用户名: 密码: 验证码:
基于盲源分离的风力发电机主轴承振声诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着人类社会对能源需求的急速增长和日益严重的环境问题,煤、石油、天然气等传统能源所暴露的问题越来越突出。风能作为一种新型可再生能源,以其储量巨大,价格低廉,环境污染小的优势越来越受到人们的重视,使得风电装备也随之得到了迅速的发展。近年来随着我国大力发展风力发电事业,风电机组逐步增多,但随之而来的是风电机组事故频发,对风力发电机的状态监测和故障诊断显得尤为重要。在风电机组的各组成部件中,主轴承是最为重要,也是最容易出现故障的部件之一。而主轴承的工作状态是否正常,将直接影响到整个风电机组的正常运转。因而对风力机主轴承的状态监测和故障诊断显得十分有必要。
     目前针对风力机主轴承的诊断方法很多,其中最常用的是振动诊断法和声发射诊断法。但由于风力机运行环境经常十分恶劣,在运行过程中,反映其故障状态的特征信息经常淹没在噪声干扰信号之中,有效地提取其故障信息,对风力机主轴承的监测和诊断十分必要。国内外很多学者在这方面做了大量工作,如将专家系统、模糊系统、神经网络、小波变换、Hilbert-Huang变换、Wigner分布、支持向量机等方法应用于风力机主轴承的诊断之中,取得了很多有价值的研究成果,但同时也存在一些问题。鉴于此,本文采用盲源分离理论来探索风力机主轴承振动和声发射故障信号的提取方法,并做了如下工作:
     第一,介绍了风电技术的发展状况,阐述了课题的研究背景、研究的目的和意义,论述了风力机主轴承振动和声发射诊断的国内外研究现状,并指出本文的思路和采用的研究方法。
     第二,探讨了盲源分离的基本理论和盲源分离算法,主要阐述了FastICA算法和JADE算法的计算过程,并指出这些算法存在的不足之处。针对盲源分离算法存在的不足,探讨了采用粒子群优化算法对盲源分离过程进行的优化,并比较了各分离算法的性能。
     第三,建立了基于盲源分离的风力机主轴承振动诊断系统。首先探讨了振动信号的提取方法,认为包络分析对振动信号的提取较为有效,然后分别对转子试验台、风力发电机试验台和实际风力发电机主轴承的振动信号进行了分离,以实现振动故障信号的特征提取。
     第四,建立了基于盲源分离的风力机主轴承声发射诊断系统。首先探讨了声发射信号的提取方法,认为小波分析对声发射信号的提取较为有效,然后对风力发电机主轴承的声发射信号进行了分离,以实现声发射故障信号的特征提取。
     第五,根据提取的风力机主轴承信号的特点,采用集成小波神经网络对风力机主轴承进行故障诊断。针对振动信号和声发射信号的特点分别设计子神经网络,并采用决策融合神经网络进行诊断信息融合,提高了诊断效率。并对诊断算法进行了软件实现,增强了诊断方法的实用性。
     第六,总结本文的主要结论并对相关的研究技术进行了展望。
In recent years, along with the rapid increasing demand for energy and seriousenvironmental problem, the problem of coal, oil, natural gas and other traditional energybecome more and more serious. As a new renewable energy, wind energy has been paid moreand more attention for its advantages of huge reserves, low price and less environmentpollution. So the wind power equipment also obtained a rapid development. In recent years,with the vigorous development of wind power industry in China, the number of wind turbinesincrease gradually. Because of the frequent wind turbine accidents, it is particularly importantfor the state monitoring and fault diagnosis of wind power generator. Among all thecomponents of wind turbine, main bearing is the most important, also one of the most prone tofailure part. The working station of main bearing will directly affect the operation of the wholewind turbine. Therefore, condition monitoring and fault diagnosis of main bearing in windturbine is very necessary.
