用户名: 密码: 验证码:
大功率磁流变传动技术及温度效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变传动以磁流变液为工作介质,依靠传动界面间磁流变液的剪切应力来传递动力,通过控制外加磁场强度实现传递扭矩的无级调定。作为一种新型动力传递形式,它具有反应迅速可逆、控制简单且能耗低、抗外界干扰能力强等特点,在机电设备软启动、软制动、无级调速和过载保护等方面具有广泛的应用前景。针对当前磁流变传动技术研究中存在的问题,本文将就以下几个方面开展深入研究。
     分别从宏观和微观两方面阐述了磁流变效应的形成机理和磁流变液的本构模型,详细介绍了磁流变液的基本组成和主要性能指标;结合理论分析和实验测试研究了磁流变液各组分材料性能的温度特性,包括软磁性颗粒的磁化性能、基载液的动力粘度和热膨胀特性;采用基液置换法制备出多种磁流变液样品,并分别测试了磁流变液样品的磁温特性、剪切应力—温度特性以及温度稳定性,得到了温度对磁流变液材料性能的影响机理和影响规律。
     介绍了磁流变调速控制系统的基本组成及控制原理和特点,建立系统输出转速控制数学模型,并对调速起动的时间响应进行数值计算,分析了励磁电流、输入转速和负载扭矩对响应时间的影响;计算了调速过程中磁流变液的温度变化以及由此引发的传递扭矩下降值,并建立考虑温度效应的速度控制模型以分析温度变化对磁流变调速控制的影响,进而提出一种微调电流补偿方式来弥补温升引起的扭矩下降,并对采用温度补偿前后的调速控制性能进行对比研究。
     针对大功率动力传递应用场合的要求,设计了一种新型大功率磁流变传动装置;利用ANSYS软件对所设计磁路进行有限元仿真,得到了磁场总体分布规律以及工作间隙中磁感应强度的分布特点和影响因素,并通过电磁场实验予以验证;从理论研究方面分析了工作磁感应强度和主、从动盘角速度差等因素对所设计的磁流变传动装置动力传递和调速控制性能的影响规律。
     基于流体计算控制方程和温度场计算方程,建立磁流变传动装置热流耦合数学模型,并利用计算流体动力学软件CFX进行数值模拟,得到了不同工况下传动装置内部冷却液的速度场、压力场以及传动装置的稳态和瞬态温度场,并分析滑差功率、旋转速度、进水速度和温度以及冷却液特性等因素对磁流变传动装置热流耦合场的影响。
     设计并研制了大功率磁流变传动实验系统,对大滑差功率下磁流变传动装置的动力传递和响应性能以及磁流变液的温升特性开展大量实验研究,并分别测试了该传动装置的最大许用稳态和瞬态滑差功率,结果验证了所设计的大功率磁流变传动装置的可靠性和水冷散热方式的有效性。
     本文所取得的研究成果对于磁流变传动技术的深入研究具有重要的指导意义,能够为大功率磁流变传动装置的设计和磁流变传动技术的推广应用提供技术支持。
Magnetorheological (MR) transmission adopts the magnetorheological fluid (MRF) asworking medium and relies on the shear stress of MRF between transmission interfaces forpower transmission. The transmitted torque can be continuously regulated throughcontrolling the applied magnetic field. As a new power transmission form, MR transmissionhas many advantages, such as a quick and reversible response, simple control and lowenergy consumption, as well as high anti-interference ability, etc.. Therefore, it possesses abroad application prospect in the fields of soft start, soft brake, stepless speed control andoverload protection for mechanical equipment. According to the existing problems incurrent studies of MR transmission, this dissertation will conduct an in-depth research fromthe following aspects.
     Formation mechanism of MR effect and constitutive model of MRF are explainedseparately from macro and micro aspects. A detailed introduction to basic compositions andkey performance indicators of MRF is conducted. Then, temperature effect on materialproperties of the MRF compositions, including magnetization performance of soft magneticparticle as well as dynamic viscosity and thermal expansion characteristic of carrier fluid, isstudied combining with theoretical analysis and experimental test. Several MRF samplesare prepared using the base-fluid replacement method. Thereafter, experimental tests arecarried out on the magnetism-temperature characteristic, shear stress-temperature propertyand temperature stability of MRF samples. And the influence mechanism and influencelaws of the temperature on material properties of MRF are obtained.
     An introduction to basic components, control principle and characteristic of MR speedcontrol system is performed. Then, mathematical control model for the output speed of thesystem is established and the time response of MR speed start is numerically calculated.The influence of excitation current, input speed and load torque on the response time isanalyzed as well. Both the temperature variation of MRF and the consequent torque declinein the speed control process are calculated. Then, a speed control model considering thetemperature effect is built and the effect of temperature variation on MR speed control isdiscussed. Moreover, a current fine-tuning compensation method for compensating thetorque decline caused by temperature rise is proposed and the speed control performanceswith/without temperature compensation method are contrastively studied.
