用户名: 密码: 验证码:
管电极电解加工关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空发动机关键零部件群孔结构,孔径小(0.3~2mm),数量大(104~105),与零件表面法线方向夹角多变(0°~75°),孔形结构多样,多选用难加工材料,加工表面不允许有微裂纹、再铸层,给孔制造技术带来严峻挑战。难加工材料微小孔高效、高表面质量加工技术已成为国内外科学界和工程界的研究热点。
     管电极电解加工,是利用金属材料在电解质溶液中发生阳极电化学溶解的原理,借助成形的工具阴极将工件加工成形的一种孔加工技术。管电极电解加工具有加工表面质量好,无冶金缺陷,无工具损耗,适合加工难加工材料小孔、群孔等特点,成为国内外最为关注的一项孔电解加工技术。本文针对管电极电解加工的若干关键技术进行研究。
     (1)提出了正电位差辅助阳极管电极电解加工方法。建立正电位差辅助阳极管电极电解加工加工间隙内电场模型,仿真和试验结果表明,合适的电位差能够有效改善管电极过量进给时加工间隙内电场分布,减弱管电极过量进给引起的孔出口杂散腐蚀,抑制管电极电解加工对管电极进给深度的敏感性,提高了群孔电解加工精度。
     (2)提出了脉动流场电解加工方法。建立脉动流场电解加工的多物理场耦合模型,采用有限元和动网格技术进行仿真分析,仿真和试验结果表明,采用优化的脉动流场可以促进电解加工的传热和材料蚀除速度,提高加工间隙均匀性,降低表面粗糙度;合适的脉动流场能够提高深小孔加工稳定性、加工精度,增大深小孔加工深度。
     (3)制备出高耐用度绝缘涂层。根据弹性力学、界面力学原理,计算出管电极/绝缘层界面应力分布规律;通过管电极端部结构优化,降低了管电极/绝缘层界面应力,提高绝缘层耐用度;研究了表面粗化工艺对涂层结合强度的影响,进一步增强涂层/管电极结合力。
     (4)研制出管电极电解加工系统。设计出龙门式三维移动平台、随动式密封结构,改善了机床密封性能;设计出精密数控转台,满足典型弧形零件群孔结构加工需求;开发了一套管电极电解加工软硬件控制系统,实现加工过程监控,并具备异常加工状态智能识别等功能。
     (5)进行了典型群孔结构的管电极电解加工试验。设计了专用排管电极夹持工具,用于平面群孔、弧面群孔、平面群斜孔结构的加工;采用专用排管电极夹具和优化的工艺参数,成功加工出8×35平面阵列孔,8×27浮动瓦片模拟件弧面阵列孔,直径1mm、倾斜角45°的9×90多层阵列斜孔燃烧室壁试件,直径1.5mm、倾斜角10°、30°、55°的多角度多层阵列斜孔导流片试件。
Multiple holes of0.3mm to2mm in diameter,104to105in quantity, diverse cross-sectiongeometries and at divergent oblique angels to the normal direction of the surface in the range of0°to75°, are well applied in key components of aircraft engine. These holes in difficult-to-cut materials arerequired with no micro cracks or recast layers and bring much serious challenge to modern drillingtechnologies. Considerable attention has been paid to reliably producing these fine holes of highefficiency and surface integrity all over the world.
     Shaped tube electrochemical machining (STEM) removes material by controlled anodicdissolution in an electrolytic cell and produces the workpiece into designed hole shapes via a shapedtube electrode. Inherent characteristics of STED, such as good surface integrity, absence of tool wearand metallurgical defects, suited simultaneously drilling of numerous small holes in difficult-to-cutmaterials, enable itself to be a promising and low-cost process for yielding these holes. Thedissertation focuses on key issues of shaped tube electrochemical machining.
     (1) The electrochemical drilling technique applying a potential difference between an auxiliaryelectrode and the anode is proposed. An electric model for this drilling process is established toanalysis the current distribution in the machining gap. Simulation and experimental results indicatethat, when the tube electrode is excessively feed, a proper potential difference could diminish the straycurrent attack on the hole exit, lower the sensibility of the exit accuracy to excessive feeding depthand enhance the machining accuracy of multiple holes.
     (2) Pulsating electrolyte flow is introduced to the electrochemical machining process. Amulti-physics model coupling of electric, heat and transport of diluted species was established tocalculate the effects of pulsating flow on electrochemical machining via the finite element method andthe moving mesh method. Both the simulation and experiments verified that using optimal pulsatingparameters, the heat transfer, the material removal rate, the machining gap uniformity and surfaceroughness are improved. Moreover, optimal pulsating flow in deep hole drilling could enhance theprocess stability, the machining accuracy as well as the maximum machining depth.
