用户名: 密码: 验证码:
磁头磁盘的接触碰撞及窝点与挠臂的微动磨损数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息技术的不断发展对信息存储容量及存储安全性能的要求越来越高。超高密度存储硬盘的出现,使得磁头越来越贴近磁盘盘面,目前使用的硬盘中磁头与磁盘之间的飞行高度仅为几个纳米左右。硬盘正常工作时磁头的加载、卸载、动态飞行及寻址等动作会引起窝点与挠臂发生微小相对位移,导致窝点与挠臂的微动磨损,破坏窝点与挠臂间的接触面,影响磁头浮块的动态飞行能力。窝点与挠臂之间的微动磨损还会产生磨削颗粒,这些颗粒散落在硬盘里,容易卷入磁头与磁盘之间的微小间隙引起接触碰撞,损坏磁头组件与盘面,造成永久的数据丢失。硬盘在受到外界激振力作用时,更容易引起磁头磁盘的剧烈碰撞,从而加剧窝点与挠臂之间的微动磨损。特别是当硬盘处于充氦环境中时,稀薄的氦气在磁头受到挠动时能提供的阻尼作用有限,相同的激振力作用下,磁头磁盘的接触碰撞力远远大于处于空气环境中的硬盘。
     目前针对磁头磁盘接触碰撞过程中引起的窝点与挠臂之间的微动磨损研究很少。结合悬架有限元模型、浮块与盘面间的动态气浮轴承模型以及磁头磁盘接触碰撞模型,研究了当磁头与磁盘发生接触碰撞时引起的窝点与挠臂之间的动态接触力变化,研究了材料属性对窝点与挠臂动态接触力的影响,模拟了硬盘工作状态下受外界干扰时磁头的动态响应,模拟了较为真实工作状态下窝点与挠臂的动态接触力,为窝点与挠臂间微动磨损数值模拟奠定了基础。
     在目前较为新兴的充氦硬盘技术中,提出了使用氦-空混合气体来代替纯氦的方法。研究了氦-空混合气体的物理性质,结合动态气浮轴承模型以及粗糙磁头磁盘接触碰撞模型研究了在不同氦气比例下,磁头的动态飞行性能和磁头与磁盘接触碰撞性能。该模拟计算中使用了较新的气浮面设计,通过有限单元法求解了复杂气浮面上各节点的飞行高度和气浮压强。研究了磁盘速度对50%充氦环境中磁头与磁盘接触碰撞的影响。研究发现,氦-空混合气体代替纯氦在冲击载荷下能提供较好的阻尼作用,减少磁头与磁盘间剧烈的接触碰撞。
     建立了适用于微纳米量级幅值运动的微动磨损实验平台,通过实验方法研究了窝点与挠臂在不同载荷下的微动磨损行为,比较了激光抛光工艺对窝点微动磨损性能的影响。通过力传感器和激光测振仪采集数据与处理,获得了摩擦力-位移微动图和摩擦系数随着微动循环次数增加而演变的结果;通过扫描电镜的测量,计算并比较了抛光与非抛光窝点磨损体积。研究表明,载荷会引起微动磨损区域转变而导致不同的表面损伤机理;表面粗糙度在较小载荷时对磨损体积的影响可忽略不计,但在较大载荷和较长时间的微动磨损中,激光抛光窝点可以显著减小磨损体积;计算了窝点动态微动磨损系数,为后续的微动磨损模拟奠定了研究基础。
     建立了窝点与挠臂的二维微动磨损模型,应用了实验中获得的摩擦系数及动态磨损系数。采用了改进的Archard磨损方程递进地计算了窝点与挠臂的局部磨损深度,研究并确定了最优的微动循环增量步,极大的减少了模型计算时间。运用该模型预测了不同载荷和微动循环次数下窝点与挠臂的磨痕形貌、接触压强及应力分布等。通过跟实验结果比较,表明该二维模型预测趋势跟实验结果一致但是误差较大,因模型计算较快可以用来定性研究几何尺寸和材料属性对窝点与挠臂微动磨损性能的影响。
     在二维微动模型基础上,建立了窝点与挠臂的三维微动磨损模型。推导了适应于不同微动位移的局部磨损公式,提出了自适应动态微动循环增量步方法,使以往耗时较长的三维微动磨损模拟在普通计算机上得以实现。通过跟实验结果对比,表明三维模型能更准确地预测窝点与挠臂的微动磨损表面形貌,误差为8.5%。因此,窝点与挠臂的三维微动磨损模型可为悬架窝点与挠臂的研究设计工作提供重要的理论指导。
The requirements of information storage density and safety increase with the increasingdevelopment of information technology. The gap between a slider and a disk is becomingsmaller and smaller in an ultra-high density disk. The current flying height is on the order of afew nanometers. The load, un-load, flying and searching performance of the slider will causethe un-stability of the head gimbal assembly, inducing a reciprocate micro-displacement at thedimple/gimbal interface. The reciprocate displacement is treated as fretting wear, whichaffects not only the dimple/gimbal interface but also the flying ability of the slider. In addition,contamination particles are more like to generate and cause serious contact at the head/diskinterface, which will damage the mechanical components disk surface, causing un-restoreddata lost. The head/disk contact is more likely to happen since the head/disk gap is only a fewnanometers if there is an impulsive force. The contact will accelerate the damage of thedimple/gimbal interface. If a hard disk drive is filled with helium instead of air, the dampingeffect is reduced due to helium density is far smaller than air. In this case, larger contact forceat the head/disk interface will be happen compare to air filled disks.