     Aiming at the requirements for high-power transmission application fields, a novelhigh-power MR transmission device (MRTD) is designed. Then, finite element simulation is conducted on the designed magnetic circuit using the ANSYS software, and the overallmagnetic field distribution and the distribution laws and influence factors of magneticinduction in the working gap are obtained. An electromagnetic field experiment isconducted to verify the simulation results. Moreover, the influence laws of workingmagnetic induction and angular speed difference between drive and driven plate on powertransmission and speed control performance of the designed MRTD are theoreticallyinvestigated as well.
     Based on computational fluid dynamics (CFD) equations and temperature fieldcalculation equations, a heat-flow coupling model of MRTD is established and numericalcalculation is conducted with the CFD software CFX. Velocity and pressure fields ofinternal cooling liquid as well as steady and transient temperature fields of MRTD undervarious working conditions are obtained. Then, the influence laws of slip power, rotationalspeed, inlet speed and temperature, as well as cooling fluid characteristic on the heat-flowcoupling field of MRTD are discussed.
     An experimental system for high-power MR transmision is designed and fabricated.Then, a large number of experimental studies are conducted on the power transmission andresponse performance, as well as temperature rise characteristics of MRF under high slippower conditions. Moreover, maximum allowable steady and transient slip power are testedas well. Experiments results validate the reliability of the designed high-power MRTD andthe effectiveness of the proposed water cooling method.
     Research results from this dissertation play an important guiding significance to thethorough study of MR transmission technology and they could provide a technical supportfor the design of high-power MRTD and the widespread application of MR transmissiontechnology.
引文
[1]王雷顶.机械传动技术的改进与发展[J].机电信息,2012,15:118-119.
    [2]秦大同.机械传动科学技术的发展历史与研究进展[J].机械工程学报,2004,39(12):37-42.
    [3]王彩霞.液压传动的应用技术[J].新技术新工艺,2010(5):69-70.
    [4]王庆珉.液压传动技术发展特点[J].青岛建筑工程学院学报,1991,12(4):64-67.
    [5]魏宸官,赵家象.液体粘性传动技术[M].北京:国防工业出版社,1996.
    [6]张以都,张启先.液体粘性软启动装置的启动特性研究[J].北京航空航天大学学报,2002,28(5):578-580.
    [7] Meng Q R, Hou Y F. Mechanism of hydro-viscous soft start of belt conveyor[J]. Journal of ChinaUniversity of Mining and Technology,2008,18(3):459-465.
    [8] Lord Corporation. Dr. Dave’s do-it-yourself MR fluid, Designing with MR fluid, magnetic circuitdesign, FAQs, www.lord.com,2004.
    [9] Huang J, Zhang J Q, Yang Y, Wei Y Q. Analysis and design of a cylindrical magneto-rheologicalfluid brake[J]. Journal of Materials Processing Technology,2002,129(1):559-562.
    [10] Wong P L, Bullough W A, Feng C, Lingard S. Tribological performance of magneto-rheologicalsuspensions[J]. Wear,2001,247(1):33-40.
    [11] Zhang X Z, Gong X L, Zhang P Q, Wang Q M. Study on the mechanism of the squeeze-strengtheneffect in magnetorheological fluids[J]. Journal of Applied Physics,2004,96(4):2359-2364.
    [12] Milecki A. Investigation and control of magneto-rheological fluid dampers[J]. International Journalof Machine Tools and Manufacture,2001,41(3):379-391.
    [13] Bossis G, Lacis S, Meunier A, Volkova O. Magnetorheological fluids[J]. Journal of Magnetism andMagnetic Materials,2002,(252):224-228.
    [14]胡志德,晏华,陈淑莲,余荣升,等.羰基铁粉类型及含量对磁流变液摩擦性能的影响[J].润滑与密封,2012,37(4):24-28.
    [15] Jolly M R, Bender J W, Carlson D J. Properties and applications of commercial magnetorheologicalfluids[J]. Journal of Intelligent Material Systems and Structures,1999,10(1):5-13.
    [16] Wang D M, Hou Y F, Tian Z Z. A novel high-torque magnetorheological brake with a watercooling method for heat dissipation[J]. Smart Materials and Structures,2013,22(2):025019.
    [17]于国军,杜成斌,孙立国.一种新型复合磁流变阻尼器的设计与磁路仿真分析[J].机械设计与研究,2007,123(3):113-117.
    [18]司鹄,彭向和.磁流变流体的磁流变效应[J].重庆大学学报自然科学版,2003,26(5):72-75.
    [19]翁建生,胡海岩,张庙康.磁流变液体的流变力学特性试验和建模[J].应用力学学报,2000,17(3):1-5.
    [20] Engin T, Evrensel C, Gordaninejad F. Numerical simulation of laminar flow of water-basedmagneto-rheological fluids in micro tubes with wall roughness effect[J]. InternationalCommunications in Heat and Mass Transfer,2005,32(8):1016-1025.
    [21]汪建晓,孟光.磁流变液装置及其在机械工程中的应用[J].机械强度,2001,23(1):50-56.