     (3) The insulation coating with good durability is prepared. A computational method based onthe elastic mechanics and interface mechanics is proposed to estimate the distribution of theinterfacial stresses between the insulation coating and metal electrode substrate. Moreover, anelectrode tip structure is presented to reduce the interfacial stress and enhance the coating durability. And the coating adhesion to the electrode substrate is enhanced via the optimized surface rougheningtreatment.
     (4) An electrochemical drilling system is developed. A three dimensional moving platform ofgantry structure as well as a follow sealing structure is designed to modify the unreliable sealingperformance of the traditional machine. A precise numerical-controlled turntable is designed for themachining of typical components with planar arrayed holes. Moreover, a computer system isdeveloped to control the hardware and software devices of the electrochemical drilling system, whichcould monitor the machining process and recognize the abnormal process status.
     (5) Electrochemical drilling of multiple holes in typical structures is experimentally processed. Aspecialized tool was designed to fix the row electrode tubes for electrochemical drilling. Withoptimized process parameters, multiple holes in a planar array of8×35, a floating tile simulator withmultiple holes in an arc array of8×27, a trapped vortex combustor simulator with multiple obliqueholes in a planar array of9×90and at an oblique angle of45°, a flow deflector simulator withmultiple oblique holes in a planar array of5×90and at oblique angles of10°,30°and55°, weresuccessfully machined.
引文
[1]刘大响,金捷.21世纪世界航空动力技术发展趋势与展望[J].中国工程科学,2004,6(9):1~8.
    [2]林宏军,程明,何小民.驻涡燃烧室的研究进展和应用浅析[J].航空科学技术,2011,4:68~70.
    [3]尚守堂,程明,李锋,等.低排放长寿命燃烧室关键技术分析[J].航空制造技术,2009,2:32~37.
    [4]倪萌,朱惠人,裘云,等.航空发动机涡轮叶片冷却技术综述[J].燃气轮机技术,2005,18(4):25~33.
    [5]卫海洋,徐敏,刘晓曦.涡轮叶片冷却技术的发展及关键技术[J].飞航导弹,2012,2:61~64.
    [6] GSI集团激光事业部.航空领域的激光钻孔[J].现代制造,2009,33.
    [7]黎武.浮动壁燃烧室关键结构设计研究[D].硕士学位论文,西安:电子科技大学,2011.
    [8]杨秀娟,刘宝琪,任萍,等.航空发动机浮壁式燃烧室制造技术[J].中国科技博览,2012,35:403~404.
    [9]赵清杰,李彬,陈志杰,等.浮动壁燃烧室试验研究[J].燃气涡轮试验与研究,2004,17(1):17~20.
    [10]赵清杰,李彬.浮动瓦块冷却结构在燃烧室中的应用和发展[J].燃气涡轮试验与研究,2001,14(1):10~13.
    [11]朱海南,齐歆霞.涡轮叶片气膜孔加工技术[J].航空制造技术,2011,13:71~74.
    [12] R.S. Bunker. A review of shaped hole turbine film-cooling technology [J]. ASME Journal of HeatTransfer,2005,127:441~453.
    [13]黄青松,高献娟,李文学,等.复杂薄壁发动机加力隔热屏制造工艺设计及优化[J].锻压技术,2010,35(3):61~65.
    [14]应人龙,曾莉群,顾大强.微小孔加工技术综述[J].机床与液压,2008,36(6):144~148.
    [15]M. Sen, H.S. Shan.A review of electrochemical macro-to micro-hole drilling processes [J].International Journal of Machine Tools and Manufacture,2005,45:137~152.
    [16]郑新毅.深微孔电火花加工关键即使研究[D].博士学位论文,大连:大连理工大学,2010.
    [17]马星辉,高国富,赵波,等.精密微小孔加工技术进展[J].电加工与模具,2008,(5):13~18.
    [18]王中华,李辉,陈姣.高速切削刀具材料的性能及应用[J].装备制造技术,2012,(10):110~113.
    [19]肖寿仁.刀具涂层材料的现状与发展趋势[J].有色金属加工,2006,35(4):35~37.
    [20]陈勇志,占志泽,曾铁初.硬质合金涂层技术及其进展[J].东莞理工学院学报,2012,19(3):94~98.
    [21]赵时璐,张钧,刘常升.涂层刀具的切削性能及其应用动态[J].材料导报,2008,22(11):62~65.
    [22]郑艳彬,姜志刚.DLC膜涂层硬质合金刀具的研究进展[J].硬质合金,2012,29(2):116~122.
