用户名: 密码: 验证码:
管道磁致伸缩导波检测机理及传播特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁致伸缩导波检测传感器作为一种新型的超声波检测装置实现了非接触式的高效无损检测,常用于铁磁性管道等结构的健康监测,但其较低的信噪比及非线性力磁耦合特性造成输出信号多变等不足限制了其应用。因此探索力磁耦合作用下磁致伸缩导波检测技术机理和传播特性,明确影响磁致伸缩传感器的主要因素对于提升磁致伸缩导波检测效率有着重要的意义。本论文采用仿真计算和物理实验相结合的方法,针对磁致伸缩导波检测技术机理和力磁作用下的磁致伸缩导波传播特性及其影响因素进行了研究。
     首先,以电磁学、弹性力学及电动力学等经典理论为基础,应用动量守恒定理的方法,推导了基于Lorentz力、磁化力和磁致伸缩力的磁致伸缩导波检测系统控制方程,详细阐述了磁致伸缩导波检测系统的换能机理。依据磁致伸缩导波检测的工作原理,将其分成三个相互关联的场,即电磁场、电磁场与物质相互作用的力场和超声波场,并给出了相应的数学描述,得到了磁致伸缩导波检测系统完整方程式。在此基础上,分析了磁致伸缩力和Lorentz力之间的关系,确定了磁致伸缩力在基于磁致伸缩效应导波检测中的主导地位,说明偏置磁场平行于检测工件的情况下,磁致伸缩力的变化对磁致伸缩导波的检测效率有直接影响。
     其次,针对以磁致伸缩效应为主要机理传感器的研究,在过去一般将材料的非线性磁致伸缩关系假定为线性关系,而该线性模型只适用于在偏置磁场附近狭小的线性范围,并不能满足实际的工作条件。为了真实的反映非线性力耦作用下磁致伸缩导波传感器的工作机理,本文利用磁致伸缩导波检测系统中电磁场及力场的数学方程式,建立了导波的磁致伸缩式纵向模态激励传感器非线性动力学模型,并以此模型为基础,针对影响磁致伸缩导波检测传感器力磁耦合转换效率的静态偏置磁场、交流磁场及激励频率进行了研究。分析表明,在考虑频散特性的情况下,通过降低激励电流频率、提高其电流强度,并将偏置磁场设定于磁致伸缩曲线中切线斜率最大处等方法可以有效的提高磁力转换效率。
     再次,传统的磁致伸缩导波检测中忽略了力磁作用对导波传播的影响,造成缺陷定位的不准确。基于此不足,本文从磁致伸缩材料的非线性本构模型出发,建立了磁场、应力场与铁磁性材料弹性模量之间的关系,讨论了磁场及应力场对磁致伸缩材料特性的影响,并采用有限元分析软件进行了模拟,得到了力磁作用下磁致伸缩导波的传播特性。计算表明在磁场或应力场的作用下磁致伸缩导波群速度会发生改变,从而影响到检测中缺陷的定位。
     最后,采用虚位移方法推导了在轴对称坐标下,永磁体、线圈的脉冲涡流场及被测试样的平衡运动方程的弱形式方程,得到了对磁致伸缩导波检测有着重要影响的磁致伸缩力和磁致伸缩电流密度的计算公式。从磁致伸缩导波检测系统优化的角度出发,建立了其有限元仿真模型,针对影响其检测性能的偏置磁场强度及均匀性、激励电流特性等因素进行了优化设计,并采用实验方法进行了验证。
Magnetostrictive sensor of guided wave is a new type of ultrasonic testingdevice which is useful for the structural health monitoring (SHM) of systems. Thetraditional NDT tools, such as magnetic flux leakage testing, piezoelectric ultrasonictesting and X-ray testing, have shortcomings, it is slowly and costing. Whilemagnetostrictive sensor of guided wave have overcome these defects and realize theefficient nondestructive testing which is non-contact. While the shortcoming ofmagnetostrictive sensor of guided wave, such as low SNR and the output affected bythe nonlinear magneto-mechanical coupling performance under magnetic field, canlimit the use of it. In order to solve this problem, the magnetostrictive guided wavestesting mechanism and propagation characteristic for steel tubes were analyzed.Making clear of main influence factors of sensor can improve the energy transitionefficiency. By the method of simulation and experiment, the mechanism ofmagnetostrictive guided waves testing and propagation characteristics of guidedwaves which under stress and magnetic are studied.