    [22] Brigadnov I A, Dorfmann A. Mathematical modeling of magnetorheological fluids[J]. ContinuumMechanics and Thermodynamics,2005,17(1):29-42.
    [23] Mazlan S A, Ekreem N B, Olabi A G. An investigation of the behaviour of magnetorheologicalfluids in compression mode[J]. Journal of Materials Processing Technology,2008,201(1):780-785.
    [24] Nguyen Q H, Choi S B, Wereley N M. Optimal design of magnetorheological valves via a finiteelement method considering control energy and a time constant[J]. Smart Materials and Structures,2008,17(2):025024.
    [25]汪建晓,孟光.磁流变液研究进展[J].航空学报,2002,23(1):6-12.
    [26] Weiss K D, Carlson J D. A growing attraction to magnetic fluids[J]. Machine Design,1994,66(15):61-64.
    [27] Gorodkin S R, Kolomentsev A V, Kordonsky W I, et al. Magnetorheological valve and devicesincorporating magnetorheological elements[P]. US Patent:5452745,1995.
    [28] Wilson C M D. Fuzzy control of magnetorheological dampers for vibration reduction of seismicallyexcited structures[D]. Tallahassee: The Florida State University,2005.
    [29] Spencer Jr B F, Yang G, Carlson J D, Sain M K, et al. Smart dampers for seismic protection ofstructures: a full-scale study[C]. Proceedings of the Second World Conference on Structural Control.Kyoto, Japan,1998,1:417-426.
    [30] Kordonsky W I. Magnetorheological effect as a base of new devices and technologies[J]. Journal ofMagnetism and Magnetic Materials,1993,122(1):395-398.
    [31] Wang D H, Liao W H. Magnetorheological fluid dampers: a review of parametric modelling[J].Smart Materials and Structures,2011,20(2):023001.
    [32] Erol O, Gonenc B, Senkal D, et al. Magnetic induction control with embedded sensor forelimination of hysteresis in magnetorheological brakes[J]. Journal of Intelligent Material Systemsand Structures,2012,23(4):427-440.
    [33]王鸿云,郑惠强,李泳鲜.基于挤压模式下磁流变液力学行为的实验研究[J].仪器仪表学报,2009,30(4):848-851.
    [34] Carlson J D. Magnetorheological fluid actuators[J]. Adaptronics and Smart Structures. Basics,Materials, Design and Applications,1999:180-195.
    [35] Carlson J D, Catanzarite D M. Magnetorheological fluid devices and process of controlling force inexercise equipment utilizing same[P]. US Patent:5816372,1998.
    [36] Boelter R, Janocha H. Design rules for MR fluid actuators in different working modes[C]. SmartStructures and Materials'97. International Society for Optics and Photonics,1997:148-159.
    [37] Gedik E, Kurt H, Recebli Z, Balan C. Two-dimensional CFD simulation of magnetorheologicalfluid between two fixed parallel plates applied external magnetic field[J]. Computers&Fluids,2012,63(6):128-134.
    [38] Olabi A G, Grunwald A. Design and application of magneto-rheological fluid[J]. Materials&Design,2007,28(10):2658-2664.
    [39]王宇飞,何琳,单树军.基于Maxwell的磁流变阻尼器的磁路有限元分析[J].噪声与振动控制,2007,27(2):28-32.
    [40] Carlson D J. Magnetorheological fluids[M]. Florida: The Chemical Rubber Company Press,2009.
    [41]张进秋,王洪涛,冯占宗,贾进峰.车用双筒盘形缝隙式磁流变液减振器阻尼特性实验研究[J].兵工学报,2009,30(11):1488-1492.
    [42]马久河,吕建刚,张磊.磁流变传动装置传递力矩分析与测试[J].磁性材料及器件,2005,36(4):25-28.
    [43] Ashour O, Rogers C A, Kordonsky W. Magnetorheological fluids: materials, characterization, anddevices[J]. Journal of Intelligent Material Systems and Structures,1996,7(2):123-130.
    [44]刘成晔,蒋科军,衣丰艳.圆筒式磁流变液制动器内流场数值分析[J].系统仿真学报.2011,23(3):628-631.
    [45] Sunakoda K, Sodeyama H, Iwata N, Fujitanic H, et al. Dynamic characteristics ofmagneto-rheological fluid damper[C]. Proceedings of SPIE Smart Structure and MaterialsConference.2000,3989:194-203.
    [46] Sarkar C, Hirani H. Design of a squeeze film magnetorheological brake considering compressionenhanced shear yield stress of magnetorheological fluid[C]. Journal of Physics: Conference Series.IOP Publishing,2013,412(1):012045.
    [47] Carlson D J, Jolly M R. MR Fluid foam and elastomer device[J]. Mechatronics,2000,10(4):555-569.
    [48]郑军,曹兴进,张光辉.磁流变软启动传动装置的I-T关系研究[J].工程设计学报,2005,12(5):284-287.
