用户名: 密码: 验证码:
TMT三镜系统Rotator组件结构技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TMT(Thirty Meter Telescope)三镜系统不同于其他望远镜,要求具有跟踪和瞄准功能。三镜系统与地平式望远镜不同,其工况复杂且载荷变化为非线性,保证复杂工况下轴系的高精度是本文面临的主要难点。本文从TMT三镜系统的要求出发,对其中的Rotator组件进行了设计,并对涉及的关键技术进行了研究,同时,通过大量的仿真分析保证系统性能符合设计要求。
     为了满足轴系的高精度要求,本文从方案选择、静态性能、动态性能和接口精度四个方面保证系统满足精度要求,主要包括以下内容:
     (1)分别对轴系的支承方式、驱动方案和测角方案进行了研究。采用数学建模的方法,建立了不同类型大型回转轴承在复杂载荷下的承载数学模型,计算得到轴承的轴向变形、径向变形和角变形量,对轴承的承载性能进行了评价。通过对不同类型望远镜驱动方式的比较,选择了齿轮驱动的方案,研究了双电机驱动的原理,并仿真分析了系统的快速性和稳态跟踪性能,结果表明可满足系统的跟踪精度要求。由于钢环编码器不能满足系统要求,本文采用钢带编码器,对其精度、使用方法进行了研究,并验证了多读数头结合傅里叶谐波分析方法提高转台测角精度的有效性。通过对每部分方案的合理选择,轴系的性能得到了极大了优化。
     (2)为了对Rotator组件自身的性能进行评估,建立了系统的有限元模型,对关键部件的建模方法进行了研究,仿真分析了该组件的静、动态性能。同时,为了对三镜系统进行性能评估,建立了整个系统的有限元模型,并对其在重力作用下的性能进行了分析计算,保证系统在工作时的可靠性。整个系统的一阶固有频率为15.93Hz,满足了系统的模态特性要求。
     (3)支撑塔台的变形会影响三镜系统的工作性能,所以需要对三镜系统与塔台之间的连接方式进行研究。本文提出了两种方法,一种基于运动学原理,提出了六点支撑结合球形垫片调整的方法;另一种为非运动学连接。为了对两种方案进行评价,分别计算了对轴承安装平面的面形精度的影响,结果表明后者的精度较高,且能够满足轴承安装面的平面度为0.02mm的要求。另外,三镜系统的环境适应性是设计的又一重要指标。针对地震分析,本文采用谱分析的方法,分析了三镜系统在不同等级地震载荷下的响应;针对风载荷,分别采用流固耦合和随机振动的方法对静态和动态风载下结构的响应进行了仿真分析。本文基于TMT三镜系统的研制,对Rotator组件中涉及的一些关键技术进行研究。对Rotator组件和三镜系统整体开展了大量的分析仿真,预测了系统在不同状态、不同载荷下的性能,有效指导了三镜系统的设计工作。文中的一些方法和结论对大口径望远镜设计有一定的参考价值。
Thirty Meter Telescope (TMT) Tertiary Mirror System (M3S) is different fromother telescopes in requiring tracking and pointing capability. The M3S featurescomplex and nonlinear load conditions compared to the alt-azimuth telescope. Themajor challenge is to ensure the high-precision of the axes. According to therequirements of TMT, this article majors on investigating the Rotator Assemblydesign and the key technologies involved in the system. Furthermore, large numbersof simulation analysis are applied to predict and ensure the system performances.
     In order to meet the requirements of high-precision, the investigation in thispaper is developed from four aspects, namely scheme selection, static performance,dynamic performance and interface accuracy. The work can be described as follows:
     (1) Supporting way, driving scheme and angle measurement method of the axesare studied, respectively. Different kinds of slewing bearings are evaluated byestablishing the bearing mathematical models under complex load conditions, whichmakes an evaluation of bearing performance. The gear driving scheme is applied inRotator and the dual-motor driving principle is analyzed. Moreover, the fast andsteady tracking performance is simulated, which shows the system can meet therequirements of tracking accuracy. Since the round encoder cannot meet thedemands, the tape encoder is selected. The precision and using method areresearched. The result verifies the effectiveness of improving the angle measurement accuracy of the turntable by applying the multiple reading heads combing withFourier harmonic analysis. With reasonable choices of the schemes, the axesperformance has been optimized greatly.