     Firstly, using the law of conservation of momentum, the governing equations ofmagnetostriction guided wave sensor are got which basing on the Lorentz force,magnetizing force and magnetostrictive force. And all these are deduced from theclassical theory such as electro-magnetics, mechanics of elasticity andelectrodynamics and so on. By electromagnetic field, force field and ultrasonic field,the working principle of magnetostrictive guided waves sensor is got andcorresponding mathematical description is given. The relationship betweenmagnetostrictive force and Lorentz force is discussed by the equations given before.And the leading role of the magnetostrictive force in magnetostrictive guided wavessensor is determined. The result is that with the change of the magnetostrictive force,the efficiency of magnetostrictive guided waves sensor is much affected when thebias magnetic paralleled the surface of pipe.
     Secondly, the research on the magnetostrictive guided waves sensor was usually regarded the material constitutive as linear which could only suit the bias magneticnear the linear range. So these models can’t satisfy the actual working conditions. Inorder to solve this problem, the paper set up the dynamics mechanical model formagnetostrictive guided wave sensor generation on the nonlinearmagneto-mechanical coupling performance of ferromagnetic. The effect of the biasmagnetic field, excitation frequency and excitation current on the particle amplitudewas analyzed. The difference of particle amplitude between nonlinear and linearmodel was discussed, which proved the applicability of the model further. Theanalysis indicates that by increasing of excitation current or decreasing of excitationfrequency and setting the bias magnetic around the biggest tangent slope of themagnetostrictive curve can improve the magnetic conversion efficiency.
     Thirdly, in past research the effect of stress or magnetic on the guided waves isneglected which caused the inaccurate in defect locational. So, according to thenonlinear constitutive equations of magnetostrictive material, in the free constraincondition, the effect of magnetic and stress on the material is studied. The relationshipbetween magnetic, stress and elastic modulus of ferromagnetic materials is set up. ByFEM software, the propagation characteristics of magnetostrictive guided wave undermagnetic or stress is simulated. The result is the group velocity of magnetostrictiveguided wave is changed which can influence the defect location.
     At last, the weak form of balance equations for permanent magnet, pulsed eddycurrent by coil and the test sample under axisymmetric coordinates are got by thevirtual displacement method. At the same time, the formulas of the magnetostrictiveforce and magnetostrictive current density are deduced which having effect on themagnetostrictive guided wave system. In order to optimize the system, a FEM modelis set up. Using the model, the factors, such as the strength and uniform of biasmagnetic and the characteristics of excitation current, are analyzed. All these resultsare verified by experiments.
引文
[1]熊建森.我国成品油管道输送现状分析与展望[J].石油知识,2011(1):42~44.
    [2]杨筱蘅,张国忠.输油管道设计与管理[M].东营:石油大学出版社,1996.
    [3]马志祥,梅云新.我国油气长输管道的技术现状及差距分析[J].油气储运,2004,23(3):1~4.
    [4]戚爱华.我国油气管道运输发展现状及问题分析[J].国际石油经济,2009(12):57~84.
    [5]郎需庆,赵志勇,宫宏等.油气管道事故统计分析与安全运行对策[J].安全.健康和环境,2006,6(10):15~17.
    [6]张华明.钢棒纵向裂纹磁性检测方法及应用研究[D].武汉:华中科技大学,2005.
    [7]刘洪清.基于远场涡流的管道裂纹检测方法有限元仿真研究[D].北京:清华大学,2007.
    [8]汪毅,蔡红生.导波检测在电站锅炉管道中的应用[J].华电技术,2008,30(10):34~36.
    [9]他得安,刘镇清,田光春.超声导波在管材中的传播特性[J].声学技术,2001,20(3):131~134.
    [10]何存富,刘增华,吴斌.传感器在管道超声导波检测中的应用[J].传感器技术,2004,23(11):5~8.
    [11]金建华,金纪东.基于磁致伸缩效应的管道纵向超声导波检测传感器[J].仪器仪表学报,2005,11:3~4.
    [12]杨理践,李春华,高文凭,等.铝板材电磁超声检测中波的产生与传播过程分析[J].仪器仪表学报,2012,23(6):1218~1222.
    [13]杨大智.智能材料与智能系统[M].天津:天津大学出版社,2000.
    [14]王悦民,康宜华,武新军.磁致伸缩效应及其在无损检测中的应用研究[J].华中科技大学学报,2005,33(1):75~77.