    [49]杨仕清,张万里.磁流变液的流变学性质研究[J].功能材料,1998,29(5):550-552.
    [50] Ginder J M, Davis L C. Shear stresses in magnetorheological fluids: role of magnetic saturation[J].Applied Physics Letters,1994,65(26):3410-3412.
    [51]郑军,曹兴进,张光辉.传动装置中磁流变液瞬态流动特性的数值计算[J].西安交通大学学报,2007,41(9):1053-1057.
    [52]黄豪彩,黄宜坚.圆盘式磁流变传动机构的研究[J].机床与液压,2003,(2):62-64.
    [53]张琳,李彦希.圆盘式磁流变传动机构的优化设计[J].机械设计与制造,2008,(12):43-44.
    [54]张琳.圆盘式磁流变传动机构的设计与研究[J].机械设计,2009,26(1):31-32.
    [55] Wang D, Hou Y. Design and experimental evaluation of a multidisk magnetorheological fluidactuator[J]. Journal of Intelligent Material Systems and Structures,2013,24(5):640-650.
    [56]田祖织.磁流变液及其传动技术研究[D].徐州:中国矿业大学,2012.
    [57]王道明,孟庆睿,侯友夫,田祖织.磁流变传动界面间液膜温升特性实验研究[J].仪器仪表学报,2012,33(12):2674-2679.
    [58]贺杰,高丽霞,刘秀梅.多盘式磁流变液离合器内温度场特性研究[J].煤矿机械,2013,34(5):66-68.
    [59]王道明,孟庆睿,侯友夫,田祖织.传动装置磁流变液瞬态温度场研究[J].农业机械学报,2013,44(4):287-292.
    [60] Carlson J D, Catanzarite D M, St. Clair K A. Commercial magneto-rheological fluid devices[J].International Journal of Modern Physics B,1996,10(23-24):2857-2865.
    [61] Lee U, Kim D, Hur N, Jeon D. Design analysis and experimental evaluation of an MR fluidclutch[J]. Journal of Intelligent Material Systems and Structures,1999,10(9):701-707.
    [62] Kavlicoglu B, Gordaninejad F, Evrensel C A, Cobanoglu N, et al. A high-torquemagneto-rheological fluid clutch[C]. Proceedings of SPIE Conference on Smart Materials andStructures, San Diego,2002,4697:1-8.
    [63] Li W H, Du H. Design and experimental evaluation of a magnetorheological brake[J]. InternationalJournal of Advanced Manufacturing and Technology,2003,21(7):508-515.
    [64] Kavlicoglu B, Gordaninejad F, Evrensel C A, Fuchs F, et al. A multi-plate magneto-rheological fluidlimited slip differential clutch[C]. Proceedings SPIE Smart Structures and Materials Conference,Industrial and Commercial Applications,2003,5054:341-349.
    [65] Neelakantan V A, Washington G N. Modeling and reduction of centrifuging in magnetorheological(MR) transmission clutches for automotive applications[J]. Journal of Intelligent Material Systemsand Structures,2005,16(9):703-711.
    [66] Kavlicoglu N C, Kavlicoglu B M, Liu Y M, Evrensel C A, et al. Response time and performance ofa high-torque magneto-rheological fluid limited slip differential clutch[J]. Smart Materials andStructures,2007,16(1):149-159.
    [67] Kikuchi T, Ikeda K, Otsuki K, Kakehashi T, et al. Compact MR fluid clutch device forhuman-friendly actuator[J]. Journal of Physics: Conference Series,2009,149(1):012059.
    [68] Kikuchi T, Otsuki K, Furusho J, Abe H, et al. Development of a compact magnetorheological fluidclutch for human-friendly actuator[J]. Advanced Robotics,2010,24(10):1489-1502.
    [69] Kikuchi T, Kobayashi K, Inoue A. Gap-size effect of compact MR fluid brake[J]. Journal ofIntelligent Material Systems and Structures,2011,22(15):1677-1683.
    [70] Sarkar C, Hirani H. Theoretical and experimental studies on a magnetorheological brake operatingunder compression plus shear mode[J]. Smart Materials and Structures,2013,22(11):115032.
    [71]梁锡昌,蒋建东.磁流变无级调速技术的研究[J].机械工程学报,2005,41(9):146-149.
    [72]孟维佳.双平板式磁流变液离合器的研究设计[D].哈尔滨:哈尔滨工业大学,2006.
    [73]郑军,张光辉,曹兴进.磁流变传动装置动态响应性能研究[J].机械强度,2009,31(2):199-202.
    [74]李钢,孙宇.磁流变恒张力控制传动装置设计研究[J].机械传动,2010,34(10):16-18.
    [75]田祖织,侯友夫,王囡囡.壁面特征对磁流变液传力性能的影响[J].功能材料,2011,42(11):1962-1964.
    [76] Guo H T, Liao W H. A novel multifunctional rotary actuator with magnetorheological fluid[J].Smart Materials and Structures,2012,21(6):065012.