     At present there are quite a lot of diagnosis methods for main bearing in wind turbine. Themost commonly used methods are vibration diagnosis method and acoustic emission diagnosismethod. Due to the operating environment of wind turbine is often very poor, in the operationprocess, characteristic information which reflects the fault state is often submerged in noisejamming signals. Extracting the fault information effectively is of great importance inmonitoring and diagnosis main bearing of wind turbine. Many domestic and foreign scholarshave made great efforts in this respect. They acquire methods such as expert system, fuzzysystem, neural network, wavelet transform, Hilbert-Huang transform, Wigner distribution,support vector machine in the diagnosis of main bearing in wind turbines, which has mademany valuable research results, but there still exist some problems. In view of this, this paperexplores the extraction method of wind turbine main bearing vibration and acoustic emissionsignals based on blind source separation theory, and the following work has been done:
     Firstly, the development status of wind power technology is introduced and thebackground, purpose and significance of the research are expounded. The research situation ofvibration and acoustic emission diagnosis for main bearing in wind turbine at home andabroad is discussed, and the ideas and methods in this paper are pointed out.
     Secondly, the basic theory of blind source separation and the blind source separationalgorithm are discussed, mainly on FastICA algorithm and JADE algorithm, and theshortcomings of these algorithms are pointed out. In view of the existing problems of theseseparation algorithms, this paper discusses the optimization of particle swarm optimizationalgorithm for blind source separation process, and compared the performance of the variousseparation algorithm.
     Thirdly, vibration fault diagnosis system of wind turbine main bearing based on blindsource separation is established. The extraction method of vibration signals is discussed andenvelope analysis is regarded as an effective method in the extraction of vibration signals. Thevibration signals of rotor test-bed, the wind turbine test-bed and real wind turbine mainbearings are decomposed for the feature abstraction of vibration fault signal.
     Fourthly, acoustic emission fault diagnosis system of wind turbine main bearing based onblind source separation is established. The extraction method of acoustic emission signals isdiscussed and wavelet analysis is regarded as an effective method in the extraction of acousticemission signals. Then the wind turbine main bearing acoustic emission signals aredecomposed for the feature abstraction of acoustic emission fault signal.
     Fifthly, according to the characteristics signals of wind turbine main bearing, faultdiagnosis method of wind turbine main bearing based on integrated wavelet neural network isestablished. According to the characteristics of vibration signals and acoustic emission signals,sub neural network are designed and the decision fusion neural network is designed fordiagnosis information fusion, which has improved the efficiency of fault diagnosis. Softwareimplementation for the diagnosis algorithm has enhanced the practicability of diagnosticmethods.
     Sixthly, summarize the whole texts and prospect the relevant technique..
引文
[1] Burton T.风能技术[M].北京:科学出版社,2009.
    [2]程明,张运乾,张建忠.风力发电机发展现状及研究进展[J].电力科学与技术学报,2009,24(3):2-9.
    [3]陈雪峰,李继猛,程航等.风力发电机状态监测和故障诊断技术的研究与进展[J].机械工程学报,2011,47(9):45-52.
    [4]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [5]国际风能理事会.全球风能市场发展报告2012[R].风能,2012,4:32-36.
    [6]赵群,王永泉,李辉.世界风力发电现状与发展趋势[J].机电工程,2006,23(12):16-18.
    [7]李俊峰,蔡丰波,乔黎明等.2013中国风电发展报告[R].海南:海南出版社,2013.
    [8]申宽育.中国的风能资源与风力发电[J].西北水电,2010(1):76-82.
    [9]王瑞闯,林富洪.风力发电机在线监测与诊断系统研究[J].华东电力,200937(1):190-193.
    [10] Gustantsson J G, Tallian T. Detection of Damage in Assembled Rolling Bearing [J], Transactions ofthe ASLE.1962,5:197-209.
    [11] Waiters C T. The Dynamics of Ball Bearings [J]. Journal of Lubrication Technology.1971(93):1-10.
    [12] Chatuvredi G K, Thomas D W. Bearing fault detection using adaptive noise cancelling.[J], ASMEJournal of Meeh.Desh.1982(104):280-289.
    [13] McFadden P D. Model of the vibration produced by a single point defect in a rolling element bearing[J]. Journal of sound and Vibration,1984(96):69-82.
    [14] McFadden P D. The vibration produced by multiple point defects in a rolling element bearing [J].Journal of Sound and Vibration,1985(98):263-273.
    [15] Mechefske C K, Mathew J. Fault detection and diagnosis in low speed rolling element bearings [J].Mechanical Systems and Signal processing,1992,6(4):297-307.