     Through the literature searching, little information is available about the contact of thedimple/gimbal interface induced by slider/disk contact, especially in helium environment.Therefore, a finite element suspension model, an air bearing model and a slider/disk contactmodel are combined to investigate the contact and friction forces at the dimple/gimbalinterface, especially when the slider and disk contact happens. The effect of dimple materialon the dynamic response of the dimple/gimbal contact is studied as well. The results showthat the contact and friction forces reach their maximum when the slider/disk contact happens.These maximum forces can be used for the fretting wear experiment and simulation as inputparameters.
     One of the newest technologies of hard disk drives is the helium-filled drives. Instead ofusing pure helium, the using of helium-air gas mixtures is proposed. The physical propertiesof the helium-air gas mixtures are first studied. The slider/disk contact model with surfaceroughness is implemented into the air bearing simulator. The slider dynamic flyingcharacteristic and the slider/disk contact performance in different helium-air gas mixtures areinvestigated. In this simulation, a new design air bearing surface was meshed and the finiteelement method is used to calculate the air bearing pressure and the flying height of each node.The effect of disk velocity on the slider/disk contact in a50%helium50%air gas mixture issimulated. The results show that the helium-air gas mixtures can provide enough damping when there is an external force applying on the slider. Thus, smaller contact force at theslider/disk interface is obtained.
     An experimental set-up for micro and nano-scale displacement was built. The frettingwear of the dimple and gimbal under different normal loads were carried out and the effect oflaser polishing on the fretting wear results is studied. Using the measurements from a load celland two Laser Doppler Velocimetries, friction-displacement loops and friction coefficient as afunction of the number of fretting wear cycles are obtained. The dimensions of wear scars ondimples were measured by scanning electron microscopy and the wear volume is calculated.The results show that normal load determines fretting wear regime, leading to differentsurface failures. The effect of laser polishing on the dimple/gimbal fretting wear can beneglected if the normal is small. However, if the normal load is bigger and the fretting weartime is longer, laser polished dimple can reduce the wear volume.
     The two-dimensional fretting wear model of the dimple and the gimbal was built. Thefriction coefficient and wear coefficient obtained from the experimental results areimplemented in this model. Local wear depth of each node is calculated using the modifiedArchard’s wear equation. An optimal fretting wear incremental cycle is determined and thesimulation time is greatly reduced. The model can be used to predict the wear profiles, thecontact pressure and the stress distribution of the dimple and the gimbal under differentnormal loads. The results show that the trends of the simulation are similar to theexperimental results. However, the relative error is big. In this case, the model can be used toqualitatively investigate the effect of geometric and material parameters on the dimple/gimbalfretting wear behavior due to the less calculation time.
     Based on the two-dimensional model, a three-dimensional model for the dimple and thegimbal fretting wear is built. A new local wear equation is deduced; a coordinates updatingmethod for the finite element model is suggested and an adapted fretting wear incrementalcycles is first proposed. Using these methods, it is possible to calculate the three-dimensionalfretting wear model on a normal computer. The model can accurately predict the wear profilesof the dimple and the gimbal. Comparing with the experimental results, the relative error isonly8.5%. Therefore, the simulation results can be a useful guidance for the dimple andgimbal design.
引文
[1] Gantz J.F., Chute C., Manfrediz A., et al. The diverse and exploding digital universe–An updated forecast of worldwide information growth through2011[N]. An IDC WhitePaper, Mar.2008
    [2] Grochowski E., Halem R.D. Technological impact of magnetic hard disk drives onstorage systems [J]. IBM System Journal,2003,42(2):338-346
    [3] Kurita M., Shiramatsu T., Miyake K., et al. Active flying-height control slider usingMEMS thermal actuator [J]. Microsystem Technologies,2006,12(4):369-375
    [4] Shiramatsu T., Kurita M., Tanaka H., et al. Optimized design of heaters for flying heightadjustment to preserve performance and reliability [J]. IEEE Transactions on Magnetics,2007,43(6):2235-2237
    [5] Shiramatsu T., Atsumi T., Kurita M., et al. Dynamically controlled thermal flying-heightcontrol slider [J]. IEEE Transactions on Magnetics,2008,44(11):3695-3697
    [6] Vakis A.I., Polycarpou A.A. Optimization of thermal fly-height control slider geometryfor Tbit/in2recording [J]. Microsystem Technologies,2010,16(6):1021-1034
    [7] Xu J., Kiely J.D., Hsia Y.T., et al. Dynamics of ultra low flying sliders during contactwith a lubricated Disk [J]. Microsystem Technologies,2007,13(8-10):1371-1375
    [8] Doug C. HGST announces new helium-filled hard disk drive platform [N],http://www.tomshardware.com/news/Helium-Filled-Hard_Disk-hdd-western-digital,17573.html,2012
    [9] Lee D.Y., Hwang J., Bae G.N. Effect of disk rotational speed on contamination particlesgenerated [J]. Microsystem Technologies,2004,10:103-108
    [10] Boettcher U. Nano-scale Positioning, Control and motion planning in hard disk drives[D]. California: University of California, San Diego,2011
    [11]宋文平.硬盘热控飞高磁头与盘面凸起的接触行为研究[D].哈尔滨:哈尔滨工业大学,2012
    [12] Zeng Q.H., Bogy D.B. Numerical simulation of shock response of disk-suspension-sliderair bearing systems in Hard Disk Drives [J]. Microsystem Technologies,2002,8(4-5):289-296
    [13] Kilian S., Zander U., Talke F.E. Suspension modeling and optimization using finite elementanalysis [J]. Tribology International,2003,36(4):317-324
    [14] Duwensee M. Numerical and experimental investigations of the head/disk interface [D].California: University of California, San Diego,2007
    [15] Yu S., Liu B. Optimal suspension design for femto sliders [J]. IEEE Transactions onMagnetics,2003,39(5):2423–2425
    [16] Zeng Q. H., Bogy D. B. Numerical simulation of shock response ofdisk-suspension-slider air bearing systems in hard disk drives. MicrosystemTechnologies,2002,8(4):289-296.