    [15] Yusuke Okawa,Riichi Murayama,Hideaki Morooka and Yusuke Yamashit.Developmentof a Movalbe Inspcetion Sensor for a Pipe Using an Electomagnetic Acourstic Transducerof the Magnetostriction Effect Type[J].Japanese Journal of Applied Physics,2009,48(7).
    [16]靳志胜,磁致伸缩导波无损检测方法与仿真试验研究[D],武汉:湖北工业大学,2009.
    [17]黄卉,肖定国,理华,等.磁致伸缩式扭转超声波位移传感器的研究与设计[J].仪表技术与传感器,2002,6:33~36.
    [18]喻浩.力磁耦合作用下磁致伸缩导波检测理论与仿真实验研究[D].武汉:湖北工业大学,2010.5
    [19]沈立华,王悦民,范春利,等.纵向导波磁致伸缩传感器信号检测的实验研究[J].传感技术学报,2007,20(9):2049~2052.
    [20]王悦民,孙丰瑞,康宜华,等.基于磁致伸缩效应的管道检测纵向导波模型[J].华中科技大学学报(自然科学版),2006,34(12):65~67.
    [21] Ribichini R,Cegla F,Nagy P B,et al.Quantitative Modeling of the Transduction ofElectromagnetic Acoustic Transducers Operating on Ferromagnetic Media [J].IEEETransactions on Ultrasonics,Ferroelectrics and Frequency control,2010,57(12):2808~2817.
    [22] Thompson R B.A model for the electromagnetic generation and detection of Rayleigh andlamb waves[J].Sonics and Ultrasonics,IEEE Transactions,1978,25(1):5~7.
    [23] Il'in,I V,Kharitionov A V.Theory of EMA method of detecting Rayleigh waves forferromagnetic and ferrimagnetic materials[J].Soviet Journal of Nondestructive Testing,1980,16(1):549~554.
    [24] Wilbrand A.EMUS-probes for bulk waves and Rayleigh waves:model for sound field andefficiency calculations[J]. New procedures in nondestructive testing(Proceeding),P.Hooler,Springer Berlin Heidelberg,1983:71~80.
    [25] Wilbrand A.Quantitative modeling and experimental analysis of the physical properties ofelectromagnetic ultrasonic transducers[C].Annual Review of Progress in QuantitativeNondestructive Evaluation,1987:671~678.
    [26] Ogi H.Field dependence of coupling efficiency between electro-magnetic field andultrasonic bulk waves[J].Journal of Applied Physics,1997,82(8):3940~3949.
    [27] S.Y. Gurevich.The theory of electromagnetic generation of acoustic waves in aferromagnetic medium at a high temperature[J].Russian,Journal NDT,1993,29:193~204.
    [28] V.D. Boltachev,l. S. Pravdin,V.G. Kuleev,etal.Electromagnetic-acoustic excitation inferromagnetic pipes with a circular section[J].Russian,Journal NDT,1990,25:434~439.
    [29] M.J. Sablik,S.W. Rubin.Modeling magnetostrictive generation of elastic waves in steelpipes[J].International Journal of Applied Electromagnetics and Mechanics,1999,10(2):143~166.
    [30] M.J. Sablik,Y. Lu,G.L. Burkhardt.Modeling magnetostrictive generation of elastic wavesin steel pipes, II. Comparison to experiment[J]. International Journal of AppliedElectromagnetics and Mechanics,1999,10(2):167~176.
    [31] M.J. Sablik,K.L. Telschow,B.Augustyniak,etal.Relationship between magnetostrictionand the magnetostrictive coupling coefficient for magnetostrictive generation of elasticwaves[J].Review of Quantitative Nondestructive Evaluation,2002,21:1613~1620.
    [32] M.S. Choi,S.Y. Kim,H. Kwun.An equivalent circuit model of magnetostrictive transducersfor guided wave applications[J].Journal of the Korean Physical Society,2005,47(3):454~462.
    [33] M.S. Choi,S.Y. Kim,H. Kwun,etal.Transmission line model for simulation ofguided-wave defect signals in piping[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2004,51(5):640~643.
    [34] H. Kwun,S.Y. Kim,G.M. light. The Magnetostrictive Sensor Technology for long RangeGuided Wave Testing and Monitoring of Structures[J].Materials Evaluation,2003,61(1):80~84.