    [16] Baillie D C, Mathew J.A comparison of autoregressive modeling techniques for fault diagnosis ofrolling element bearings [J]. Mechanical Systems and Signal Processing,1996,10(l): l-17.
    [17] Mori K, Kasashima N, Yoshioka T, et al. Prediction of spalling on ball bearing by applying thediscrete wavelet transform to vibration signal [J], Wear,1996,195(l-2):162-168.
    [18] Wang Y F, Kootsookos P J. Modeling of low shaft speed bearing faults for condition monitoring [J].Mechanical Systems and Signal Professing,1998,12(3):415-426.
    [19] Randall R B, Ho D. Optimization of bearing diagnostic techniques using simulated and actualbearing fault signals [J]. Mechanical Systems and Signal Processing,2000,14(5):763-788.
    [20] Dron J P, Rasolofondraibe L, Bolaers F. High-resolution method in vibratory analysis: application toball bearing monitoring and production machine [J]. International Journal of Solids and Structures,2001(38):4293-4313.
    [21] Rubini R, Meneghetti U. Application of the envelope and wavelet transform analysis for thediagnosis of incipient faults in ball bearings [J]. Mechanical Systems and Signal processing,2001,15(2):287-302.
    [22].Altmann J, Mathew J. Multiple band pass autoregressive demodulation for rolling element bearingfault diagnosis [J]. Mechanical Systems and Signal Professing,2001,15(5):963-977.
    [23] Prabhakar S, Mohanty A R, SsekhaL A. Application of discrete wavelet transform for detection ofball bearing race faults [J]. Iridology Imitational,2002,35(12):793-800.
    [24] Nikolaou N G, Antoniadis I A. Demodulation of vibration signals generated by defects in rollingelement bearings using complex shifted morlet wavelets[J]. Mechanical Systems and SignalProfessing,2002,16(4):677-694.
    [25] Serhat S, Emine A. Feature extraction related to bearing damage in electric motors by waveletanalysis [J] Jamaal of the Franklin Institute,2003,340(2):125-134.
    [26] Lou X S, Loparo K. Bearing fault diagnosis based on wavelet transform and fuzzy inference [J].Mechanical Systems and Signal processing,2004,18(5):1077-1095.
    [27] Bolaers F, Cousinard O, Mareounet P, et al. Advanced detention of rolling bearing spalling fromde-noising vibratory signals [J]. Control Engineering Prairie,2004,12(2):181-190.
    [28] Stefan E, Niklas G. Towards automatic detention of local bearing defeats in rotating machines [J].Mechanical Systems and Signal processing,2005,19(3),509-535.
    [29] Peng Z K, Peter W, Tse W, et al. A comparison study of improved Hilbert-Huang transform andwavelet transform: Application to fault diagnosis for rolling bearing [J]. Mechanical Systems andSignal Processing,2005,19(5):974-988.
    [30] Purushotham V, Narayanan S. Multi-fault diagnosis of rolling bearing enemies using wavelet analysisand hidden Markov model based fault recognition[J]. NDT and E International,200538(8):654-664.
    [31] Anioni J, Randall R B. On the use of the cyclic powers plectrum in rolling element bearingsdiagnosis [J]. Jamaal of Sound and Vibration,2005,281(l):463-468.
    [32] Cheng J S, Yu D J, Yang Y. A fault diagnosis approach for roller bearings based on EMD method andAR model [J]. Mechanical Systems and Signal Processing,2006,20(2):350-362.
    [33] Abhinav S, Ashraf S. Evolving an artificial neural network classifier for condition monitoring ofrotating mechanical systems [J]. Applied soft computing,2007,7(l):441-454.
    [34] Hu Q, He Z J, Zhang Z S, et al. Fault diagnosis of rotating machinery based on improved waveletpackage transform and SVMs ensemble [J]. Mechanical Systems and Signal processing,2007,21(2):688-705.
    [35] Gu Q, Chen C Z, Kong X J, et al. Fault diagnosis of the wind turbine main bearing throughmulti-fractal theory [J]. Advanced Materials Research,2012,644:337-340.
    [36] Chen C Z, Sun X M, Gu Q, et al.Wavelet-based multi-fractal analysis of large scale wind turbinemain bearing[J].Journal of Renewable and Sustainable Energy,2013,5(1):1-8.