    [17] Sanada T., Watanabe H., Ushimaru A. Development of high-speed&high-accuracy roll&pitch angle adjustment machine for HDD suspension [J]. Journal of Laser MicroNanoengneering,2009,4(2):141-143
    [18] Felix S., Nie J. B., Horowitz R. Enhanced vibration suppression in hard disk drivesusing instrumented suspensions [J]. IEEE Transactions on Magnetics,2009,45(11):5118-5122
    [19] Lengert D., Edmund B., Fanslau J., et al. Design of suspension-based and collocateddual stage actuated suspensions [J]. Microsystem Technologies,2012,18:1615–1622
    [20] Liu B., Liu J., Chong T.C. Slider design for sub-3-nm flying height head-disk systems [J].Journal of Magnetism and Magnetic Materials,2005,287:339-345
    [21] Best J., Bolasna S., Dorius L., et al. The femto slider in hitachi hard disk drives [R]. HitachiGlobal Storage Technologies White Paper,2007
    [22] Liu B., Yu S.K., Zhou W.D., et al. Low flying-height slider with high thermal actuationefficiency and small flying-height modulation caused by disk waviness [J]. IEEETransactions on Magnetics,2008,44(1):145-150
    [23] Juang J.Y., Chen D., Bogy D.B. Alternate air bearing slider designs for areal density of1Tb/in2[J]. IEEE Transactions on Magnetics,2006,42(2):241-246
    [24] Miyake K., Shiramatsu T., Kurita M., et al. Optimized design of heaters for flyingheight a ustment to preserve performance and reliability [J]. IEEE Transactions onMagnetics,2007,43(6):2235-2237
    [25] Shiramatsu T., Kurita M., Miyake K., et al. Drive-integration of active flying-heightcontrol slider with micro thermal actuator [J]. IEEE Transactions on Magnetics,2006,42(10):2513-2515
    [26] Shiramatsu T., Atsumi T., Kurita M., et al. Dynamically controlled thermalflying-height control slider [J]. IEEE Transaction on Magnetics,2008,11(44):3695-3697
    [27] Liu N., Zheng J.L., Bogy D.B. Predicting the flying performance of thermalflying-height control sliders in hard disk drives [J]. Journal of Applied Phisics,2010,108(1):016102
    [28] Suh A.Y., Polycarpou A.A. Design optimisation of sub-5nm head-disk interfaces usinga two-degree-of-freedom dynamic contact model with friction [J]. International Journalof Product Development,2008,5(3-4):268-291
    [29] Vakis A.I., Lee S.C., Polycarpou A.A. Dynamic head-disk interface instabilities withfriction for light contact (surfing) recording [J]. IEEE Transactions on Magnetics,2009,11(45):4966-4971
    [30] Lee S.C., Strom B.D. Characterization of thermally actuated pole tip protrusion forhead-media spacing adjustment in hard disk drives [J]. Journal of Tribology,2008,130(2):22001-22009
    [31] Li H., Zheng H., Fritzsche J., et al. Simulation of flying height and response time ofthermal flying height control sliders with thermal insulators [J]. IEEE Transactions onMagnetics,2010,45(6):1292-1294
    [32] Zheng H., Li H., Talke F.E. Numerical simulation of a thermal flying height control sliderwith dual heater and insulator elements [J]. IEEE Transactions on Magnetics,2009,45(10):3628-3631
    [33] Narayanaswamy A., Shen S., Hu L., et al. Breakdown of the Planck blackbody radiationlaw at nanoscale gaps [J]. Journal of Applied Physics, A,2009,96:357-362
    [34] Zheng H., Zhang S., Yan W., et al. The effect of thermal radiation on thermal flyingheight control sliders [J]. IEEE Transactions on Magnetics,2010,46(6):2376-2378
    [35] Xu J., Kiely J., Hsia Y.T., et al. Effect of thermal pole tip protrusion and disk roughnesson slider disk contacts [J]. Microsystem Technologies,2009,15(5):687-693
    [36] Imamura T., Yamagishi M., Nishida S. In situ measurements of temperature distributionof air-bearing surface using thermography [J]. IEEE Transactions on Magnetics,2002,38(5):2147-2149
    [37] Pust L., Rea C.J.T., Gangopadhyay S. Thermomechanical head performance [J]. IEEETransactions on Magnetics,2002,38(1):101-106
    [38] Boettcher U., Li H., Callafon R.A., et al. Dynamic flying height adjustment in hard diskdrives through feedforward control [J]. IEEE Transactions on Magnetics,2011,47(7):1823-1829
    [39] Song W., Ovcharenko A., Yang M., et al. Contact between a thermal fying heightcontrol slider and a disk asperity [J]. Microsystem Technologies,2012,18:1549–1557
    [40] Song W., Salas P.A., Ovcharenko A., et al. Numerical investigation of slider dynamicsinduced by contacts with disk asperities [J]. Microsystem Technologies,2013,19:1393–1399