    [35] H. Kwun,C.M. Teller.Magnetostrictive generation and detection of longitudinal,torsional,and flexural waves in a steel rod[J].Journal of the Acoustical Society of America,1994,96(2):1202~1204.
    [36] H. Kwun, K.A. Bartels. Magnetostrictive sensor technology and itsapplications[J].Ultrasonics,1998,36(5):71~178.
    [37] H. Kwun,S.Y. Kim and M.S. Choi.Reflection of the fundamental torsional wave from astepwise thickness change in a pipe[J].Journal of the Korean Physical Society,2005,46(6):1352~1357.
    [38] W. Kim and Y.Y. Kim.Design of a bias magnetic system of a magnetostrictive sensor forflexural wave measurement[J].IEEE Transactions on Magnetics,2004,40(5):3331~3338.
    [39] S.H. Cho,C.I. Park,Y.Y. Kim.Effects of the orientation of magnetostrictive nickel strip ontorsional wave transduction efficiency of cylindrical waveguides[J].Applied Physicsletters,2005,86(24):1~3.
    [40] Y.Y. Kim,C.I. Park,S.H. Cho,etal.Torsional wave experiments with a newmagnetostrictive transduce configuration[J].Journal of the Acoustical Society of America,2005,117(6):3459~3468.
    [41]王悦民.基于磁致伸缩效应的管道导波无损检测理论及应用研究[D].武汉:华中科技大学,2005.
    [42]柯岩.基于磁致伸缩导波的钢管无损检测实验研究[D].武汉:华中科技大学,2006.
    [43]程涛.管道裂纹磁致伸缩导波检测传感器研制与开发[D].武汉:湖北工业大学,2012.
    [44] Hocheol lee,Yoon Young Kim,Wave Selection Using s Magneto-mechanical Sensor in aSolid Cylinder[J].Acoustical Society of America,2002,112(3):953~960.
    [45] Laguerre L, Aime.K.J.C, Brissaud M. Magnetostrictive Pulse-Echo Device forNon-Destructive Evaluation of Cylindrical Steel Materials Using longitudinal GuidedWaves [J].Ultrasonics,2002,39:503~514.
    [46] Song X C,Jin Z S,Yu H.Influences of magnetic circuit structure of Magnetostrictiveguided wave transducer on the homogeneity of bias magnetic field[J].International Journalof Applied Electromagnetics and Mechanics,2010,33(1~2):581~588.
    [47]王悦民,孙丰瑞,康宜华,等.基于磁致伸缩效应的管道检测纵向导波模型[J].华中科技大学学报(自然科学版),2006,34(12):65~67.
    [48]刘增华,张易农,吴斌,等.钢绞线用磁致伸缩传感器偏置磁场的有限元分析[J].应用基础与工程科学学报,2009,17,(2):281~289.
    [49]竺冉,吕福在,唐志峰,等.磁致伸缩纵向导波传感器中偏置磁场的优化设计[J].传感技术学报,2011,24(3):371~375.
    [50] D.N. Alleyne,P. Cawley. Long range propagation of lamb waves in chemical plantpipework[J].Material Evaluation,1997,53(4):504~508.
    [51] P.D. Wilcox,M.J.S. Lowe,P. Cawley.Asignal processing technique to remove the effect ofdispersion from guided wave signal:Review of Progress in Quantitative[J].NondestructiveEvaluation.vol.20,D. O. Thompson and D. E. Chimenti,Eds. New York:AIP ConferenceProceedings,2001:555~562.
    [52] M.H.S. Siqueira,C.E.N. Gatts,R.R. Da Silva,eta.The use of ultrasonic guided waves andwavelets analysis in pipe inspection[J].Ultrasonics,2004,41(10):785~797.
    [53] H. Kwun,K.A. Bartels,C. Dynes.Dispersion of longitudinal waves propagating inliquid-filled cylindrical shells[J].Journal of the Acoustical Society of America,1999,105(5):2601~2611.
    [54] Y.M. Wang,Y.H. Kang and X.J. Wu.Application of STFT and HOS to analyzemagnetostrictively generated pulse-echo signals of a steel pipe defect[J].NDT and EInternational,2006,39(4):289~292.
    [55]何存富,李颖,王秀彦等.基于小波变换及Wigner-Ville变换方法的超声导波信号分析[J].实验力学,2005,20(4):584~588.