    [77] Dai S, Du C, Yu G. Design, testing and analysis of a novel composite magnetorheological fluidclutch[J]. Journal of Intelligent Material Systems and Structures,2013,24(14):1675-1682.
    [78]李国发,赵朴,刘畅.分层式磁流变力矩传递装置的研制及试验[J].江苏大学学报自然科学版,2014,35(1):20-24.
    [79] Gopalswany S, Jones G L. Magnetorheological transmission clutch[P]. US Patent:5823309,1998.
    [80] Gopalswany S, Johnston G L, Jones G L, Kruckemeyer W C, et al. Magnetorheological fluid fanclutch[P]. US Patent:5896965,1999.
    [81] Szalony N. Multiple disc clutch pack having rheological film layer[P]. US Patent:6581740,2003.
    [82] Smith A L. Multi-gap magnetorheological fluid clutch[P]. U S Patent:8215467,2012.
    [83]曹兴进,郑军.磁流变软启动装置[P].中国专利: CN200410081536.7,2005.
    [84]苗云江,杨志伊.磁流变液软启动装置[P].中国专利: CN200810020095.8,2008.
    [85]于国军,杜成斌,戴上秋,雷冬.一种单面三盘面式磁流变离合器[P].中国专利:CN201010233048.9,2010.
    [86]谢方伟,杨平,张立强,于新刚,等.一种多片式磁流变制动器[P].中国专利:CN201110252346.7,2011.
    [87]李成武,周祥祥,何玉林,杜静.一种可换向磁流变无级变矩器[P].中国专利:CN201310299987,2013.
    [88] Weiss K D, Duclos T G. Controllable fluids: the temperature dependence of post-yield properties[J].International Journal of Modern Physics B,1994,8(21-22):3015-3032.
    [89] Yang G. Large-scale magnetorheological fluid damper for vibration mitigation: modeling, testingand control[D]. PhD Thesis, Indiana: University of Notre Dame,2001.
    [90] Bica I. The influence of temperature and of a longitudinal magnetic field upon the electricalconductivity of magnetorheological suspensions[J]. Physica B: Condensed Matter,2006,371(1):145-148.
    [91] McKee M J. Effects of temperature on performance of compressible magnetorheological fluiddampers[D]. Master Thesis, Reno: University of Nevada,2010.
    [92] Sahin I. Investigation of the effects of temperature variations on the magnetorheological damper[C].15th International Research/Expert Conference Trends in the Development of Machinery andAssociated Technology, Prague, Czech Republic, September2011,633-636.
    [93] Wiehe A, Kieburg C, Maas J. Temperature induced effects on the durability of MR fluids[C].Journal of Physics: Conference Series. IOP Publishing,2013,412(1):012017.
    [94] Yildirim G, Genc S. Experimental study on heat transfer of the magnetorheological fluids[J]. SmartMaterials and Structures,2013,22(8):085001.
    [95] Shahrivar K, de Vicente J. Thermogelling magnetorheological fluids[J]. Smart Materials andStructures,2014,23(2):025012.
    [96]潘胜,吴建耀,胡林,沈峰,等.磁流变液的屈服应力与温度效应[J].功能材料,1997,28(2):264-267.
    [97]廖昌荣.汽车悬架系统磁流变阻尼器研究[D].重庆:重庆大学,2001.
    [98]华文林.磁流变液制动器的设计与研究[D].武汉:武汉理工大学,2002.
    [99]史学广.还原铁磁流变液沉降稳定性及流变特性研究[D].沈阳:东北大学,2010.
    [100]唐龙,岳恩,罗顺安,赵光明,等.磁流变液温度特性研究[J].功能材料,2011,42(6):1065-1067.
    [101]张平,唐龙,岳恩,等.磁流变液的温度稳定性和耐久性研究[C].第六届全国电磁流变液及其应用学术会议,浙江宁波,2011.
    [102]田祖织,侯友夫,王囡囡.磁流变传动装置温度特性研究[J].仪器仪表学报,2012,33(3):596-601.
    [103] Gordaninejad F, Breese D G. Heating of magnetorheological fluid dampers[J]. Journal ofIntelligent Material Systems and Structures,1999,10(8):634-645.
    [104] Park E J, Stoikov D, Falcao da Luz L, Suleman A. A performance evaluation of an automotivemagnetorheological brake design with a sliding mode controller[J]. Mechatronics,2006,16(7):405-416.
    [105] Falc o da Luz L, Park E J, Suleman A. Design and modeling of a magnetorheological brakesystem[C]. Proceedings of7th CanSmart International Workshop on Smart Materials andStructures, Montreal, Canada,2004.
    [106] Falc o da Luz L. Design of a magnetorheological brake system[D]. Master Thesis, Victoria, BC,Canada: University of Victoria,2004.
    [107] Kavlicoglu B M, Gordaninejad F, Evrensel C A, Liu Y M, et al. Heating of a high-torquemagnetorheological fluid limited slip differential clutch[J]. Journal of Intelligent Material Systemsand Structures,2008,19(2):235-241.