    [41] Song W., Matthes L., Ovcharenko A., et al. Experimental study slider dynamic inducedby contacts with dis asperities [J]. Microsystem Technologies,2013,19:1369-1375
    [42] Song W., Ovcharenko A., Knigge B., et al. Effect of contact conditions duringthermo-mechanical contact between a thermal fying height control slider and a diskasperity [J]. Tribology International,2012,55:100–107
    [43] Matthes L., Boettcher U., Knigge B., et al. Contact and temperature rise of thermalflying height control sliders in hard disk drives [J]. Microsystem Technologies,2012,18:1693–1701
    [44] Salas P.A., Talke F.E. Numerical simulation of thermal flying-height control sliders todynamically minimize flying height variations [J]. IEEE Transactions on Magnetics,2013,49(4):1337-1342
    [45] Edwards J. R. Finite element analysis of the shock response and head slap behavior of ahard disk drive [J]. IEEE Transactions on Magnetics,1999,35(2):863–867
    [46] Kumar S., Khanna V., Sri-Jayantha M. A study of the head disk interface shock failure[J]. IEEE Transactions on Magnetics,1994,30(6):4155–4157
    [47] Kouhei T., Yamada T., Keroba Y., et al. A study of head-disk interface shock resistance[J]. IEEE Transactions on Magnetics,1995,31(6):3006–3008
    [48] Ishimaru N. Experimental studies of a head/disk interface subjected to impulseexcitation during nonoperation [J]. ASME Journal of Tribology,1996,118:807–812
    [49] Jiang Z.W., Takashima K., Chonan S. Shock-proof design of head disk assemblysubjected to impulsive excitation [J]. JSME International Journal of Series C,1995,38(3):411–419
    [50] Harrison J.C., Mundt M.D. Flying height response to mechanical shock duringoperation of a magnetic hard disk drive [J]. ASME Journal of Tribology,2000,122(1):260–263
    [51] Jayson E.M., Murphy J., Smith P.W., et al. Effects of air bearing stiffness on a hard diskdrive subject to shock and vibration [J]. ASME Journal of Tribology,2003,125:343–350
    [52] Jayson E.M., Murphy J., Smith P.W., et al. Shock and head slap simulations ofoperational and non-operational hard disk drives [J]. IEEE Transactions on Magnetics,2002,38(5):2150–2153
    [53] Zeng Q., Bogy D.B. Numerical simulation of shock response of disk-suspension-sliderair bearing systems in hard disk drives [J]. Microsystem Technologies,2000,8:289–296
    [54] Jayson E.M., Murphy J., Smith P.W., et al. Shock modeling of the head-media interfacein an operational hard disk drive [J]. IEEE Transactions on Magnetics,2003,39(5):2429–2432
    [55] Bhargava P., Bogy D.B. Numerical simulation of operational-shock in small form factorhard disk drives [J]. ASME Journal of Tribology,2007,129:153-160
    [56] Ovcharenko A., Yang M., Chun K., et al. Simulation of magnetic erasure due totransient slider-disk contacts [J]. IEEE Transactions on Magnetics,2010,46(3):770-777
    [57] Ovcharenko A., Yang M., Chun K., et al. Effect of impact conditions and slider cornerradius on the thermal-mechanical response during slider-disk contacts [J]. IEEETransactions on Magnetics,2010,46(10):3760-3766
    [58] Ovcharenko A., Yang M., Chun K., et al. Transient slider-disk contacts in the presenceof spherical contamination particles [J]. Microsystem Technologies,2011,17(5-7):743-747
    [59]张春晖.硬盘磁头/图案化盘面瞬态接触的热力场耦合研究[D].哈尔滨:哈尔滨工业大学,2011
    [60] Li L., Song W., Zhang G., et al. Investigation of thermo-mechanical contact betweenslider and bit patterned media [J]. Microsystem Technologies,2012,18(9-10):1567-1574
    [61]张广玉,李隆球,菅翠营,等.磁头与离散磁道式磁盘瞬态接触行为研究[J].工程设计学报,2012,19(1):34-39
    [62]张广玉,菅翠营,李隆球,等.离散磁道式磁盘与磁头动力学接触有限元分析[J].机械设计与制造,2012,5:8-10
    [63] Tanaka H., Yonemura S., Tokisue H. Slider dynamics during continuous contact withtextured and smooth disks in ultra-low flying height [J]. IEEE Transactions onMagnetics,2001,37:906-911
    [64] Honchi M., Kohira H., Matsumoto M. Numerical simulation of slider dynamics duringslider disk contact [J]. Tribology International,2003,36:235-240
    [65] Hua W., Liu B., Yu S., et al. Nanoscale roughness contact in a slider disk interface [J].Nanotechnology,2009,20:285710-285716
    [66] Zeng Q., Chapin M., Bogy D.B. A force indentification method for slider/disk contactforce measurement [J]. IEEE Transactions on Magnetics,2000,36:2667-2670