     (2) In order to evaluate the performance of Rotator, the finite element model(FEM) of the system is established, some static and dynamic performance isanalyzed by simulation. Meanwhile, in order to evaluate the performance of M3S,the FEM of the whole system is established as well, and the performance undergravity is analyzed to ensure the system’s safety. The finite element analysis resultshows that the first order natural frequency of the system is15.93Hz, which canmeet the requirements of the system modal characteristics.
     (3) As the supporting tower’s deformation would affect the M3S performance,it is necessary to investigate the connection methods between M3S and the tower.Two methods are proposed, one is kinematic connection method, and the other isnon-kinematic. The impacts on the accuracy of the bearing mounting surface arecalculated, respectively. The results indicate that the latter can get a higher precision,and meet the requirement of0.02mm of the bearing mounting surface flatness.
     In addition, environmental adaptability of the M3S is another important index.For seismic analysis, the spectral analysis method is applied to analyze the systemresponse under different levels of seismic loads. For wind loads analysis, thefluid-structure interaction and random vibration methods are used for structureresponse under static and dynamic wind loads, respectively.
     This paper has researched some key technologies of Rotator. A mount ofsimulation analysis of Rotator and M3S are carried out to predict the performance ofthe system in different working states, which effectively guides the design of M3S.Some of the methods and conclusions involved in this paper have a certain referencevalue on the large telescope design.
引文
[1] G. Marchiori. Industrial contribution in design, manufacturing, and erection oflarge ground-based telescopes SPIE,2003:189-197
    [2] D. Mancini. Integrated design and management of combined, complex, and fasttrack projects SPIE,2003:154-165
    [3] P. Jeffers, G. Stolz, G. Bonomi, et al. ATST telescope mount: telescope of machinetool SPIE,2012:84443T-1-84443T-10
    [4] M. Quattri, F. Dimichino, G. Marchiori, et al. VLT8-m unit telescope mainstructure: design solutions and performance calculation SPIE,1994:986-996
    [5] M. Bums. Servo simulation and modeling for the Gemini8-M Telescopes,
    [6] L. E. Becker. Manufacturing the Keck10-meter telescope structure and drivesSPIE,1989:92-101
    [7] Y. Dehua. Structure analysis of the reflecting surface system of a largeastronomical telescope [J]. Chinese Journal of Mechanical Engineering,2004,17(3):415-419
    [8] C. I. o. T. University of California. Thirty Meter Telescope Construction Proposal,2007
    [9] http://www.tmt.org/
    [10] M. Sheehan, S. Gunnels, C. Hull, et al. Progress on the structural and mechanicaldesign of the Giant Magellan Telescope [J]. SPIE,2012,8444:84440N-1-84414-10
    [11]卞毓麟.光学天文望远镜的足迹[J].物理,2008,37(12):844-852
    [12]黄晨,王建军,高昕,等.国外红外天文望远镜发展现状[J].激光与红外,2013,(03):235-239
    [13]杨志荣.天文望远镜的发展对宇宙探索的影响[J].德宏师范高等专科学校学报,2013,(01):101-105
    [14]徐红,李树春.天文望远镜史话[J].现代物理知识,2005,(05):56-58