    [108] Larrecq G. Heating effects on magnetorheological dampers[D]. Cambridge: MassachusettsInstitute of Technology,2010.
    [109]蒋建东.磁流变传动技术及器件的研究[D].重庆:重庆大学,2004.
    [110]郑军.磁流变传动理论与试验研究[D].重庆:重庆大学,2008.
    [111]陈国兵.磁流变液阻尼器温度模型及实验研究[J].煤矿机械,2010,31(11):62-65.
    [112]王四棋,余淼,浮洁,平文彬,等.正弦激励作用下磁流变阻尼器温升理论与试验研究[J].机械工程学报,2013,49(8):123-128.
    [113] Dogruoz M B, Wang E L, Gordaninejad F, Stipanovic A J, et al. Augmenting heat transfer fromfail-safe magneto-rheological fluid dampers using fins[J]. Journal of Intelligent Material Systemsand Structures,2003,14(2):79-86.
    [114] Dogruoz M B, Gordaninejad F, Wang L C. Heat transfer of magneto-rheological dampers[C].Proceedings of SPIE Conference on Smart Materials and Structures,2000,3988:84-93.
    [115] Dogruoz M B, Gordaninejad F, Wang E L, Stipanovich A J. An experimental study on heat transferfrom fail-safe magneto-rheological fluid dampers[C]. Proceedings of SPIE Conference on SmartMaterials and Structures,2001,4331:343-353.
    [116]郑军,张光辉,曹兴进.热管式磁流变传动装置的设计与试验[J].机械工程学报,2009,45(7):305-311.
    [117]曹兴进,郑军.热管式磁流变制动装置[P].中国专利:200720123347.0,2007.
    [118]田祖织,侯友夫.双盘式磁流变离合器[P].中国专利: CN201110041597.0,2011.
    [119]蔡敏.一种水冷式磁流变软启动装置[P].中国专利: CN201110334597.X,2012.
    [120]洪若瑜.磁性纳米粒和磁性流体制备与应用[M].北京:化学工业出版社,2009.
    [121]李建,赵保刚.磁性液体——基础与应用[M].重庆:西南师范大学出版社,2002.
    [122]李德才.磁性液体理论及应用[M].北京:科学出版社,2003.
    [123]赵雯,张秋禹,王结良,张军平.磁流变液及其应用[J].材料导报,2004,18(5):68-71.
    [124]司鹄,彭向和.磁流变材料的流变性能研究[J].材料科学与工程,2002,20(1):61-63.
    [125]龚兴龙,李辉,张培强.磁流变液的制备,机理和应用[J].中国科技大学学报,2006,1:23-27.
    [126] Wereley N M, Pang L. Nondimensional analysis of semi-active electrorheological andmagnetorheological dampers using approximate parallel plate models[J]. Smart Materials andStructures,1998,7(5):732-743.
    [127] Wang X, Gordaninejad F. Flow analysis of field-controllable, electro-and magneto-rheologicalfluids using Herschel-Bulkley model[J]. Journal of Intelligent Material Systems and Structures,1999,10(8):601-608.
    [128] Lee D Y, Wereley N M. Analysis of electro-and magneto-rheological flow mode dampers usingHerschel-Bulkley model[C]. SPIE's7th Annual International Symposium on Smart Structures andMaterials. International Society for Optics and Photonics,2000:244-255.
    [129] Zhu Y, Gross M, Liu J. Nucleation theory of structure evolution in magnetorheological fluid[J].Journal of Intelligent Material Systems and Structures,1996,7(5):594-598.
    [130]李海涛,彭向和,何国田.磁流变液机理及行为描述的理论研究现状[J].材料导报,2010,24(3):121-124.
    [131] Jolly M R, Carlson J D, Munoz B C. A model of the behaviour of magnetorheological materials[J].Smart Materials and Structures,1999,5(5):607-614.
    [132] Shulman Z P, Kordonsky V I, Zaltsgendler E A, Prokhorov I V, et al. Structure, physical propertiesand dynamics of magnetorheological suspensions[J]. International Journal of Multiphase Flow,1986,12(6):935-955.
    [133] Rosensweig R E. On magnetorheology and electrorheology as states of unsymmetric stress[J].Journal of Rheology,1995,39(1):179-192.
    [134] Gross M. Ground state of a dipolar fluid film[J]. Physical Review E,1998,58(5):6124-6133.
    [135]朱应顺,龚兴龙,李辉,张培强.磁流变液剪切屈服应力的数值分析[J].中国矿业大学学报,2006,35(4):498-503.
    [136] Li W H, Du H, Chen G, et al. Experimental investigation of creep and recovery behaviors ofmagnetorheological fluids[J]. Materials Science and Engineering: A,2002,333(1):368-376.
    [137] Lemaire E, Meunier A, Bossis G, Liu J, et al. Influence of the particle size on the rheology ofmagnetorheological fluids[J]. Journal of Rheology,1995,39(5):1011-1020.