    [67] Khurshudov A., Ivett P. Head disk contact detection in the hard disk drives [J]. Wear,2003,255:1314-1322
    [68] Yu S.K., Liu B., Hua W., et al. Contact-induced off-track vibrations of airbearing-slider-suspension system in hard disk drive [J]. Tribology Letters,2006,24:27-36
    [69] Johnson K. L. Contact mechanics [M]. Cambridge University Press.1985
    [70] Chang W.R., Etsion I., Bogy D.B. An eastic-plastic model for the contact of roughsurface [J]. ASME Journal of Tribology,1987,109:25-263
    [71] Kogut L., Etsion I., Elastic-plastic contact analysis of a sphere and a rigid flat [J].Journal of Applied Mechanics,2002,69(5):657-662
    [72] Jackson R.L., Green I. A finite element study of elasto-plastic hemispherical contactagainst a rigid flat [J]. Journal of Tribology,2005,127(2):343-354
    [73] Brizmer V., Kligerman Y., Etsion I. Elastic-plastic spherical contact under combinednormal and tangential loading in full stick [J]. Tribology Letters,2007,25(1):61-70
    [74] Ovcharenko A., Halperin G., Etsion I., et al. A novel test rig for in situ and real rimeoptical measurement of the contact area evolution during pre-sliding of a sphericalcontact [J]. Tribology Letters,2006,23(1):55-63
    [75] Ovcharenko A., Halperin G., Verberne G., et al. In situ investigation of the contact areain elastic-plastic spherical contact during loading-unloading [J]. Tribology Letters,2007,25(2):153-160
    [76] Ovcharenko A., Halperin G., Etsion I. In situ and real-time optical investigation ofjunction growth in spherical elastic-plastic contact [J]. Wear,2008,264(11-12):1043-1050
    [77] Ovcharenko A., Halperin G., Etsion I. Experimental study of adhesive static friction in aspherical elastic-plastic [J]. Journal of Tribology, ASME,2008,130(2):021401
    [78] Song W., Ovcharenko A., Li L., et al. Flattening of a deformable sphere by a rigidsphere during transient thermo-mechanical contact [J]. Wear,2013,300(1-2):29-37
    [79] Greenwood J., Williamson J. Contact of nominally flat surfaces [J]. Proc. R. Soc.London A.1996,295(1442):300-319
    [80]李隆球.硬盘悬架窝点与挠臂的接触力学行为及微动磨损机理研究[D].哈尔滨:哈尔滨工业大学,2010.
    [81] Abbott E.J., Firestone F.A. Specifying surface quality-a method based on accuratemeasurement and comparison [J]. Mechanical Engineering,1933,55:569–572
    [82] Evseev D.G., Medvedev B.M., Grigoriyan G.G. Modification of the elastic-plasticmodel for the contact of rough surface [J]. Wear,1991,150:79-88
    [83] Chane W.R. An elastic-plastic contact model for a rough surface with an ion-plated softmetallic coating [J]. Wear,1997,212:229-237
    [84] Zhao Y., Maietta D.M., Chang L. An asperity microcontact model incorporating thetransition from elastic deformation to fully plastic flow [J]. ASME Journal of Tribology,2000,122:86-93
    [85] Kogut L., Etsion I. The contact of a compliant curved and a nominally flat roughsurface [J]. Tribology Transactions,2000,43:507-513
    [86] Horng J.H. An elastic-plastic asperity microcontact model for rough surfaces [J]. ASMEJournal of Tribology,1998,120:82-88
    [87] Yu N., Polycarpou A.A., Contact of rough surfaces with asymmetric distribution ofasperity heights [J]. ASME Journal of Tribology,2002,124:367-376
    [88] Kucharski S., Klimczak T., Polijaniuk A., et al. Finite element model for the contact ofrough surfaces [J]. Wear,1994,177:1-13
    [89] Kogut L., Etsion I. A finite element based elastic-plastic model for the contact of roughsurfaces [J]. Tribology Transactions,2003,46(3):383-390
    [90] Kogut L., Etsion I. A static friction model for elastic-plastic contacting rough surfaces[J]. ASME Journal of Tribology,2004,126:34-40
    [91] Bouchard G., Talke F.E. Non-repeatable flutter of magnetic recording disks [J]. IEEETransactions on Magnetics,1986,22:1019-1021
    [92] Sato I., Otani K., Oguchi S., et al. Characteristics of heat transfer in a helium-filled diskenclosure [J]. IEEE Transactions on Components, Hybrids, and ManufacturingTechnology,1988,11:571-575
    [93] Aruga K., Suwa M., Shimizu K., et al. A study on positioning error caused by flowinduced vibration using helium-filled hard disk drives [J]. IEEE Transactions onMagnetics,2007,43:3750-3755
    [94] Yang J., Tan C.P.H., Ong E.H. Thermal analysis of helium-filled enterprise disk drive [J].Microsystem Technologies,2010,16:1699-1704