    [56] H. Kwun, G.L. Burkhardt.Experimental investigation of dynamics of transverse-impulsewave propagation and dispersion in steel wire ropes[J].Journal of the Acoustical Society ofAmerica,1992,92(41):1973~1980.
    [57] Hayashi T,Tamayama C,Murase M.Wave structure analysis of guided waves in a bar withan arbitrary cross-section[J].Ultrasonics,2006,44(1):17-24.
    [58] H. Kwun, C.M. Teller. Detection of Fractured Wires in Steel Cables UsingMagnetorestrictive Sensors[J].Materials Evaluation,1994,52(4):503~507.
    [59] H. Kwun,J.J. Hanley,K.A. Bartels.Recent developments in nondestructive evaluation ofsteel strands and cables using magnetostrictive sensors[J].Oceans Conference Record(IEEE).1996:144~148.
    [60] K.A. Bartels,C. Dynes,H. Kwun.Nondestructive evaluation of prestressing strands withmagnetostrictive sensors[J].Proceedings of SPIE-The International Society for OpticalEngineering.1998:326~337.
    [61] H. Kwun,K.A. Bartels,J.J. Hanley.Effects of tensile loading on the properties ofelastic-wave propagation in a strand[J].Journal of the Acoustical Society of America,1998,103(6):3370~3375.
    [62] H. Kwun,A. E. Holt.Feasibility of under-lagging corrosion detection in steel pipe using themagnetostrictive sensor technique[J].NDT and E International,1995,28(4):211~214.
    [63] H. Kwun,J.J. Hanley,A.E. Holt.Detection of corrosion in pipe using the magnetostrictivesensor technique[J]. Proceedings of SPIE-The International Society for OpticalEngineering.1995:140~148.
    [64] Hoe Woong Kim,Hyung Jin lee,Yoon Young Kim.Health monitoring of axially-crackedpipes by using helically propagating shear-horizontal waves[J].NDT&E International,2012(46),3:115~121.
    [65] H. Kwun,S.Y. Kim,M.S. Choi.Reflection of the fundamental torsional wave from astepwise thickness change in a pipe[J].Journal of the Korean Physical Society,2005,46(6):1352~1357.
    [66] K.A. Bartels,C. Dynes,Y. Lu,etal.Evaluation of concrete reinforcements usingmagnetostrictive sensors[J].Proceedings of SPIE-The International Society for OpticalEngineering.1999:210~218.
    [67] H. Kwun,K.A. Bartels,C. Dynes.Dispersion of longitudinal waves propagating inliquid-filled cylindrical shells[J].Journal of the Acoustical Society of America,1999,105(5):2601~2611.
    [68]柯岩,武新军,康宜华,程顺峰.基于磁致伸缩效应的钢管导波检测可行性[J].无损检测,2007,29(3):113-116.
    [69]武新军,徐江,沈功田.非接触式磁致伸缩导波管道无损检测系统的研制[J].无损检测,2010,32(3):166-170.
    [70] H. Kwun,S. Kim,G. light.Monitoring crack growth under a bonded composite patch repairusing guided waves[J]. International SAMPE Symposium and Exhibition(Proceedings).2005:2659~2664.
    [71] H. Kwun,J.F. Crane,S.Y. Kim,etal.Atorsional mode guided wave probe for long range,in bore testing of heat exchanger tubing[J].Materials Evaluation,2005,63(4):430~433.
    [72] H. lee,Y.Y. Kim.Wave selection using a magnetomechanical sensor in a solidcylinder[J].Journal of the Acoustical Society of America,2002,112(31):953~960.
    [73] S.H. Cho,K.H. Sun,J.S. lee,etal.The measurement of elastic waves in a non-ferromagneticplate by a patch-type magnetostrictive sensor[J].Proceedings of SPIE-The InternationalSociety for Optical Engineering.2004:120~130.
    [74] S.H. Cho,J.S. lee,Y.Y. Kim.Guided wave transduction experiment using a circularmagnetostrictive patch and a figure-of-eight coil in nonferromagnetic plates[J].AppliedPhysics letters,2006,88(22):224101.1~3.
    [75] S.W. Han,H.C. lee,Y.Y. Kim.Noncontact damage detection of a rotating shaft using themagnetostrictive effect[J].Journal of Nondestructive Evaluation,2003,22(4):141~151.
    [76] S.W. Han,Y.Y. Kim,H.C. lee.Non-contact wave sensing for damage detection in a rotatingshaft using magnetostrictive sensors[J].Proceedings of SPIE-The International Society forOptical Engineering.2003:279~288.