    [37]孟庆丰,屈梁生.Wigner分布及其在机械故障诊断中的应用[J].信号处理,1990,3:156-162.
    [38]黄有方,咚德纯.一种新的滚动轴承故障诊断方法的研究[J].振动工程学报,1990,3(2):59-64.
    [39]赵纪元,何正嘉,孟庆丰等.小波包-自回归谱分析在振动诊断中的应用[J].振动工程学报,1995,8(3):195-203.
    [40]朱龙彪,严晓照,周旭等.小波分析在滚动轴承故障诊断中的应用[J].机械科学与技术,1997,23(3):59-61.
    [41]张中民,卢文祥,杨叔子等.基于小波系数包络谱的滚动轴承故障诊断[J].振动工程学报,1998,11(3):65-69.
    [42]徐玉秀,原培新,邢钢.极大嫡谱法及其在滚动轴承故障诊断中的应用[J].机械科学与技术,2001,20(4):571-574.
    [43]于德介,程军圣,杨宇.基于EMD和AR模型的滚动轴承故障诊断方法[J].振动工程学报,2004,17(3):88-92.
    [44]王太勇,何慧龙,王国锋等.基于经验模式分解和最小二乘支持矢量机的滚动轴承故障诊断[J].振动工程学报,2007,43(4):332-335.
    [45]王晓冬,何正嘉,訾艳阳.多小波自适应构造方法及滚动轴承复合故障诊断研究[J].振动工程学报,2010,23(4):438-444.
    [46]王天金,冯志鹏,郝如江等.基于Teager能量算子的滚动轴承故障诊断研究[J].振动与冲击,2012,32(2):1-5.
    [47]周智,朱永生,张优云等.基于EEMD和共振解调的滚动轴承自适应故障诊断[J].振动与冲击,2013,32(2):76-80.
    [48]唐贵基,王晓龙,邓飞跃.改进增强峭度图和增强包络谱在滚动轴承故障诊断上的应用[J].振动与冲击,2014,33(13):53-58.
    [49]朱可恒,宋希庚,薛冬新.希尔伯特振动分解在滚动轴承故障诊断中应用[J].振动与冲击,2014,33(14):160-164.
    [50]谷泉,陈长征,周昊等.滚动轴承故障诊断新方法研究[J].机械设计与制造,2013(9):113-119.
    [51]周勃,孟强,刘欢等.改进二阶统计量算法在风力机主轴承裂纹识别中的应用[J].振动工程学报.2013,26(5):779-785.
    [52]孙自强,陈长征,谷艳玲等.基于混沌和取样积分技术的大型风电增速箱早期故障诊断[J].振动与冲击,2013,32(9):113-117.
    [53]陈长征,孙鲜明,周勃等.HHT改进及其在风力机轴承故障诊断中的应用[J].华东电力,2014,42(6):1123-1128.
    [54]腾山邦久著,冯夏庭译.声发射技术的应用[M].北京:冶金工业出版社,1996:362-370.
    [55]郝如江,卢文秀,褚福磊.声发射检测技术用于滚动轴承故障诊断的研究综述[J].振动与冲击,2008,27(3):75-79.
    [56] Kaiser J. A study of acoustic phenomena in tensile tests [D]. Technische Hochschule Munchen,Germany,1950.
    [57] Dunegan H. Acoustic Emission: A Promising Technique. Report [R]. Lawrence Radiation Laboratory,1963.
    [58] Green A T, Lockman C S, Steele R K. Acoustic verification of structural integrity of Polaris chambers[J]. Modern Plastics,1964,41(11):137-139.
    [59] Parry D L, Nondestructive Flaw Detection by Use of Acoustic Emission [M]. Phillips Petroleum Co.Idaho Falls,1967.
    [60] Tarto C A. Experimental considerations for acoustic emission testing [J]. Materials Research andStandards,1971,11(3):14-17.
    [61] Rogers L M. The application of vibration analysis and acoustic emission source location to on-linecondition monitoring of antifriction bearings [J]. Teratology international,1979,12(2):51-59.
    [62] Jamaludin N, Mba D. Monitoring extremely slow rolling element bearings: Part1[J]. NDT&EInternational2002,35:349-358.
