性的几个充分性条件[J].应用数学学报,1998,21(2):179-186.
    [116] Iwan WD. On a class of models for the yielding behavior of continuousand composite [J]. Journal of Applied Mechanics,1967,34(3):612-617.
    [117] Hardin BO, Drnevich VP. Shear modulus and damping in soilmeasurement and parameter effect [J]. Journal of the Soil Mechanics andFoundation Engineering Division,1972,98(6):603-624.
    [118]邹猛.月面探测车辆驱动轮牵引性能研究[D].长春:吉林大学,2008.
    [119]谢定义.土动力学[M].北京:高等教育出版社,2011.
    [120]霍伟.机器人动力学与控制[M].北京:高等教育出版社,2005.
    [121] ChooPar Tan, Yahya HZ, Kaspar Althoefer, et al. Online soil-bucketinteraction identification for autonomous excavation [C]. Proceedings ofthe2005IEEE International Conference on Robotics and Automation,Barcelona, Spain,2005:3576-3581.
    [122] Craig JJ. Introduction to Robotics Mechanics and Control [M]. UpperSaddle River: Prentice Hall,2004.
    [123]刘德满,刘宗富.机器人自适应控制-计算力矩法[J].机器人,1989,(6):1-5..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700