    [23]陈豫红,周尚荣,张鹏程.多孔网栅钨膜片精密钻削和检测技术研究[J].制造技术与机床,2012,11:95~98.
    [24]肖子英,陈学永.超声振动钻削技术综述[J].机电技术,2012,13:1~4.
    [25]周丽丽,张平宽,王慧霖,等.振动切削技术的研究与发展应用[J].煤矿机械,2009,30(2):10~12.
    [26]高本河,吴序堂,熊镇芹,等.振动钻削改善排屑效果机理研究[J].机械科学与技术,2000,19(2):281~283.
    [27]叶玉刚.振动钻削技术在深小微孔加工中的应用[J].装备制造技术,2009,3:128~130.
    [28]张德远.难加工轻合金振动切削技术[J].新技术新工艺,2009,2:13~16.
    [29]辛晨光.激光制造技术的应用与展望[J].现代制造工程,2012,9:130~132.
    [30]刘晋春,白基成,郭永丰.特种加工(第五版)[M].北京:机械工业出版社,2009.
    [31]杨建军.飞秒激光超精细“冷”加工技术及其应用(I)[J].激光与光电子学进展,2004,41(3):42~52.
    [32]朱江峰,魏志义.飞秒激光精密微纳加工的研究进展[J].物理,2006,35(8):679~683.
    [33]何飞,程亚.飞秒激光微加工:激光精密加工领域的新前沿[J].中国激光,2007,34(5):595~622.
    [34]顾理,孙会来,于楷,等.飞秒激光微加工的研究进展[J].激光与红外,2013,43(1):14~18.
    [35]蔡海龙,闫雪亮,王素梅,等.飞秒激光微通道加工研究进展[J].北京理工大学学报,2012,32(10):991~1003.
    [36]辛凤兰.高质量激光打孔技术研究[D].硕士学位论文,北京:北京工业大学,2006.
    [37]倪晓昌.飞秒激光微精细加工理论与实验研究[D].博士学位论文,天津:天津大学,2003.
    [38] G. Kamlage, T. Bauer,A. Ostendorf, et al. Deep drilling of metals by femtosecond laserpulses[J].Applied physics A:material science and processing,2003,77(2),307~310.
    [39]陈长军,郭文渊,王茂才,等.镍基超合金再铸层化学研磨去除的实验研究[J].燃气涡轮试验与研究,2004,17(3):44~50.
    [40]王智勇,陈铠,左铁钏.辅助气体对激光打孔的影响[J].激光杂志,2000,21(6):44~46.
    [41]徐荣青,陈笑,沈中华,等.水中薄片激光打孔反常现象的分析[J].高压物理学报,2004,18(2):130~134.
    [42]余毅权.激光脉冲电解射流复合加工技术试验研究[D].硕士学位论文,南京:南京航空航天大学,2011.
    [43]王恪典,段文强,梅雪松,等.毫秒激光加工小孔与再铸层的后处理工艺[J].西安交通大学学报,2011,45(7):45~49.
    [44]丁明江.激光微小孔精密加工技术研究[D].硕士学位论文,西安:西安交通大学,2010.
    [45]段文强.无再铸层微小孔激光加工技术研究[D].硕士学位论文,西安:西安交通大学,2011.
    [46]储召良.电极抬刀运动与电火花加工性能研究[D].硕士学位论文,上海:上海交通大学,2013.
    [47] T.Masuzawa, M.Fujino, K. Kobayashi. Wire Electro-Discharge Grinding for MicroMachining[J].Annals of the CIRP,1985,34(l):431~434.
    [48] R.Nachiappan, C.Xue. The Effects of Electro~discharge Machining Block Electrode Method forMicroelectrode[J]. Journal of micromechanics and microengineering,2002,12:532~540.
    [49] D.Wang, J.Wu, W.S.Zhao, et al.Micro Tool Electrode Fabrication Using Edge ElectrodeDischarge Grinding[C]. Proceedings of the16th International SymPosium onElectromachining,2010:669~674.
    [50] N.Mohri, H.Takezwa, K.Furutani,et al. A New Process of Additive and Removal Machining byEDM with a Thin Electrode[J]. Annals of the CIRP,2000,49(l):123~126.
    [51]蒋毅.微小孔电火花加工过程控制系统的研究[D].博士学位论文,上海:上海交通大学,2011.
    [52]竺志大,王占和,范仲俊.超声复合微细电火花加工机理与试验[J].新技术新工艺,2009,(l):76~80.