    [138]司鹄,彭向和,陈伟民.分析磁流变流体屈服应力微观力学模型[J].应用力学学报,2005,22(2):198-201.
    [139] Tang X, Conrad H. An analytical model for magnetorheological fluids[J]. Journal of Physics D:Applied Physics,2000,33(23):3026-3032.
    [140] http://www.lord.com/products-and-solutions/magneto-rheological-(mr)/mr-products.xml
    [141] http://www.ycs.com.cn/products/p100101.html
    [142] http://www.nbshangong.com/productshow.asp?id=861
    [143]王安蓉,许刚,舒纯军.磁性液体及其应用[M].成都:西南交通大学出版社,2010.
    [144] Jeon D, Park C, Park K. Vibration suppression by controlling an MR damper[J]. InternationalJournal of Modern Physics B,1999,13(14-16):2221-2228.
    [145]王大坤.羰基铁粉磁流变液特性及其初步应用研究[D].重庆:重庆大学,2007.
    [146]浦鸿汀,蒋峰景.磁流变液材料的研究进展和应用前景[J].化工进展,2005,24(2):132-136.
    [147] Jang K I, Seok J, Min B K, Lee S J. Behavioral model for magnetorheological fluid under amagnetic field using Lekner summation method[J]. Journal of Magnetism and Magnetic Materials,2009,321(9):1167-1176.
    [148]赵素玲,苏良碧,官建国,张联盟.羰基铁粒子的制备与表征[J].武汉理工大学学报,2004,26(2):7-10.
    [149]刘奇,唐龙,张平.实用型磁流变体材料研究[J].功能材料,2004,35(3):291-292.
    [150]聂俊辉,李一,贾成厂,石文.羰基金属复合材料的研究与应用[J].粉末冶金工业,2008,18(2):46-53.
    [151]关新春,欧进萍.磁流变液组分选择原则及其机理探讨[J].化学物理学报,2001,14(5):592-596.
    [152] R. E. Rosensweig. Ferrohydrodynamics[M]. New York: Cambridge University Press,1985.
    [153]杨仕清,王豪才.磁流变液智能材料、特性及器件研究[J].大自然探索,1998,17(3):38-41.
    [154]唐俊杰.合成润滑油基础知识讲座之三[J].润滑油,2000,15(1):60-64.
    [155]严密,彭晓领.磁学基础与磁性材料[M].杭州:浙江大学出版社,2006.
    [156] Karakoc K, Park E J, Suleman A. Design considerations for an automotive magnetorheologicalbrake[J]. Mechatronics,2008,18(8):434-447.
    [157] Maaz K, Mumtaz A, Hasanain S K, Bertino M F. Temperature dependent coercivity andmagnetization of nickel ferrite nanoparticles[J]. Journal of Magnetism and Magnetic Materials,2010,322(15):2199-2202.
    [158] Demortiere A, Panissod P, Pichon B P, Pourroy G, et al. Size-dependent properties of magnetic ironoxide nanocrystals[J]. Nanoscale,2011,3(1):225-232.
    [159]张初航.硅油表面银、金纳米结构凝聚体形貌及微结构的演化[D].杭州:浙江大学,2012.
    [160] Cho M S, Lim S T, Jang I B, Choi H J, et al. Encapsulation of spherical iron-particle with PMMAand its magnetorheological particles[J]. IEEE Transactions on Magnetics,2004,40(4):3036-3038.
    [161] Zhou Y, Jerrams S, Chen L. Multi-axial fatigue in magnetorheological elastomers using bubbleinflation[J]. Materials&Design,2013.50(9):68-71.
    [162] http://www.yingpucidian.com/yingpucidian_Product_2539508.html.
    [163] Liu Y D, Choi H J, Choi S B. Controllable fabrication of silica encapsulated soft magneticmicrospheres with enhanced oxidation-resistance and their rheology under magnetic field[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2012,403:133-138.
    [164]张景松.流体力学[M].徐州:中国矿业大学出版社,2001.
    [165]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社,1998.
    [166]江体乾.化工流变学[M].上海:华东理工大学出版社,2004.
    [167]朱静,李传宪,辛培刚.稠油粘温特性及流变特性分析[J].石油化工高等学校学报,2011,24(2):66-68.
    [168] Pereiro A B, Legido J L. Physical properties of ionic liquids based on1-alkyl-3-methylimidazolium cation and hexafluorophosphate as anion and temperaturedependence[J]. The Journal of Chemical Thermodynamics,2007,39(8):1168-1175.
    [169]唐燕杰,苗恩铭,陈晓怀.热膨胀系数同弹性模量数学模型分析[J].安徽纺织职业技术学院学报,2003,2(1):6-8.
    [170]王经.传热学与流体力学基础[M].上海:上海交通大学出版社,2007.
    [171]金宝炎.磁流变液的成分、制备及性能研究[D].北京:北京科技大学,2007.
    [172] Maiorov M M, Cebers A. Magnetic microconvection on the diffusion front of ferroparticles[J].Magnetohydrodynamics,1983,5(19):376-380.