    [95] Park K.S., Park Y.P., Park N.C. Prospect of recording technology for higher storageperformance [J]. IEEE Transactions on Magnetics,2011,47:539-545
    [96] Park K.S., Choi J., Park N.C., et al. Effect of temperature and helium ratio forperformance of thermal flying control in air-helium gas mixture [J]. MicrosystemTechnologies,2013,19:1679-1684
    [97] Liu N., Zheng J., Bogy D.B. Thermal flying-height control sliders in hard disk drivesfilled with air-helium gas mixtures [J]. Applied Physics Letters,2009,95:213505-213507
    [98] Liu N., Zheng J., Bogy D.B. Thermal flying-height control sliders in air-helium gasmixtures [J]. IEEE Transactions on Magnetics,2011,47:100-104
    [99] HGST. Ultrastar He6,3.5-inch Helium Platform Enterprise Hard Drive [N],http://www.hgst.com/hard-drives/enterprise-hard-drives/enterprise-sas-drives/ultrastar-he6,2013
    [100] Ananth R.S., Fick A.L., Morris F.I. Method of manufacturing a hermetically sealeddisk drive [P]. U.S.: Patent No.1995/5454157,1995
    [101] Kouno T., Aoyagi A., Ichikawa K., Nakamiya T. Manufacturing method of hermeticconnection terminal used in a disk drive device having hermetically sealed enclosure anddisk drive device [P]. U.S.: Patent No.2009/0168233A1,2009
    [102] Gustafson J.R., Jacoby J.E. Sealed laminated electrical connector for helium filled diskdrive [P]. U.S.: Patent No.2011/0211279A1,2011
    [103] Rabinowicz E. Friction and wear of materials [M]. New York: Wiley-lnterscienc,1995
    [104] Waterhouse R.B. Fretting corrosion [M]. Oxford: Pergamon,1972
    [105] Feng L.M., Rightmire B.G. The mechanism of fretting [J], Lubricantion Engineering,1953,9:134-136,158-161
    [106] Zhu M.H., Zhou Z.R., Kapsa P., et al. An experimental investigation on compositefretting mode [J]. Tribology International,2001,34:733–738
    [107]周仲荣,罗唯力,刘家浚.微动摩擦学的发展现状与趋势[J].摩擦学学报,1997,17(3):272-280
    [108] Eden E.M., Rose W.N., Cunningham F.L. the endurance of metals [J]. Proceedings ofInstitution of Mechanical Engineers,1911,4:839-974
    [109] Gillet H.W., Mack E.L. Notes on some endurance tests of metals [J]. ProceedingsAmerican Society for Testing Materials,1924,24:476
    [110] Mindlin R.D. Compliance of Elastic Bodies in Contact [J]. ASME Journal of AppliedMechanics,1949,16:259-268
    [111] Waterhouse R.B. Fretting corrosion [M]. Oxford: Pergamon Press,1972
    [112] Zhou Z.R., Nakazawa K., Zhu M.H., et al. Progress in fretting maps [J]. TribologyInternational,2006,39:1068–1073
    [113]周仲荣.微动图在抗微动失效中的应用[J].中国表面工程,1998,38(1):41-45
    [114] Varengerg M., Etsion I., Halperin G. Slip index: a new unified approach to fretting [J].Tribology Letters,2004,17(3):569-573
    [115] Varenberg M., Etsion I., Altus E. theoretical substantiation of the slip index approachto fretting [J]. Tribology Letters,2005,19(4):263-264
    [116] Godet M. Third-bodies in tribology [J]. Wear,1990,136(1):29-45
    [117] Liskiewicz T., Fouvery S. Development of a friction energy capacity approach topredict the surface coating endurance under complex oscillating sliding conditions [J].Tribology International,2005,38:69-79
    [118] Lee H., Mall S., Sanders J.H., et al. Characterization of fretting wear behavior of Cu-Alcoating on Ti-6Al-4V substrate [J], Tribology International,2007,40:1301-1310
    [119] Yang H.H., Zhang X.S., Xue G.J. Fretting wear behavior of2Cr13stainless-steel beforeand after laser treatment [J]. Wear,1994,171:13-18
    [120] NEl-Tayeb S.M., Low K.O., Brevern P.V. On the surface and tribologicalcharacteristics of burnished cylindrical Al-6061[J]. Tribology International,2009,42:320-326
    [121] Zhu M.H., Zhou Z.R., Kapsa Ph., et al. An experimental investigation on compositefretting mode [J]. Tribology International,2001,34,733-738
    [122] Zhu M.H., Zhou Z.R. An experimental study on radial fretting behavior [J]. TribologyInternational,2001,34:321-326
    [123] Wang Z.A., Zhou Z.R. An investigation of fretting behaviour of several synthetic baseoils [J]. Wear,2009,267:1399-1404
    [124] Xu J., Zhou Z.R., Zhang C.H., et al. An investigation of fretting wear behaviors ofbonded solid lubricant coatings [J]. Journal of Materials Processing Technology,2007,182:146-151
    [125] Zhu M.H., Cai Z.B., Li W., et al. Fretting in prosthetic devices related to human body[J]. Tribology International,2009,42:1360-1364