    [53] T.Endo, T.Tsujimoto, K.Mitsui. Study of vibration-assisted micro-EDM-The effect of vibrationon machining time and stability of discharge [J]. Precision Engineering,2008,(32):269~277.
    [54]刘伟,李勇,徐明刚,等.微细电极进给与激振机构及其微细孔电火花加工实验[J].电加工与模具,2008,(5):29~32.
    [55] Z.Y.Yu, Y.Zhang, J.Li, et al. High aspect ratio micro hole drilling aided with ultrasonic vibrationand planetary movement of electrode by Micro EDM [J]. Annals of the CIRP,2009,58(l):213~216.
    [56] W.S.Zhao, Z.L.Wang, S.C.Di. Ultrasonic and electric discharge machining to deep and small holeon titanium alloy [J]. Joumal of Materials Processing Technology,2002,120:101~106.
    [57]翁明浩.微细阵列轴孔的电火花和电化学加工工艺研究[D].硕士学位论文,哈尔滨:哈尔滨工业大学,2007.
    [58]贾宝贤,边文凤,赵万生,等.微细孔超声加工关键技术[J].机械工程学报,2007,43(1l):212~216.
    [59]曹凤国,张勤俭.超声加工技术的研究现状及其发展趋势[J].电加工与模具,2005,增刊:25~31.
    [60]安成明,殷国强,李剑中,等.微细孔、阵列孔及微细三维型腔的超声加工研究[J].电加工与模具,2011,1:23~27.
    [61]郑书友,冯平法,徐西鹏.旋转超声加工技术研究进展[J].清华大学学报(自然科学版),2009,49(l1):1799~1804.
    [62] D.S. Bilgi, V.K. Jain, R. Shekhar, et al. Electrochemical deep hole drilling in super alloy forturbine application[J]. Journal of Material Processing Technology,2004,149:445~452.
    [63]施文轩,张明歧,殷旻.电液束加工工艺德研究及其发展[J].航空制造技术,2001,6:25~27.
    [64] J.Kozak, K.P.Rajurkar, R.Balkrishna. Study of electrochemical jet machining process[J].Transactions of ASME: Journal of manufacturing science and engineering,1996,118(11):490~498.
    [65]杨培剑,曲宁松,刘壮,等毛细管电极电液束加工微小凹坑试验研究[J].机械科学与技术,2010,29(10):1291~1296.
    [66]贾继欣,曲宁松,房晓龙,等.毛细管电极电液束加工微小孔试验研究[J].电加工与模具,2011,(2):129~32.
    [67] M.Sen, H.S.Shan. Analysis of hole quality characterisctics in the electro jet drilling process [J].Internatinal Journal of Machine tools and Manufacture,2005,45:1706~1716.
    [68] M.Sen, H.S.Shan. Responese surface analysis of electro jet drilled holes [J]. Internatinal Journalof Advance Manufacturing Technology,2006,31:520~527.
    [69] W. Nastu, T. Ikeda, M. Kunieda. Generating complicated surface with electrolyte jet machining[J]. Precision engimeering,2007,31:33~39.
    [70] M. Kunieda, K. Mizugai, S. Watanabe,et al. Electrochemical micromachining using flatelectrolyte jet [J]. Annals of the CIRP,2011,60:251~254.
    [71] X.Lu, Y.Leng. Electrochemical micromachining of titanium surfaces for biomedical applications[J]. Journal of Materials Processing Technology,2005,169:173~178.
    [72] M.Hackert, G. Meichsner, M. Zinecker, et al. Micro machining with comtinous electrolytic freejet [J]. Precision Engineering,2012,36(4):612~619.
    [73] M.Hackert, A. Martin, G. Meichsner, et al. Microstructuring of carbide metals applying Jetelectrochemical machining [J]. Precision Engineering,2013,37(3):621~634.
    [74] J. Kozak, K.P. Rajurkar. Laser assisted electrochemical machining, in: Transactions of the NorthAmerican Manufacturing Research Institution of SME, vol. XXIX,2001.
    [75] A.K.M. De Silva, P.T. Pajak, D.K. Harrison, et al. Modeling and Experimental Investigation ofLaser Assisted Jet Electrochemical Machining [J]. Annals of the CIRP,2004,53(1):179~182.
    [76] P.T. Pajak, A.K.M. De Silva, D.K. Harrison, et al. Precision and efficiency of laser assisted jetelectrochemical machining [J]. Precision Engineering,2006,30(3):288~298.
    [77] A.K.M. De Silva, P.T. Pajak, J.A.McGeough, et al. Thermal effects in laser assisted jetelectrochemical machining [J]. Annals of the CIRP,2011,60(1):243~246.