    [173] Suyazov V M. Theory of anisotropic ferromagnetic colloids[J]. Journal of Applied Mechanics andTechnical Physics,1983,24(3):297-304.
    [174]程海斌,瞿伟廉,张剑,涂建维,等.磁流变液及其阻尼器的制备与性能研究[J].功能材料,2006,37(5):811-813.
    [175]陶剑青,程海斌,李祥辉.纳米复合磁流变液的流变特性[J].中国粉体技术,2005,11(3):26-28.
    [176]江万权,朱春玲,陈祖耀,胡源,等.微米级浓悬浮体系中粒子的沉降稳定性及其表征方法[J].中国科学技术大学学报,2001,31(6):663-667.
    [177]廖晓钟.电力电子技术与电气传动[M].北京:北京理工大学出版社,2000.
    [178]庄骏,徐通明,石寿淳.热管与热管换热器[M].上海:上海交通大学出版社,1989.
    [179]余小玲,冯全科.电力电子设备常用散热方式的散热能力分析[J].变频器世界,2009(7):76-78.
    [180]李春阳,徐景秋.热管散热器在新型变流装置中的应用[J].机车电传动,2005,(2):14-18.
    [181] Wang D, Tian Z, Meng Q, Hou Y. Development of a novel two-layer multiplatemagnetorheological clutch for high-power applications[J]. Smart Materials and Structures,2013,22(8):085018.
    [182]陈建业,沈英魁,陈希正.大功率变流器纯水冷却系统的研制与应用[J].电力系统自动化,2000,24(23):39-42.
    [183]葛隽,何闻.晶体管水冷散热器的热分析及仿真研究[J].机床与液压,2008,36(5):161-164.
    [184] Carlson J D. Multi-degree of freedom magnetorheological devices and system for using same[P].U S Patent:5492312,1996.
    [185] http://www.xztjmf.com/show.asp?strID=1000
    [186] Kordonsky V I, Shulman Z P, Gorodkin S R, Demchuk S A, et al. Physical properties ofmagnetizable structure-reversible media[J]. Journal of Magnetism and Magnetic Materials,1990,85(1):114-120.
    [187]吕长荣,刘晓军,高红.电磁学[M].哈尔滨:哈尔滨工业大学出版社,2000.
    [188]张红辉,廖昌荣,陈伟民,黄尚廉.磁流变阻尼器磁路设计及磁饱和有限元分析[J].功能材料与器件学报,2004,10(4):493-497.
    [189]秦曾煌.电工学[M].北京:高等教育出版社,1999.
    [190]张师帅.计算流体动力学及其应用一CFD软件的原理与应用[M].武汉:华中科技大学出版社,2011.
    [191]潘丽.湿式多片摩擦离合器流场动态仿真及流道优化[D].重庆:重庆大学,2012.
    [192]黄健萌,高诚辉,唐旭晟.盘式制动器热一结构耦合的数值建模与分析[J].机械工程学报,2008,44(2):145-151.
    [193]孙纪宁. ANSYS CFX对流传热数值模拟基础应用教程[M].北京:国防工业出版社,2010.
    [194]赵镇南.传热学[M].北京:高等教育出版社,2002.
    [195]丁舜年.大型电机的发热与冷却[M].北京:科学出版社,1992.
    [196]王明权,易传云.划片机气静压电主轴热变形的有限元分析[J].电子工业专用设备,2007,36(4):39-44.
    [197]郭鹏飞,关新春,欧进萍.磁流变液阻尼器响应时间的试验研究及其动态磁场有限元分析[J].振动与冲击,2009,28(6):1-5.
    [198]黄曦,余淼,陈爱军,廖昌荣,等.磁流变液阻尼器动态响应及其影响因素分析[J].功能材料,2006,37(5):808-810.
    [199]吕建刚,易当祥,张进秋,孔庆春.履带车辆磁流变减振器响应时间研究[J].实验力学,2001,16(3):320-324.
    [200]张进秋,张磊,高永强,岳杰,等.磁流变阻尼器响应时间仿真与试验研究[J].装甲兵工程学院学报,2011,25(6):29-34.
    [201]童静.磁流变阻尼器动态响应特性及其长期静置影响研究[D].重庆:重庆大学,2010.
    [202] Yang G, Spencer Jr B F, Carlson J D, Sain M K. Large-scale MR fluid dampers: modeling anddynamic performance considerations[J]. Engineering Structures,2002,24(3):309-323.
    [203] Koo J H, Goncalves F D, Ahmadian M. A comprehensive analysis of the response time of MRdampers[J]. Smart Materials and Structures,2006,15(2):351-358.
    [204]谢方伟.温度场及变形界面对液粘传动特性影响规律的研究[D].徐州:中国矿业大学,2010.
    [205]谢方伟,侯友夫.液体黏性传动装置摩擦副瞬态热应力耦合[J].中南大学学报自然科学版,2010,41(6):2201-2206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700