    [15]程景全.天文望远镜原理和设计[M].北京:中国科学技术出版社,2003
    [16] D. Blanco, M. Alegria, S. Callahan, et al. The new MMT [J]. SPIE,2004:300-311
    [17]周敬国.天文望远镜的发明故事[J].科学24小时,2006,(04):40-41
    [18] R. Q. Fugate. The Starfire Optical Range3.5-m adaptive optical telescope [J].SPIE,2003,4837:934-943
    [19] C. Barbieri, R. K. Bhatia, C. Bonoli, et al. Status of the Galileo national telescope[J]. SPIE,1994,2199:10-21
    [20] M. F. Campbell, E. O. Reese. SOAR4.2meter telescope: evolution of drive andpointing performance from early predictions to final testing [J]. SPIE,2003,4837:308-316
    [21] D. S. Porter, T. A. Sebring, B. Smith, et al. The concept design of the DiscoveryChannel Telescope mount [J]. SPIE,2004,5489:950-961
    [22] D. S. Porter, K. G. Hermann, J. J. Schuldenberg. Final design, fabrication, factoryintegration, and test of a4.2-meter telescope mount [J]. SPIE,2003,4837:295-307
    [23] B. Koehler, C. Flebus. VLTI auxiliary telescopes [J]. SPIE,2000,4006:13-24
    [24] M. Tarenghi. European southern observatory (ESO)3.5m new technologytelescope [J]. SPIE,1986,7355:213-220
    [25]张景旭.大口径地基光电望远镜结构总体研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2008
    [26]张景旭.地基大口径望远镜系统结构技术综述[J].中国光学,2012,(04):327-336
    [27]赵勇志.4m级地基光电望远镜跟踪架结构研究[D]:[博士学位论文].长春:中国科学院研究生院(长春光学精密机械与物理研究所),2012
    [28] S. Gunnels. The Giant Magellan Telescope (GMT): hydrostatic constraints SPIE,2010:77334Z-77331-77334Z-77312
    [29] K. Szeto, S. Roberts, M. Gedig, et al. TMT telescope structure system: designand development progress report SPIE,2008:70122G-1-70122G-12
    [30]中国加入TMT国际合作计划科学目标(中文), http://tmt.bao.ac.cn/,
    [31] TMT. Group. Design Requirements Document for Tertiary Mirror System (M3S)TMT. OPT. DRD.07006, REL29,2012,
    [32]王富国,杨飞,赵宏超,等. TMT望远镜三镜系统的研究进展[J].中国光学,2013,(05):643-651
    [33]周超.大口径望远镜系统建模及仿真分析研究[D]:[长春:中国科学院研究生院(长春光学精密机械与物理研究所),2011
    [34] M. W. Schneermann. VLT enclosures wind tunnel tests and fluid dynamicsanalyses SPIE,1994:465-476
    [35]范磊.2m级地基望远镜SiC主镜轻量化设计及支撑技术研究[博士]:[博士学位论文]:中国科学院研究生院(长春光学精密机械与物理研究所),2013
    [36] F. Perrotta, F. Martelli, M. Ottolini, et al. The VST telescope primary mirrorsafety system: simulation model and mechanical implementation [J]. SPIE,2010,7738:773820-1-773820-11
    [37] I. A. Steele, R. J. Smith, P. C. Rees, et al. The Liverpool Telescope: performanceand first results [J]. SPIE,2004,5489:679-692
    [38] L. Cavaller, M. Collados, J. Castro. Performance simulations for the conceptualdesign of the European Solar Telescope (EST)[J]. SPIE,2011,8336:83360G-1-83360G-10
    [39] D. Kerley, S. Roberts, J. Dunn, et al. Validation and verification of integratedmodel simulations of a thirty meter telescope [J]. SPIE,2005,5867:58670Q-1-58670Q-12
    [40] M. K. Cho, M. Warner, J. P. Lee. Structural analysis for the4-m advancedtechnology solar telescope (ATST)[J]. SPIE,2005,5877:58770O-1-58770O-11
    [41] K. G. Hermann, E. O. Reese, B. Smith. Mechanical design considerations uniqueto giant telescopes SPIE,2003:355-366
    [42] TMT. Group. OBSERVATORY REQUIREMENTS DOCUMENT TMT SENDRD05001CCR23
    [43] P. Bely. The design and construction of large optical telescopes [M]: Springer,2003