    [77]朱红秀,吴淼,刘卓然.确定电磁超声换能器钢管检测最佳磁化强度的试验研究[J].无损检测.2004,26(6):297~298.
    [78]王西宁,赵小林,周勇,等.RF平面螺旋微电感的物理模型[J].徽细加工技术,2003(3):57~59.
    [79]雷华明,阙沛文.电磁超声换能器的阻抗测试方法研究[J].仪表技术与传感器,2004(1):14~15.
    [80] R. ludwig and X.W. Dai.Numerical simulation of electromagnetic acoustic transducer in thetime domain[J].J. Appl. Phys,1991,69(1):89~98.
    [81] K.S. Kannan and A. Dasgupta.A nonlinear Galerkin finite element theory for modelingmagnetostrictive smart structures[J].Smart Mater. Struct,1997,6(3):341~350.
    [82] J.L. Perez-aparicio and H. Sosa.A continuum-dimensional fully coupled dynamicnon-linear finite element formulation for magnetostrictive materials[J].Smart Mater.Struct,2004,13(3):493~502.
    [83] Dai Xiao-wei.ElectromagneticAcoustic transducers:Physical principles and finite elementmodeling[D].Worester Polytechnic Institute,1991.
    [84]苟晓凡,杨勇,郑晓静.矩形永磁体磁场分布的解析表达式[J].应用数学和力学,2004,25(3):271~278.
    [85] R. Engel-Herbert,T. Hesjedal.Calculation of the magnetic stray field of auniaxial magneticdomain[J].Journal of applied physics,2005,97:1~4.
    [86] M.V. K Chari. Three-dimensional finite element solution of permanent magnetmachines[J].IEEE Trans on magnetic,1981,17(6):2997~2999.
    [87]雷银照.轴对称线圈磁场计算[M].北京:中国计量出版社,1991.
    [88]谢维,王京彬,朱谷昌,等.线圈中心测量垂直磁场虚分量频域电磁法数值模拟[J].中南大学学报(自然科学版),2013,44(4):1444~1451.
    [89] M.S. Crosser,Steven Scott,Adam Clark,etal. On the magnetic field near the center ofHelmholtz coils[J].Review of Scientific Instruments,2010,81(8):084701.
    [90] M.B. Moffet,A.E. Clark,M. Wun-Fogle,etal.Characterization of Terfenol-D formagnetostrictive transducers[J].J.Acoust.Soc.Am,1991,89(3):1448~1455.
    [91] G.P. Carman,M. Mitrovic.Nonlinear constitutive relations for magnetostrictive materialswith application to1-D problems[J].J.Intell. Mater. Syst. Struct,1995,6:673~683.
    [92] G.P. Carman, M. Mitrovic. Nonlinear constitutive relations for magnetostrictivematerials[C].Proc.of the2nd International Conference of Intelligent Materials,July,1994:265~278.
    [93] Y.P. Wan,D.N. Fang,K.C. Hwang.Non-linear constitutive relations for magnetostrictivematerials[J].Inter. J.Non-linear Mechanics,2003,38(7):1053~1065.
    [94] T. Duenas, L. Hsu, G.P. Carman. Magnetostrictive composite material systemsanalytical/experimental[C].Materials Research Society Symposium,Advances in Materialsfor Smart Systems-Fundamental and Applications,Invited paper,Boston,1996.
    [95] L. Hsu.Modeling the response of magnetostrictive materials[C].M.S. Thesis,UCLA,1998.
    [96] K.S. Kannan, A. DasGupta. Nonlinear finite element scheme for modeling themagneto-elastic response of magnetostrictive smart structures[J].Proc,SPIE NorthAmerican Conference on Smart Structures and Materials,1994,2190:182~193.
    [97] Xiaojing Zheng,Le Sun.A nonlinear constitutive model of magneto-therno-mechanicalcoupling for giant magnetostrictive materials[J]. Journal of Applied Physics,2006,100,063906.
    [98] Zhou Haomiao,Zhou Youhe,Zheng Xiaojing,et al.A general3-D nonlinearmagnetostrictive constitutive model for soft ferromagnetic materials[J]. Journal ofMagnetism and Magnetic Materials,2009,321:281~290.
    [99] Wilbrand A.Quantitative modeling and experimental analysis of the physical properties ofelectromagnetic ultrasonic transducers[C].Annual Review of Progress in QuantitativeNondestructive Evaluation,1987:671~678.