    [63]沈功田,耿荣生,刘时风.连续声发射信号的源定位技术[J].无损检测,2002,24(4):164-167.
    [64]李光海,刘时风,耿荣生等.声发射源特征识别的最新方法[J].无损检测,2002,24(12):534-538.
    [65]耿荣生,沈功田,刘时风.声发射信号处理和分析技术[J].无损检测,2002,24(1):23-28.
    [66]理华,徐春广,肖定国等.滚动轴承声发射检测技术[J].轴承,2002(7):24-26.
    [67] Egle D M, Taro C A. Analysis of acoustic emission strain waves [J]. The Journal of the AcousticalSociety of America.1967,41(2):321-325.
    [68] Rice A. Characteristics of acoustic emission sensors employed for tool condition monitoring.Proceedings of the Seventh W6rkshop on Supervising and Diagnostics of Machining Systems [C].1996,241-252.
    [69] Paulor R, Aguiar P J, Semi E C, et al. In-process grinding monitoring by acoustic emission [C].2004,(5):405-408.
    [70] Tan C C. Application of acoustic emission to the detection of bearing failures. International tribologyconference, reliability and maintainability through lubrication and wear technology [J]. Australia.1990(12):110-114.
    [71] Tandon N, Nakra B C. Defect detection of rolling element bearings by acoustic emission method [J].Journal of acoustic emission,1990,9(1):25-28.
    [72] Choudhury A, Tandon N. Application of acoustic emission technique for the detection of defects inrolling element bearings [J]. Tribology international,2000,33:39-45.
    [73] Abdullah M, Ghamdi A, Zhechkov D, et al. The use of acoustic emission for bearing defectidentification and estimation of defect size [C]. EWGAE,2004(38):397-406.
    [74] Ghamdi A. L, Mba. D. A Comparative experimental study on the use of acoustic emission andvibration analysis for bearing defect identification and estimation of defect size [J]. Mechanicalsystems and signal processing,2006,20(7):1537-1571.
    [75]赵一帆,齐明侠,赵继红等.基于声发射技术的滚动轴承故障检测[J].轴承,2001(4):50-53.
    [76]廖传军,罗晓莉,李学军.基于声发射的滚动轴承损伤振动机理研究[J].无损检测,2007,29(12):712-715.
    [77]路俏俏,黎敏,阳建宏等.基于声发射检测技术的转炉耳轴轴承故障诊断[J].轴承,2013(1):46-50.
    [78] Giordno M, Calabro A, Esposito C, et al. An Acoustic Emission Characterization of the FailureModes in Polymer-Composite Materials [J]. Composites Science and Technology,1998,58(12):1923-1928.
    [79] Li X, Yuan Z. Tool Wear Monitoring with Wavelet Packet Transform Fuzzy Clustering Method [J].Wear,1998,219(2):145-154.
    [80] Hiroaki S, Tetsuo K, Mikio T, et al. Fracture-Mode Determination of Glass-Fiber Composites byVarious AE Processing [J]. Progress in Acoustic Emission,The Japanese Society for NDI,1996(4):47-52.
    [81] Terchi A, Au Y H. Acoustic Emission Signal Processing [J]. Measurement and Control,2001,4(8):240-244.
    [82] Hawman M W, Galinaitis W S. Acoustic emission monitoring of rolling element bearings [J].Ultrasonics symposium,1988,885-889.
    [83] Tavako M. Bearing fault detection in the acoustic emission frequency range [C]. Proceedings of the11th National conference on noise control engineering, United States.1991:79-86.
    [84] Pineyro J, Klempnow A, Lescano V. Effectiveness of new spectral tools in the anomaly detection ofrolling element bearings [J]. Journal of alloys and compounds,2000,310:276-279.
    [85]李凤英,沈玉娣,熊军.滚动轴承故障的声发射检测技术[J].无损检测,2005,27(11):583-586.
    [86]陈玉华,刘时风,耿荣生等.声发射信号的谱分析和相关分析[J].无损检测,2002,24(9):395-399.
    [87]胥永刚,冯明时,谢志聪等.滚动轴承声发射特征的单分类方法及其应用[J].轴承,2012(9):43-46.