    [126] Zhu M.H., Cai Z.B., Lin X.Z., et al. Fretting wear behaviors of micro-arc oxidationcoating sealed by grease [J]. Wear,2009,267:299-307
    [127] Zhu M.H., Cai Z.B., Lin X.Z., et al. Fretting wear behaviour of ceramic coatingprepared by micro-arc oxidation on Al-Si alloy [J]. Wear,2007,263:472-480
    [128] Zhu M.H., Yu H.Y., Zhou Z.R. Radial fretting behaviours of dental ceramics [J].Tribology International,2006,39:1255-1261
    [129] Mo J.L., Zhu M.H., Zheng J.F, et al. Study on rotational fretting wear of7075aluminum alloy [J]. Tribology International,2010,43:912-917
    [130] Li L., Fanslau E., Talke F.E. An experimental study of the dimple/gimbal interface ina hard disk drive [J]. Microsystem Technologies,2011,17:863-868
    [131] Li L., Ovcharenko A., Etsion I., et al. The effect of asperity flattening during cyclicnormal loading of a rough spherical contact [J]. Tribology Letters,2010,40:347-355
    [132] Archard J.F. Contact and rubbing of flat surfaces [J]. Journal of Applied Physics,1953,24:981-988
    [133] Lim S.C., Ashby M.F. Wear mechanism maps [J], Acta Metallurgica,1987,35(1):1-24
    [134] Wu S., Cheng H.S. A sliding wear model fore for partial EHL contacts [J], ASMEJournal of Tribology,1991,113:134-141
    [135] Kingsbury E.P. Some aspects of the thermal desorption of a boundary lubricant [J].Journal of Applied Physics,1958,29(6):888-891
    [136] P dra P. FE wear simulation of sliding contacts [D]. Stockholm: Royal Institute ofTechnology,1997
    [137] P dra P., Andersson S. Wear simulation with the Winkler surface model [J] Wear,1997,207:79-85
    [138] Eriksen M. The influence of die geometry on tool wear in deep drawing [J]. Wear,1997,207:10-15
    [139] Korovchinsky I.G., Rajeev P.T., Farris T.N. Wear in partial slip contact [J]. ASMEJournal of Tribology,2001,123:848-856
    [140] Johansson L. Numerical simulation of contact pressure evolution in fretting [J].ASME Journal of Tribology,1994,116:247-254
    [141] qvist M. Numerical simulations of mild wear using updated geometry with differentstep size approaches [J]. Wear,2001,249:6-11
    [142] McColl I.R., Ding J., Leen S.B. Finite element simulation and experimentalvalidation of fretting wear [J]. Wear,2004,256:1114-1127
    [143] Nowell D. Simulation of fretting wear in half-plane geometries-Part II: Analysis ofthe transient wear problem using quadratic programming [J]. Journal of Tribology,2010,132(2):021402-021410
    [144] Rodríguez-Tembleque1L., Abascal1R., Aliabadi M.H. Anisotropic fretting wearsimulation using the boundary element method [J]. CMES Computer Modeling inEngineering&Sciences,2012,87(2):127-155
    [145] Madge J.J., Leen S.B., Shipway P.H. A combined wear and crack nucleation-propagation methodology for fretting fatigue prediction [J]. International Journal ofFatigue,2008,30:1509-1528
    [146] Zhang T., McHugh P.E., Leen S.B. Finite element implementation of multiaxialcontinuum damage mechanics for plain and fretting fatigue [J]. International Journalof Fatigue,2012,44:260–272
    [147] Cruzado A., Leen S.B., Urchegui M.A., et al. Finite element simulation of frettingwear and fatigue in thin steel wires [J]. International Journal of Fatigue,2013,55:7-21
    [148] Lee D.H., Goo B.C., Lee C.W., et al. Fatigue life evaluation of press-fitted specimensby using multiaxial fatigue theory at contact edge [J]. Key Engineering Materials,2005,297-300:108-114
    [149] Li L., Zheng H., Fanslau E.B, et al. A numerical study of the dimple/gimbal interfacein a hard disk drive [J]. Microsystem Technologies,2011,17:869-873
    [150]董惠娟,王林,张广玉等.磁头窝点与舌尖弹塑性接触有限元分析[J].哈尔滨理工大学学报,2010,15(2):125-128
    [151]王林.硬盘磁头悬架窝点和舌尖的微动接触仿真研究[D].哈尔滨:哈尔滨工业大学机械工程学院,2009
    [152] Murthy A.N., Pfabe M., Xu J., et al. Dynamic response of1-in. form factor diskdrives to external shock and vibration loads [J], Microsystem Technologies,2007,13(8-10):1031-1038
    [153] Li L., Etsion I., Fanslau E.B., et al. An analysis of the dimple/gimbal contact in a harddisk drive suspension [C]. Proceeding of IIP/ISPS Joint MIPE2009.2009,105-106
    [154] Raeymaekers B., Helm S., Brunner R., et al. Investigation of fretting wear at thedimple/gimbal interface in a hard disk drive suspension [J]. Wear,2010,268:1347-1353
    [155] Raeymaekers B., Talke F.E. The effect of laser polishing on fretting wear between ahemisphere and a flat plate [J]. Wear,2010,269:416-423