    [100] Thompson R. B. Physical principles of measurements with emat transducers.In:MasonWP,Thurston RN,editors.Physical Acoustics,vol.XIX.New York:Academic Press;1990.
    [101] Dal Xiao-wei.Electromagnetic Acoustic Wansducers:Physical principles and finiteelement modeling[D].Worester Polytechnic Institute.1991.
    [102] Hirao M,Ogi H.EMATs for Science and Industry:noncontacting UltransonicMeasurements[M].Boston:Kluwer Academic Publishers;2003.
    [103] Il'in,I V,Kharitionov A V.Theory of EMA method of detecting Rayleigh waves forferromagnetic and ferrimagnetic materials[J].Soviet Journal of Nondestructive Testing,1980,16(1):549~554.
    [104]周浩洋.波传播的单位分解有限元法[D].大连理工大学,2005.
    [105] D.C. Gazis.Three-dimensional investigation of the Propagation of waves in hollowcircular cylinders. II. Numerical results[J].Journal of the Acoustical Society of America,1959,31(5):573~578.
    [106] D.C. Gazis.Three-dimensional investigation of the Propagation of waves in hollowcircular cylinders.Ⅰ. Numerical results[J].Journal of the Acoustical Society of America,1959,31(5):568~573.
    [107] D.C. Gazis.Exact analysis of the Plane-strain vibrations of thick-walled hollowcylinders[J].Journal of the Acoustical Society of America,1958,30(8):786~794.
    [108]何存富,吴斌,王秀彦译.固体中的超声波[M].北京:科学出版社,2004.
    [109] Jiles D.Introduction to Magnetism and Magnetic Materials[M].London,UK:Chapmanand Hall,1998.
    [110]徐江,程丞,武新军,等.磁致伸缩导波激励端偏置磁场的等效方法[J].华中科技大学学报(自然科学版),2012,40(11):12~16.
    [111] DemmaA.The interaction of guided waves with discontinuities in structures[D].ImperialCollege of science,technology and medicine,2003.
    [112] Seco F,Martin J M,Jimenez A,et al.PCDISP:a tool for the simulation of wavepropagation in cylindrical waveguides[C].In:Ninth International Congress on Sound andVirbration,Florida,USA,July,2002.
    [113]赫宽胜,黄松岭,赵伟,等.基于二阶矢量位的矩形截面回折线圈阻抗和脉冲磁场的解析建模与计算[J].物理学报,2011,60(7):078103~10.
    [114] Song X C,Jin Z S,Yu H.Influences of magnetic circuit structure of Magnetostrictiveguided wave transducer on the homogeneity of bias magnetic field[J].InternationalJournal of Applied Electromagnetics and Mechanics,2010,33(1~2):581~588.
    [115] R. Dhyalan,K. Balasubramaniam and B.W. Maxfield. Development of SV WaveElectromagnetic Acoustic Transducer (EMAT) for Weld Inspection in Stainless SteelPlate[C].Proc. National Seminar on Non-Destructive Evaluation,Hyderabad,Indian,Dec,2006.
    [116] M.J. Sablik,D. C. Jiles.Coupled Magnetoelastic Theory of Magnetic and MagnetostrictiveHysteresis[J].IEEE Trans. Magn,1993,29(3):2113~2123.
    [117]王坤,黄松岭,赵伟.平板兰姆波与缺陷作用边界元仿真实现研究[J].中国机械工程,2009,20(8):887~891.
    [118] Songling Huang,Yun Tong,Wei Zhao.An adaptive compression algorithm for pipelineEMAT inspection data[J].Int J Appl. Electromagnetic. Mech,2010,33(3~4):1095~1100.
    [119] Hoe Woong Kim,Seung Hyun Cho,Yoon Young Kim.Analysis of internal wave reflectionwithin a magnetostrictive patch transducer for high-frequency guided torsionalwaves[J].Ultrasonics,2011,51(6):647~652.
    [120] Songling Huang,Yun Tong,Wei Zhao.A denoising algorithm for an electromagneticacoustic transducer(EMAT) signal by envelope regulation[J].Measurement Science andTechnology,2010,21(8):1~6.
    [121] Shen Wang,Songling Huang,Wei Zhao,etal.Approach to lamb wave lateral crackquantifcation in elastic plate based on reflection and transmission coefficientssurfaces[J].Research in Nondestrutive Evaluation,2010,21(4):213~223.