    [78]张华,徐家文,王吉明,等.喷射液束电解-激光复合加工工艺试验研究[J].航空学报,2009,30(6):1138~1143.
    [79] H. Zhang, J.W. Xu. Modeling and experimental investigation of laser drilling with jetelectrochemical machining [J]. Chinese Journal of Aeronautics,2010,23:454~460.
    [80]袁立新,徐家文,赵建社,等.喷射液束电解辅助激光加工的理论模型和实验研究[J].东南大学学报(自然科学版),2010,40(4):736~740.
    [81]袁立新,徐家文,赵建社.镍基高温合金喷射液束电解~激光复合加工特性的试验研究[J].中国机械工程,2013,24(3):302~308.
    [82] P. Kern, J. Veh, J. Michler. New developments in through~mask electrochemical micromachiningof titanium[J]. Journal of Micromechanics and Microengineering,2007,17(9):1168~1177.
    [83] M.Datta. Fabrication of an Array of Precision Nozzles by Through-Mask Electro chemicalMicromachining [J]. Journal of Electrochemical Society,1995,142(11):655~669.
    [84] I.Sch nenberger, S.Roy. Microscale pattern transfer without photolithography of substrates[J].Electrochimica Acta,2005,51(5):809~810.
    [85] S.Nouraeiz, S.Roy.Electrochemical Process for Micropattern Transfer Without Photolithography:A Modeling Analysis[J]. Journal of The Electrochemical Society,2008,155(2):97~103.
    [86] D.L.Li, D.Zhu, H.S.Li. Microstructure of electrochemical micromachining using inert metalmask[J]. Journal of Advance Manufacture Technology.2011,55:189–194.
    [87]D.L.Li, D.Zhu, H.S.Li. Effects of mask wall angle on matrix-hole shape changes duringelectrochemical machining by mask[J]. Journal of Central South University.2011,18:11151120.
    [88]李冬林,朱荻,李寒松.模板阴极电解加工群孔成型规律研究[J].华南理工大学学报,2010,38(5):105~109.
    [89]李冬林,朱荻,李寒松.辅助阳极模板电解加工技术研究[J].南京航空航天大学学报,2010,42(4):401~406.
    [90]张欣耀.精密微小孔电解磨削复合扩孔加工技术研究[D].硕士学位论文,南京:南京航空航天大学,2010.
    [91]刘向蕾,朱荻,曾永彬,等.电解磨削复合加工精密扩孔研究[J].电加工与模具,20092:37~40.
    [92] D.Zhu, Y.B.Zeng, Z.Y.Xu, et al. Precision machining of small holes by the hybrid process ofelectrochemical removal and grinding [J]. Annals of the CIRP,2011,60(1):247~250.
    [93]张欣耀,朱荻,曾永彬,等.精密微小孔的电解-磨削复合扩孔加工技术研究[J].中国机械工程,2010,21(8):973~977.
    [94]K.P.Rajurkar, D.Zhu.Improvement of electrochemical machining accuracy by using orbitalelectrode movement [J]. Annals of the CIRP,1999,48(1):139~142.
    [95]王维,朱荻,曲宁松,等.管电极电解加工工艺过程稳定性研究,机械工程学报,2010,46(11):179~184.
    [96] M.S.Hewidy, S.J.Ebeid, K.P.Rajurkar, et al. Electrochemical machining under orbital motionconditions[J]. Journal of Materials Processing Technology,2001,109(3):339~346.
    [97] N.Sherykhalina, A.N.Zaytsev. Cavitational model of macrodefects formation mechanism duringelectrochemical machining [C]. Fifth international Symposium on Cavitation, Osaka, Japan,2003.
    [98] A.N.Zaytsev, V.P.Zhitnikov, T.V.Kosarev. Formation mechanism and elimination of theworkpiece surface macro~defects, aligned along the electrolyte stream at electrochemical machining[J]. Journal of materials processing technology,2004,9:439~444.
    [99] W.Wang, D.Zhu, N.S.Qu, et al. Electrochemical drilling with vacuum extraction of electrolyte.Journal of Materials Processing Technology,2010,210(2):238~244.
    [100] D.Zhu, W.Wang, X.L.Fang, et al. Electrochemical drilling of multiple holes with electrolyteextraction. Annals of the CIRP,2010,59:239~242.
    [101] D.S. Bilgi, V.K. Jain, R. Shekhar, et al. Hole quality and interelectrode gap dynamics duringpulse current electrochemical deep hole drilling[J]. International Journal of Advanced ManufacturingTechnology,2007,34:79~95.