    [44] P. R. Yoder Jr. Opto-mechanical systems design [M]. Florida: CRC press,2005
    [45] R. H. Hammerschlag, F. C. Bettonvil, A. P. J gers, et al. Large bearings withincorporated gears, high stiffness, and precision for the Swedish Solar Telescope (SST)on La Palma SPIE,2006:627315-1-627315-6
    [46] D. R. Neill, V. L. Krabbendam, M. Romero, et al. Hydrostatic bearingarrangement for high stiffness support of the Large Synoptic Survey Telescope SPIE,2008:70184E-1-70184E-12
    [47] F. Salgado, J. Haddad, G. Hudepohl, et al. Success of long term preventivemaintenance on telescope subsystems using the example of the VLT Adapter-Rotatorsat the ESO Paranal Observatory SPIE,2012,8448:844825-844821
    [48] J. Howard, D. Ashby, J. Kern. Performance of the Large Binocular Telescope'shydrostatic bearing system SPIE,2010:773358-1-773358-9
    [49] K. Miyawaki, N. Itoh, R. Sugiyama, et al. Mechanical structure for the SUBARUTelescope SPIE,1994:754-761
    [50]王槐,代霜,张景旭.大型地平式望远镜的方位轴系支撑结构[J].光学精密工程,2012,20(7):1509-1516
    [51] H. Wang, J. Zhang, S. Dai. Study on the azimuth bearing scheme of a largeAlt-azimuth telescope SPIE,2010:76540Q-1-76540Q-6
    [52] A. D. Poyner, J. W. Montgomery, B. L. Ulich. MMT pointing and tracking SPIE,1986:9-15
    [53] B. Ulich. Performance of the Multiple Mirror Telescope (MMT) V. Pointing andtracking of the MMT SPIE,1982:33-41
    [54] K. G. Hermann, D. S. Finley, A. Gienger. High-performance mount for theSOAR telescope project SPIE,2000:127-134
    [55] M. Warner, V. Krabbendam, G. Schumacher, et al. SOAR Telescope:4-meterhigh-performance-mount performance results SPIE,2004:77-86
    [56] P. Jeffers, E. Manuel, O. Dreyer, et al. ATST telescope pier [J]. SPIE,2012,8444:84440L-1-84440L-11
    [57] H. J. K rcher, M. Süss, D. Fischer. Design concepts for the EST mount [J]. SPIE,2012,8444:84440M-1-84440M-12
    [58] H. J. K rcher, U. Weis, O. Dreyer, et al. The azimuth axes mechanisms for theATST telescope mount assembly [J]. SPIE,2012,8444:84440A-1-10
    [59]徐立民,陈卓.回转支承[M].安徽:安徽科学技术出版社,1988
    [60]冯栋彦,高云国,张文豹.采用标准轴承的光电经纬仪轴系误差修正[J].光学精密工程,2011,19(3):605-611
    [61]于春来,刘洪海,郭云飞.三排圆柱滚子转盘轴承寿命计算[J].轴承,2011,(8):7-8
    [62]乔曙光,温景波,练松伟,等.多排圆柱滚子组合转盘轴承静强度的计算[J].轴承,2010,(8):5-7
    [63]苏燕芹,张景旭,杨飞,等.30m望远镜的三镜Rotator组件轴承概念设计[J].光学精密工程,2013,21(6):1510-1517
    [64]纪德洲.131.50.3550型三排滚柱式回转支承的研究与开发[D]:[博士学位论文].北京:中国农业大学,2005
    [65]李庆扬,王能超.数值分析[M].北京:清华大学出版社,2001
    [66]邓四二.滚动轴承设计原理[M].北京:中国标准出版社,2008
    [67] T.A. Harris. Rolling bearing analysis [M]. New York: Wiley New York,1984
    [68]冈本纯三.球轴承的设计计算[M].北京:机械工业出版社,2003
    [69]苏燕芹,张景旭,陈宝刚,等. TMT三镜系统Rotator组件轴承设计[J].红外与激光工程,2013,(12):3289-3294
    [70]李云峰.风电转盘轴承设计参数对承载能力的影响[J].轴承,2011,(12):7-11
    [71]李云峰,吴宗彦,卢秉恒,等.游隙对单排四点接触球转盘轴承载荷分布的影响[J].机械传动,2010,(03):56-58
    [72]李云峰,吴宗彦,卢秉恒,等.转盘轴承静载荷承载曲线的精确计算[J].机械设计与制造,2010,(05):29-30
    [73] R. H. Hammerschlag. A telescope drive with emphasis on stability SPIE,1983:138-147
    [74]王国民.天文光学望远镜轴系驱动方式发展概述[J].天文学进展,2007,(04):364-374
    [75] M. S. Worthington, T. A. Beets, J. H. Beno, et al. Design and development of ahigh-precision, high-payload telescope dual-drive system SPIE,2010:77335G-1-77335G-12