    [88]邓艾东,高亹,杨建刚等.离散分数余弦变换在碰摩声发射信号降噪中的应用[J].中国电机工程学报,2008,28(20):72-76.
    [89]李修文,阳建宏,黎敏等.基于频域形态滤波的低速滚动轴承声发射信号降噪新方法[J].振动与冲击,2013,32(1):65-68.
    [90] Gang Qi. Wavelet based acoustic emission analysis of composites [D]. Texas Tech University,1996.
    [91] Suzuki H, Kinjo T, Takemoto M, et al. Fracture mode determination of glass-fiber composites byvarious AE processing [J]. Progress in Acoustic Emission,1996(1):47-52.
    [92] Cang Q, Alian B, Javad H, et al. Discrete wavelet decomposition of acoustic emission signals fromcarbon fiber reinforced composites [J]. Composites Science and Technology,1997(57):389-403.
    [93] Jeong H. Analysis of plate wave propagation in anisotropic laminates using a wavelet transform [J].NDT&E International,2001(34):185-190.
    [94] Chen H G, Yan Y J, Jiang J S. Vibration based damage detection in composite wing box structures byHHT [J]. Mechanical Systems and Signal Processing,2006(2): l-15.
    [95] Sung D, Kim C G, Hong C S. Monitoring of impact damages in composite laminates using wavelettransform [J]. Composites, Part B,2002(33):35-43.
    [96] Jiang C H, You W, Wang L S. Analysis and study of noise elimination through wavelet in detection ofacoustic emission [C]. Proceedings of the Second International Conference on Machine Learning andCybernetics, Xi’an,2003:2-5.
    [97] Tomasz B, Dariusz Z. Application of wavelet analysis to acoustic emission pulses generated bypartial discharges [J]. IEEE Transactions on dielectrics and electrical insulation,2004,11(3):433-449.
    [98]张平,施克仁,耿荣生等.小波变换在声发射检测中的应用[J].无损检测,2002,24(10):436-439.
    [99]吴占稳,王少梅,沈功田.基于小波能谱系数的声发射源特征提取方法研究[J].武汉理工大学学报(交通科学与工程版),2008,32(1):85-87.
    [100]王楠,陈长征,孙长城等.基于应力波与小波分析的低速滚动轴承故障诊断研究[J].振动工程学报,2007,20(3):280-284.
    [101]陈长征,孙长城,费朝阳等.基于应力波的低速滚动轴承故障诊断新方法研究[J].机械强度,2007,29(6):885-890.
    [102]陈长征,赵新光,周勃等.风电机组叶片裂纹故障特征提取方法[J].中国电机工程学报,2013,33(2):112-117.
    [103]曲弋,陈长征,赵新光等.风力机叶片裂纹特征的小波尺度谱识别[J].沈阳工业大学学报,2012,34(1):22-25.
    [104]赵新光,甘晓晔,谷泉等.基于小波能谱系数的风力机疲劳裂纹特征[J].振动、测试与诊断,2014,34(1):147-152.
    [105] Kosel T, Grabec I. Franc kosel. Time-delay estimation of acoustic emission signals using ICA [J].Ultrasonics,2002(40):303-306.
    [106] Kosel T, Grabec I, Kosel F. Intelligent location of two simultaneously active acoustic emissionsource [J]. Aerospace Science and Technology,2005,9:45-53.
    [107] Gonzalez J J, Rosa D L, Puntonet C G, et al. An application of the independent component analysisto monitor acoustic emission signals generated by termite activity in wood [J]. Measurement,2005,37:63-76.
    [108] Pontoppidan N H, Sigurdsson S, Larsen J. Condition monitoring with mean field independentcomponents analysis [J]. Mechanical Systems and Signal Processing,2005(19):1337-1347.
    [109]李伟,方洪涛,戴光.基于独立分量分析和小波变换的低碳钢点蚀声发射信号特征提取[J].化工机械,2007,34(2):74-77.
    [110]李卿,邵华,陈群涛等.基于独立分量分析的切削声发射源信号分离[J].工具技术,2011,45(6):35-39.
    [111]苏永振,袁慎芳.基于独立分量分析的多源冲击定位方法[J].振动与冲击,2009,28(8):134-137.
    [112]何沿江,齐明侠,罗红梅.基于ICA和SVM的滚动轴承声发射故障诊断技术[J].振动与冲击,2008,27(3):150-153.