    [102] J.Kozak, K.P.Rajurkar, B.Wei. Modeling and analysis of pulse electrochemical machining(PECM)[J]. Journal of Engineering Industry,1994,116:316~323.
    [103] K.P.Rajurkar, B.Wei, J.Kozak.Modelling and monitoring inter electrode gap in pulseelectrochemical machining [J]. Annals of the CIRP,1995,44:177~180.
    [104] B.Wei, K.P.Rajurkar, S.Talpallikar. Identification of inter electrode gap in pulse electrochemicalmachining[J]. Journal Electrochemical Society,1997,144(11):3613~3619.
    [105] K.P.Rajurkar, D.Zhu, J.A.McGeough, et al. New developments in electrochemical machining [J].Annals of the CIRP,1999,48:567–579.
    [106] K.P. Rajurkar, J. Kozak, B. Wei, Study of Pulse Electrochemical Machining Characteristics,Annals of the CIRP,1993,42:231~234.
    [107] D.S.Bilgi, R.Kumar, V.K.Jain, et al. Predicting radial overcut in deep holes drilled by shapedtube electrochemical machining[J]. International Journal of Advanced ManufacturingTechnology,2008,39(1~2):47~54.
    [108] D. Zhu, H.Y. Xu. Improvement of electrochemical machining accuracy by using dual poletool[J]. Journal of Material Processing Technology,2002,129:15–18.
    [109] Z.J. Fan, T.C. Wang, L. Zhong. The mechanism of improving machining accuracy of ECM bymagnetic field[J]. Journal of Materials Processing Technology,2004,14:409~413.
    [110]范植坚,李新忠,王天诚,等.电解加工与复合电解加工[M].北京:国防工业出版社,2008.
    [111] V.K. Jain, Y. Kanetkar, G.K. Lal. Stray current attack and stagnation zones in electrochemicaldrilling[J]. International Journal of Advanced Manufacturing Technology,2005,26:527~536.
    [112] V.K. Jain, P.G. Yogindra, S. Murugan. Prediction of anode profile in ECBD and ECDoperations[J]. International Journal of Machine Tools and Manufacture,1987,27:113~134.
    [113] M.S.Hewidy, S.J.Ebeid, T.A.El-Taweel, et al. Modelling the performance of ECM assisted bylow frequency vibrations[J]. Journal of Materials Processing Technology,2007,189(1~3):466~472.
    [114] J.Kozak, K.P.Rajurkar, S.Malicki. Study of electrochemical machining utilizing vibrating toolelectrode[C]. Proceedings of the16th International Conference on Computer Aided ProductionEngineering CAPE, Edinburgh,2000,173~181.
    [115] S.J.Ebeid, M.S.Hewidy, T.A.El-Taweel, et al. Towards higher accuracy for ECM hybridizedwith low-frequency vibrations using the response surface methodology[J]. Journal of MaterialsProcessing Technology,2004,149:432~438.
    [116]郭家诚.创新同轴喷吸法与电解加工之研究[D].硕士学位论文,云林:云林科技大学,2006.
    [117] A.Ruszaj, M.Zybura, R.Zurek, et al. Some aspects of the electro~chemical machining processsupported by electrode ultrasonic vibrations optimization[J]. Proceedings of the Institution ofMechanical Engineers,Part B: Journal of Engineering Manufacture,2003,217(10):1365~1371.
    [118] S.Skoczypiec. Research on ultrasonically assisted electrochemical machining process[J].International Journal of Advanced Manufacture Technology,2010,52:565~574.
    [119]王维,朱荻,曲宁松,等.群孔管电极电解加工均流设计及其试验研究,航空学报,2010,31(8):1667~1673.
    [120] W.Wang, D.Zhu, N.S.Qu, et al. Electrochemical drilling inclined holes using wedgedelectrodes[J]. International Journal of Advanced Manufacturing Technology,2010,47(9~12):1129~1136.
    [121] S. Ali, S. Hinduja, J. Atkinson, et al. Shaped tube electrochemical drilling of good qualityholes[J]. Annals of the CIRP,2009,58:185–188.
    [122] J. Pattavanitch, S. Hinduja. Machining of turbulated cooling channel holes in turbine blades[J].Annals of the CIRP,2012,61:199–202.
    [123] V.K.Jain, A.Chavan, A.Kulkarni. Analysis of contoured holes produced using STED process[J].International Journal of Advanced Manufacturing Technology,2009,44:133–148.
    [124]王建业,徐家文.电解加工原理及应用[M].北京:国防工业出版社,2001.
    [125]卡尔·H·哈曼,安德鲁·哈姆内特,沃尔夫·菲尔施蒂希,等.电化学[M].北京:化学工业出版社,2010.