    [76] B. Sedghi, C. Lucuix, J. Tortolani, et al. Friction drive characterizationbreadboard: test results SPIE,2010:77391K-1-77391K-12
    [77] H. Wang, J. Zhang, J. Chen, et al. Study on the driving scheme of a4-mAlt-azimuth telescope [J]. SPIE,2007,6721:67210I-1-67210I-7
    [78] D. Mancini. Galileo Italian National Telescope (TNG) drive system: components,methods, and performances SPIE,1994:352-363
    [79] D. Mancini, P. Schipani. TNG rotator axes motion control SPIE,1999:369-375
    [80] D. Mancini, P. Schipani. Tracking performance of the TNG Telescope SPIE,2000:355-365
    [81] G. B. Scharmer, K. Bjelksjo, T. K. Korhonen, et al. The1-meter Swedish solartelescope SPIE,2003:341-350
    [82] S. J. Medwadowski. Structure of the spectroscopic survey telescope (SST) SPIE,1994:366-375
    [83] P. Schipani, J. Argomedo, L. Marty. Commissioning the VST Telescope controlsoftware SPIE,2012:845123-1-845123-7
    [84] P. Schipani, C. Arcidiacono, J. Argomedo, et al. Pointing and tracking results ofthe VST telescope SPIE,2012:84445R-1-84445R-8
    [85] P. Schipani, M. Brescia, S. Sandrock, et al. The VST tracking system and itspreliminary performance SPIE,2008:701844-1-701844-12
    [86] D. Mancini. VST project: drive system design and strategies for performanceoptimization SPIE,2003:389-400
    [87] D. R. Neill, V. L. Krabbendam. LSST Telescope mount and pier design overviewSPIE,2010:77330F-1-77330F-12
    [88] S. Rost, T. Bertram, B. Lindhorst, et al. The LINC-NIRVANA Fringe and FlexureTracker: testing piston control performance SPIE,2008:701338-1-701338-12
    [89] M. C. Ashe, G. Schumacher. SOAR telescope control system: a rapid prototypeand development in LabVIEW SPIE,2000:48-60
    [90] P. Schipani, M. Brescia, M. Capaccioli, et al. The VST telescopeoptomechatronic control system SPIE,2007:67190D-1-67190D-8
    [91] C. Molfese, P. Schipani, D. Mancini, et al. VST hydrostatic bearing systemcontrol hardware SPIE,2008:70123M-1-70123M-6
    [92] C. Molfese, P. Schipani, M. Capaccioli, et al. VST telescope azimuth and altitudeaxes control hardware SPIE,2008:70123L-1-70123L-7
    [93]毛英泰.误差理论与精度分析[M].北京:国防工业出版社,1982
    [94]陈文华,朱海峰,樊晓燕.齿轮系统传动误差的蒙特卡洛模拟分析[J].仪器仪表学报,2004,25(4):435-437,444
    [95] L. Gutierrez, C. Dominguez-Tagle. High-resolution telescope encoder SPIE,1998:440-447
    [96] J. A. Schier, O. Rodriguez, B. Sandberg. New telescope encoder SPIE,1994:736-742
    [97] D. Mancini, A. Auricchio, M. Brescia, et al. Encoder system design: strategies forerror compensation [J]. SPIE,1998,3351:380-386
    [98] D. Mancini, E. Cascone, P. Schipani. Galileo high-resolution encoder system [J].SPIE,1997,3112:328-334
    [99]田立丽,王金虎,陈颖为,等.钢带/钢环光栅码在2.16m望远镜的应用[J].天文研究与技术,2005,2(3):170-176
    [100] R. Hofferbert, H. Baumeister, T. Bertram, et al. LINC-NIRVANA for the largebinocular telescope: setting up the world’s largest near infrared binoculars forastronomy Optical Engineering,2013,52(8):081602-081602
    [101] D. Michele, D. L. Terrett, D. Thompson, et al. Practical considerations forpointing a binocular telescope SPIE,2010:77402F-1-77402F-8