    [156] Li L., Etsion I., Talke F.E. The effect of frequency on fretting in a micro-sphericalcontact [J]. Wear,2011,270:857-865
    [157] Yoon Y., Etsion I., Talke F.E. The evolution of fretting wear in a micro-sphericalcontact [J]. Wear,2011,270:567-575
    [158] Hallquist J.O. LS-DYNA Theoretical Manual. Livermore [S]. CA: Livermore SoftwareTechnology Corporation,2006
    [159] Fritzsche J., Li H., Zheng H., et al. The effect of air bearing contour design on thermalpole-tip protrusion [J]. Microsystem Technologies,2011,17(5-7):813-820
    [160] Weissner S. Numerical and experimental investigation of the load/unload behavior ofsubambient pressure hard disk drive sliders [D]. California: University of California,San Diego,2001
    [161] Wahl M., Lee P., Talke F. E. An efficient finite element-based air bearing simulator forpivoted slider using Bi-conjugate gradient algorithms [J]. Tribology Transactions,1996,39(1):130-138
    [162] Hughes T.J.R. The finite element method, linear static and dynamic finite elementanalysis [M]. New York: Dover,2000
    [163] Kogut L., Etsion I. A semi-analytical solution for the sliding inception of a sphericalcontact [J]. ASME Journal of Tribology,2003,125:499-506
    [164] Chang W.R., Etsion I., Bogy D.B. Elastic plastic model for the contact of roughsurfaces [J]. ASME Journal of Tribology,1987,109:257-262
    [165] Bush A.W., Gibson R.D., Keogh G.P. The limit of elastic deformation in the contact ofrough surfaces [J]. Mechanics Research Communications,1976,3:169-174
    [166] Kogut L., Etsion I. Adhesion in elastic-plastic spherical micro-contact [J]. Journal ofColloid and Interface Science,2003,261:372-378
    [167] Suh A.Y., Polycarpou A.A. Adhesive contact modeling for sub-5-nm ultralow flyingmagnetic storage head-disk interfaces including roughness effects [J]. Journal ofApplied Physics,2005,97:104328
    [168] Wahl M.H. Numerical and experimental investigation of the head/disk interface [D].California: University of California, San Diego,1994
    [169] Maxwell J. On Stresses in rarefied gases arising from inequalities of temperature.Proceedings of the Royal Society of London,1878,304-308
    [170] Burgdorfer A. The influence of the mean free path on the performance ofhydrodynamic gas lubricated bearings [J]. ASME Journal of Basic Engineering,1959,81-94
    [171] Hsia Y.T., Domoto G. An experimental investigation of molecular rarefaction effects ingas lubricated bearings at ultra-low clearances [J]. ASME Journal of LubricationTechnology,1983,105:120-130
    [172] Fukui S., Kaneko R. Analysis of flying characteristics of magnetic heads withultra-thin spacings based on the Boltzmann equation [J]. IEEE Transactions onMagnetics,1988,24(6):2751-2753
    [173] Fukui S., Kaneko R. Analysis of ultra-thin gas film lubrication based on linearizedBoltzmann equation: first report-derivation of a generalized lubrication equationincluding thermal creep flow [J]. ASME Journal of Tribology,1988,110:253-262
    [174] Bird G.A. Molecular gas dynamics and the direct simulation of gas flows [M]. NewYork: Oxford Univ. Press,1994
    [175] Poling B.E., Prausnitz J.M., O’Connell J.P. The properties of gases and liquids [M].New York: McGraw-Hill,2001
    [176] Liu N., Bogy D.B. Temperature effect on a HDD slider’s flying performance [J].Tribology Letters,2009,35:105-112
    [177] Fouvry S., Kapsa P., Zahouani H., et al. Wear analysis in fretting of hard coatingsthrough a dissipated energy concept [J]. Wear,1997,203-204:393-493
    [178] Li L., Ovcharenko A., Etsion I., et al. The effect of asperity flattening during cyclicnormal loading of a rough spherical contact [J]. Tribology Letters,2010,40:347-355
    [179] Kalin M., Vizintin J. Use of equations for wear volume determination in frettingexperiments [J]. Wear,2000,237:39-48
    [180] Vingsbo O., Soderberg S. On fretting maps [J]. Wear,1988,126:131-147
    [181] Zhou Z.R., Vincent L. Mixed fretting regime [J]. Wear1995,181-183:531-536
    [182] Brizmer V., Kligerman Y., Etsion, I. The effect of contact conditions and materialproperties on the elasticity terminus of a spherical contact [J]. International Journal ofSolids and Structures,2006,43:5736-5749

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700