    [126]阿伦.J.巴德.电化学方法原理和应用[M].北京:化学工业出版社,2005.
    [127]吴辉煌.电化学工程基础[M].北京:化学工业出版社,2008.
    [128]郭慕孙,胡英,王夔,等.物质转化过程中的多尺度效应[M].哈尔滨:黑龙江教育出版社,2002.
    [129] R.Van Tijum, P.T.Pajak. Simulation of production processes using the multiphysics approach:The electrochemical machining process[C]. Proceedings of the European COMSOL Conference,Hannover, Germany,2008.
    [130] A.N. Zaitsev, A.L. Belogorsky, I.L.Agafonov, et al. Performing holes of small diameter in steelfoil using method of multi~electrode precise electrochemical machining, Proceedings of the12thInternational Symposium for Electromachining ISEM XII, Germany, Aachen,1998,555~564.
    [131]刘云芳,程乐鸣,郑海啸,等.固体燃料的脉动燃烧技术[J].动力工程,2005,25(5):707~713.
    [132]杨卫卫,何雅玲,徐超,等.平直通道中层流脉动流动的数值模拟[J].西安交通大学学报,2004,38(9):925~928.
    [133] H.A.Havemann, N.N.Rao. Heat transfer in pulsating flow [J]. Nature,1954,174:41.
    [134]贾宝菊.波壁管内的脉动流动及其传质特性的实验和数值模拟[D].博士学位论文,大连:大连理工大学,2009.
    [135]路慧霞,马晓建,赵凌.脉动流动强化传热的研究进展[J].节能技术,2008,26(2):168~172.
    [136] E.M.Benavides.Heat transfer enhancement by using pulsating flows[J]. Journal of AppliedPhysics,2009,105:094907.
    [137]杨卫卫,何雅玲,陶文铨,等.凹槽通道中脉动流动强化传质的数值研究[J].西安交通大学学报,2004,38(11):1119~1122.
    [138]芦刚.工作水压对滴灌灌水器水力性能影响规律的研究[D].博士学位论文,武汉:华中科技大学,2010.
    [139]史怀忠,李根生,王学杰,等.水力脉冲空化射流欠平衡钻井提高钻速技术[J].石油勘探与开发,2010,37(1):111~115.
    [140]李根生,沈忠厚,周长山,等.自振空化射流研究与应用进展[J].中国工程科学,2005,7(1):27~32.
    [141] J.Hopenfeld, R.R.Cole. Prediction of the One~Dimensional Equilibrium Cutting Gap inElectrochemical Machining[J]. Journal of Manufacturing Science and Engineering,1969,91:755~763.
    [142] J.Deconinck. Current Distributions and Electrode Shape Changes in ElectrochemicalSystems[M]. Berlin:Springer-Verlag,1992.
    [143] O.H.Narayanan, S.Hinduja, C.F.Noble. The prediction of workpiece shape duringelectrochemical machining by the boundary element method[J]. International Journal of MachineTools&Manufacture,1986,26:323.
    [144] G.A.Prentice, C.W.Tobias. Simulation of changing electrode profiles[J]. Journal of theElectrochemical Society,1982,129:78.
    [145] J. Kozak. Mathematical models for computer simulation of electrochemical machiningprocesses[J]. Journal of Materials Processing Technology,1998,76:170.
    [146] J. Kozak. Computer simulation system for electrochemical shaping[J]. Journal of MaterialsProcessing Technology,2001,109:354.
    [147] V.K.Jain, P.C.Pandey. Tooling design for ECM-a finite element approach[J]. Journal ofEngineering for Industry,1981,103:183.
    [148] T.Fujisawa, K.Inaba, M.Yamamoto, et al. Multiphysics simulation of electrochemical machiningprocess for three-dimensional compressor blade [J]. Journal of Fluids Engineering,2008,130:081602.
    [149] Y.M.Lee, S.J.Lee, C.Y.Lee, et al. The multiphysics analysis of the metallic bipolar plate by theelectrochemical micro~machining fabrication process[J]. Journal of PowerSources,2009,193:227~232.
    [150] L.Bortels, J.Deconinck, B.Van Den Bossche. The multi-dimensional upwinding method as anew simulation tool for the analysis of multi~ion electrolytes controlled by diffusion, convection andmigration. Part1. Steady state analysis of a parallel plane flow channel[J]. Journal of ElectroanalyticalChemistry,1996,404:15.
    [151] G.Neliseen, A.Van Theemsche, C.Dan, et al. Multi-ion transport and reaction simulations inturbulent parallel plate flow[J]. Journal of Electrochemical Chemistry,2004,563:213.