    [102] S. Callahan, D. Ashby, T. Hair, et al. The Large Binocular Telescope main axisencoders: mounting hardware, read heads, and tape installation SPIE,2006:62673B-1-62673B-11
    [103]潘年,马文礼.拼接式钢带光栅编码器测角误差分析与修正[J].中国光学,2013,(05):788-794
    [104]苏燕芹,张景旭,陈宝刚,等.谐波分析方法在提高精密转台回转精度中的应用红外与激光工程,2014,43(1):274~278
    [105]张景旭.大口径地基光电望远镜结构总体研究,2008
    [106]王富国,杨飞,张景旭. TMT三镜被动支撑系统的概念设计红外与激光工程,2013,(05):1269-1274
    [107]周超,杨洪波,吴小霞,等.1.2m望远镜风载作用分析[J].红外与激光工程,2011,40(5):889-893
    [108]杨德华,徐灵哲,徐欣圻.大型光学天文望远镜风载作用分析[J].光学技术,2009,35(3):342-346
    [109] K. Vogiatzis, A. Segurson, G. Z. Angeli. Estimating the effect of wind loadingon extremely large telescope performance using computational fluid dynamics [J].SPIE,2004,5497:311-320
    [110] M. K. Choa, L. M. Steppa, G. Z. Angelia, et al. Wind loading of large telescopes[J]. SPIE,2003,4837
    [111] N. Ukita. Wind induced surface deformation of the Nobeyama45-m radiotelescope [J]. SPIE,2008,7012:70120V-1-70120V-11
    [112] F. W. Kan, D. W. Eggers. Wind vibration analyses of Giant Magellan Telescope[J]. SPIE,2006,6271:62710Q-1-62710Q-13
    [113] D. R. Neill, J. Sebag, M. Warner, et al. Wind induced image degradation (Jitter)of the LSST Telescope [J]. SPIE,2008,7012:70120W-1-70120W-11
    [114] A. Farahani, A. Kolesnikov, L. Cochran, et al. GMT enclosure wind and thermalstudy [J]. SPIE,2012,8444:84440U-1-84440U-13
    [115] M. Quattri, F. Koch, L. Noethe, et al. OWL wind loading characterization: apreliminary study SPIE,2003:459-470
    [116] U. Corporation. Site-specific seismic hazard assessment of proposed thirtymeter telescope site TMT. STR. TEC.10001, REL01,2010
    [117] F. Koch. Analysis concepts for large telescope structures under earthquake load[J]. SPIE,1997,2871:117-126
    [118] G. Shagal, D. G. MacMynowski, K. Vogiatzis. Finite element analysis of TMTvibrations transmitted through telescope-enclosure-soil interaction [J]. SPIE,2008,7017:70171Y-1-70171Y-12
    [119] D. T. Finley, R. A. Cribbs. Equivalent static vs. response spectrum: acomparison of two methods SPIE,2004:403-410
    [120] F. W. Kan, J. Antebi. Seismic hazard: analysis and design of large ground-basedtelescopes [J]. SPIE,2008,7012:70122E-1-70122E-10
    [121] D. Tsang, G. Austin, M. Gedig, et al. TMT telescope structure system: seismicanalysis and design [J]. SPIE,2008,7012:70124J-1-70124J-12
    [122] D. R. Neill, M. Warner, J. Sebag. Seismic design accelerations for the LSSTtelescope [J]. SPIE,2012,8444:84440R-1-84440R-15
    [123] D. R. Neill. Seismic analysis of the LSST telescope [J]. SPIE,2012,8444:84440T-1-84440T-15
    [124]苏燕芹,王富国,张景旭,等.基于时程分析的TMT三镜支撑系统地震分析[J].光学学报,2013,33(11):1112002-1112001-1112002-1112007
    [125] F. Perrotta. Earthquake safety system design for a telescope primary mirror [J].SPIE,2008,7017:70171S-1-70171S-12
    [126]杜俊峰,李正周. GD-220光电经纬仪轴系的精度分析[J].光学精密工程,2002,10(4):416-419
    [127]金光.机载光电跟踪测量的目标定位误差分析和研究[D]:[长春:中国科学院长春光学精密机械与物理研究所,2001
    [128]王晓东.地基光测设备误差修正[D]:[天津:天津大学,2007
    [129]陈洪达,陈永和,史婷婷,等.空间相机调焦机构误差分析光学精密工程,2013,21(5):1349-1356
    [130]王晶.中型光电经纬仪垂直轴系的可靠性设计光学精密工程,1997,5(4)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700