    [122] Zenghua Liu,Jichen Zhao,Bin Wu,etal.Configuration optimization of magnetostrictivetransducers for longitudinal guided wave inspection in seven-wire steel strands[J].NDT&E International,2010,43(6):484~492.
    [123] Jiang Xu,Zhiyuan Xu,Xinjun Wu.Research on the lift-off effect of generatinglongitudinal guided waves in pipes based on magnetostrictive effect[J].Sensors andActuators A:Physical,2012,184(9):28~33.
    [124] Yi-Gon Kim,Hong-Sik Moon,Kyung-Jo Park,etal.Generating and detecting torsionalguided waves using magnetostrictive sensors of crossed coils[J].NDT&E International,2011,44(2):145~151.
    [125] Hong Min Seung, Hoe Woong Kim, Yoon Young Kim. Development of anomni-directional shear-horizontal wave magnetostrictive patch transducer forplates[J].Ultrasonics,2013,53(7):1304~1308.
    [126] Thompon,R. B,Elsley,R.K. An EMAT system for detecting flaws in steam generatortubes[J].Ultrasonic Symposium,1979:246~249.
    [127]黄松岭,王坤,赵伟.电磁超声导波理论及应用[M].北京:清华大学出版社,2013,8.
    [128] M.V. Brook,Ngoc,T.D. K,Eder.J.E.Ultrasonic inspection of steam generator tubingby cylindrical guided waves[J].Review of Progress in Quantitative NondestructiveEvaluation,1980,9:243~249.
    [129] P. Cawley.Practical long range guided wave inspection-Applications to pipes andrails[C].NDE2002predict.Assure. Improve. National Seminar of ISNT Channel,2002.
    [130] M.E. Kuruzar,B.D. Cullity.The magnetostriction of iron under tensile and compressivestress[J].International Journal of Magnetism,1971,1:323~325.
    [131] M.J.S. Lowe,D.N. Alleyne,P. Cawley.Mode conversion of guided waves by defects inpipes[J].Review of progress in Quantitative Nondestructive Evaluation,1997,16:1261~1268.
    [132] Moon Ho Park,H Sup Kim,Young Ku Yoon.Ultrasonic inspection of long steel pipesusing lamb waves[J].NDT&E International,1996,29(1):13~20.
    [133] J.L. Rose,Zhao XiaoLiang.Flexural mode tuning for pipe elbow testing[J].MaterialEvaluation,2001,5:621~624.
    [134] Jiang Xu,Xinjun Wu,Pengfei Sun.Detecting broken-wire flaws at multiple locations inthe same wire of prestressing strands using guided waves[J].Ultrasonics,2013,53(1):150~156.
    [135] Hyeon Jae Shin,J.L. Rose,Guided waves by axisymmetric and non-axisymmetric surfaceloading on hollow cylinders[J].Ultrasonics,1999,37:355~363.
    [136] J.L. Rose,Jian Li,Xiaofiang Zhao.Ultrasonic guided wave flexural mode tuning forlimited access pipe inspection[J].Quantitative Nondestructive Evaluation,2002,20:164-171.
    [137]李隆涛,何存富,吴斌.管道长距离超声导波模态频散现象的抑制方法研究[J].数采集与处理,2004,19(3):297~301.
    [138]汤立国,程建春,王金兰.管道中激光激发瞬态导波的理论研究[J].声学学报,2001,26(6):489~496.
    [139]何跃娟.金属管状材料中脉冲激光热弹激发超声的有限元数值模拟研究[D].南京:南京理工大学,2006.
    [140]许伯强,倪晓武,沈中华,等.激光激发板状材料中超声导波的有限元数值模拟[J].中国激光,2004,31(5):621~625.
    [141]程载斌.利用超声导波进行管道裂纹检测的数值模拟和实验研究[D].太原:太原理工大学,2004.
    [142] Kuansheng Hao,Songling Huang,Wei Zhao,et al.Circuit-field coupled finite elementanalysis method for an electromagnetic acoustic transducer under pulsed voltage excitation[J].Chinese Physics B,2011,20(6):791~800.
    [143] Ju Seung Lee,Yoon Young Kim and Seung Hyun Cho.Beam-focused shear-horizontalwave generation in a plate by a circular magnetostrictive patch transducer employing aplanar solenoid array[J]。Smart Materials and Structures.2009,18(5):1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700