    [113]周勃,陈长征,赵新光等.风力机叶片蒙皮初始裂纹的盲信号提取[J].仪器仪表学报,2012,33(7):1483-1489.
    [114] Li C J, Li S Y. Acoustic emission analysis for bearing condition monitoring [J]. Wear,1985(185):67-74.
    [115] Kaewkongka T, Auyh J. Application of acoustic emission to condition monitoring of rolling elementbearings [J]. Measurement and control,2001(34):245-247.
    [116] Salvans M E, Parkin. R M, Coy J, et al. Intelligent condition monitoring of bearings in mailprocessing machines using acoustic emission [C]. Proceedings of COMADEM,2001:67-74.
    [117]沈功田,段庆儒,周裕峰等.压力容器声发射信号人工神经网络模式识别方法的研究[J].无损检测,2001,23(4):144-147.
    [118]戴光,余永增,张颖等.基于小波包分析和BP神经网络的滚动轴承非接触声发射诊断方法[J].化工机械,2008(1):274-278.
    [119]金文,陈长征,金志浩等.声发射源识别中的三比值特征提取方法研究[J].仪器仪表学报,2008,29(3):530-534.
    [120]曲弋,陈长征,周昊等.基于声发射和神经网络的风机叶片裂纹识别研究[J].机械设计与制造,2012(3):152-154.
    [121] Jutten C, Herault J. Space or time adaptive signal processing by neural network models [C].International Conference on Neural Networks for Computing. Utah, USA,1986:206-211.
    [122] Jutten C, Herault J. Blind separation of source, partⅠ: adaptive algorithm based on neuron mimeticarchitecture [J]. Signal Processing,1991,24(1):1-10.
    [123] Comon P. Blind separation of source, partⅡ: Problems statement [J]. Signal Processing,1991,24(1):11-20.
    [124] Sorouchyari E. Blind separation of source, partⅢ: Stability analysis [J]. Signal Processing,1991,24(1):21-29.
    [125] Common P. Independent component analysis, a new concept?[J]. Signal Processing,1994,36(3):287-314.
    [126] Tong L, Liu L, Soon V C, et al. Indeterminacy and Identifiability of Blind Identification [J]. IEEETrans. On Circuits and Systems,1991,38(5):499-509.
    [127] Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blinddeconvolution [J]. Neural Computation,1995(7):1129-1159.
    [128] Oja E. The nonlinear PCA learning rule in independent component analysis [J]. Neural computing,1997(17):25-46.
    [129] Karhunen J, Joutsensalo J. Representation and separation of signals using nonlinear PCA typelearning [J]. Neural Networks,1994(7):113-127.
    [130] Cichocki A, Unbehauen R, Moszczynski R, et al. A new on line adaptive learning algorithm forblind separation of source signals [C]. Proc of ISANN,1994:406-411.
    [131] Amari S. Natural gradient works efficiently in learning [J]. Neural Computation,1998(10):251-276.
    [132] Cardoso J F, Laheld B. Equivariant adaptive source separation [J].IEEE Trans.on Signal Processing,1996(44):3017-3029.
    [133] Hyvarinen A, Pajunen P. Nonlinear independent component analysis: Existence and uniquenessresults [J]. Neural Networks,1999(12):429-439.
    [134] Koldovsky J, Tichavsk P, Oja E. Efficient Variant of Algorithm Fast ICA for IndependentComponent Analysis Attaining the Cram Er-Rao Lower Bound [J]. IEEE Transactions on NeuralNetworks2006,17(5):1265-1277.
    [135] Tichavsk P, Koldovsk Z, Doron E, et al. Blind signal separation by combining two ICA algorithms:HOS-based EFICA and time structure-based WASOBI [C]. EUSIPCO2006, Florence, Italy,2006:1-5.
    [136] Koldovsky Z, Malek J, Tichavsky P, et al. Extension of EFICA algorithm for blind separation ofpiecewise stationary non Gaussian sources Acoustics [J]. Speech and Signal Processing,2008(1):1913-1916.
    [137] Frdric A, Yannick D, Johan T. Blind partial separation of underdetermined convolutive mixtures ofcomplex sources based on differential normalized kurtosis [J]. Neurocomputing,2008(2):2071-2086.