    [152] D.Deconinck, S.Van Damme, C.Albu, et al. Study of the effects of heat removal on the copyingaccuracy of the electrochemical machining process[J]. Electrochimica Acta,2011,56:5642.
    [153] D.Deconinck, S.Van Damme, J.Deconinck. A temperature dependent multi~ion model for timeaccurate numerical simulation of the electrochemical machining process. Part I: Theoretical basis[J].Electrochimica Acta,2012,60:321.
    [154] D.Deconinck, S. Van Damme, J.Deconinck. A temperature dependent multi~ion model for timeaccurate numerical simulation of the electrochemical machining process. Part II: Numericalsimulation[J]. Electrochimica Acta,2012,69:120.
    [155] N.Smets, S.Van Damme, D.DeWilde, et al. Calculation of temperature transients in pulseelectrochemical machining (PECM)[J]. Journal of Applied Electrochemistry,2007,37:315.
    [156] S.Van Damme, G.Nelissen, B.Van Den Bossche, et al. Numerical model for predicting theefficiency behavior during pulsed electrochemical machining of steel in NaNO3[J]. Journal of AppliedElectrochemistry,2006,36:1.
    [157] C.A.Brebbia, A.A.Mammoli. Computational Methods in Multiphase Flow (6th ed.)[M].Southampton: IT Press,2011.
    [158] J.Kozak. Thermal models of pulse electrochemical machining[J]. Bulletin of Poland AcademicScience and Technology,2004,52:313~320.
    [159]张美丽.钛合金电解加工基础试验研究[D].硕士学位论文,南京:南京航空航天大学,2007.
    [160]杨怡生.钛合金电解加工手册[M].北京:国防工业出版社,1990.
    [161]余承业,刘正勋,黄因慧,等.脉冲电流电解加工流场特性的研究[J].电加工与模具,1984,4:1-6.
    [162]李兆龙,韦东波,狄士春,等.管状电极电解小孔变压力场研究[J].电加工与模具,2011,5:30~32.
    [163] C. van Osenbrugger, C. de Regt. Electrochemical micromachining[J]. Philips Tech,1985,42(1):22~32.
    [164]槐瑞托,于志豪.一种新的金属电极绝缘方法[J].生物学通报,2006,41(1): Ⅱ.
    [165] B.J.Park, B.H.Kim, C.N.Chu. The Effects of Tool Electrode Size on Characteristics of MicroElectrochemical Machining[J]. Annals of the CIRP,2006,(1):144~148.
    [166]刘改红,李勇,陈旭鹏,等.微细电解加工用电极的侧壁绝缘及应用实验[J].电加工与模具,2009,4:28~31.
    [167]王维.群小孔电解加工的关键技术研究[D].南京:南京航空航天大学机电学院,2010.
    [168]王柏庭.几种电解加工电极绝缘的制作方法[J].电加工与模具,1984,5:24~26.
    [169] J.A. McGeough. Principle of Electrochemical Machining [M]. London:Chapman&Hall.,1974.
    [170]黄卫星,李建明,肖泽仪.工程流体力学[M].北京:化学工业出版社,2009.
    [171]徐芝纶.弹性力学简明教程[M].北京:高等教育出版社,2002.
    [172]徐秉业.应用弹塑性力学[M].北京:清华大学出版社,1995.
    [173]许金泉.界面力学[M].北京:科学出版社,2006.
    [174]吴臣武,陈光南,张坤,等.涂层/基体体系的界面应力分析[J].固体力学学报,2006,27(2):203~206.
    [175]胡传炘,宋幼慧.涂层技术原理及应用[M].北京:化学工业出版社,2000.
    [176]李异.金属表面清洗技术[M].北京:化学工业出版社,2008.
    [177]边洁,王威强,管从胜.表面预处理对PPS/FEP复合防腐涂层结合强度的影响[J].中国表面工程,2003,6:42~46.
    [178]杨晖,潘少明.基体表面粗糙度对涂层结合强度的影响[J].金属铸锻焊技术,2008,37(15):118~121.
    [179]陈学定,韩文政.表面涂层技术[M].北京:机械工业出版社,1994.
    [180]谢文清.管电极电解加工监控系统的设计及试验研究[D].硕士学位论文,南京:南京航空航天大学,2009.
    [181]贾建利,范植坚,王亚军.叠加磁场方孔电解加工试验研究[J].电加工与模具.2007(02):28-31.
    [182] A.Rubel. Computations of the oblique impingement of round Jets upon plane wall. AIAAJournal,1981,19(7):863-871.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700