    [138] Bobin J, Starck J L, Fadili J, et al Sparsity and Morphological Diversity in Blind Source Separation[J]. IEEE Transactions on Image Processing,2007,16(11):2662-2674.
    [139] Liu J. A dynamic algorithm for blind separation of convolutive sound mixtures [J], Neurocomputing,2008(72):521-532.
    [140] Manal T, Abdellah A, Driss A. Blind separation of any source distributions via high-order statistics[J]. Signal Processing,2007(87):1882-1889.
    [141] Maria G, Jafari E V, Samer A, et al. An adaptive stereo basis method for convolutive blind audiosource separation [J]. Neurocomputing,2008(71):2087-2097.
    [142]汪军,何振亚.瞬时混叠信号盲分离[J].电子学报,1997,25(4):1-5.
    [143]汪军,何振亚.卷积混叠信号盲分离[J].电子学报,1997,25(7):7-11.
    [144]张贤达,保铮.盲信号分离[J].电子学报,2001,29(12):1766-1771.
    [145]刘琚,聂开宝,李道真等.基于递归神经网络的信息理论盲源分离准则[J].电路与系统学报,2001,6(1):40-44.
    [146]钟振茂,陈进,钟平.盲源分离技术用于机械故障诊断的研究初探[J].机械科学与技术,2002,22(1):282-284.
    [147]吴军彪,陈进,钟平等.基于总体最小二乘算法的平稳声信号二阶盲分离方法[J].声学学报,2004,29(3):221-225.
    [148]蔡晓平,陈进,吴军彪等.等变自适应算法在声学特征信号分离中的应用[J].振动与冲击,2004,23(1):110-112.
    [149]李舜酩.转子振动故障信号的盲分离[J].航空动力学报,2005,20(5):751-756.
    [150]周勃,陈长征,费朝阳.基于改进Bussgang算法的多机组故障诊断仿真和试验[J].机械工程学报,2009,45(11):106-112.
    [151]王宇,迟毅林,伍星等.基于盲信号处理的机械噪声监测与故障诊断[J].振动与冲击,2009,28(6):32-41.
    [152]焦卫东,杨世锡,钱苏翔等.联合应用MUSIC与FastICA算法实现多个时空混叠源信号的波形重建[J].机械工程学报,2010,46(6):63-70.
    [153]徐先峰,冯大政.一种快速的解盲源分离新算法[J].电子学报,2010,38(12):2780-2785.
    [154]李志农,刘卫兵,易小兵.基于局域均值分解的机械故障欠定盲源分离方法研究[J].机械工程学报,2011,47(7):97-102.
    [155]成谢锋,马勇,张学军等.一种不用先验知识的单路混合信号的盲源分离新方法[J].电子学报,2011,39(10):2317-2321.
    [156]张丽辉,邱天爽,李景春等.一种基于四阶循环累积量的盲源分离方法[J].信号处理,2011,27(9):1412-1415.
    [157]潘楠,伍星,迟毅林等.基于频域盲解卷积的机械设备状态监测与故障诊断[J].振动与冲击,2012,31(12):34-41.
    [158]周晓峰,杨世锡,甘春标.相关机械振源的盲源分离方法[J].振动与冲击,2012,31(14):60-63.
    [159]王荣杰,周海峰,詹宜巨等.一种基于牛顿迭代的自适应复盲源分离算法[J].电子学报,2014,42(6):1125-1131.
    [160] Kelmedy J, Eberhart R C. Partiele Swarm Optimization [C]. IEEE Interactional Conference onNeural Networks,1995,4:1942-1948.
    [161]虞和济,陈长征,张省等.基于神经网络的智能诊断[M].北京:冶金工业出版社,2000.
    [162]栗青,陈长征.集成神经网络在旋转机械故障诊断中的应用[J].沈阳工业大学学报,2001,23(4):339-341.
    [163] Zhang Q H, Irisa I. Using Wavelet Network in Nonparametric Estimation [J]. Campus de Beaulieu,France,1994,6(2):1-3.
    [164]罗跃纲,陈长征,曾海泉等.基于信息融合的集成小波神经网络故障诊断[J].东北大学学报:自然科学版,2002,23(8):802-805.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700