用户名: 密码: 验证码:
织构化配流副摩擦润滑特性的理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
配流副是轴向柱塞泵的关键零部件,同时也是其它采用端面配流方式的液压动力元件和执行元件普遍采用的配流方式,如叶片泵、轴向柱塞马达等。随着液压传动技术向着高速、高压方向发展,对配流副的工作性能和使用寿命提出了更高的要求。而表面织构技术因其能提高摩擦副间油膜支撑力、降低摩擦磨损、改善润滑性能而成为摩擦学的一大研究热点,表面织构在机械密封、发动机活塞环、计算机硬盘等上的研究成果和成功应用为改善配流副的摩擦润滑性能提供了一种新的思路。为提高织构化配流副的摩擦学性能,并对配流副织构化参数的设计提供指导,本文从理论和试验两个方面对织构化配流副的摩擦润滑特性进行了系统的研究。
     在理论方面:建立了针对配流副结构特点和实际工况的润滑模型,分析了织构化参数,即微凹坑深度、直径及面积率对配流副间油膜支撑力的影响,为减摩和降低磨损提供依据。建立了考虑气穴影响的织构化配流副泄漏模型,寻求一种织构化配流副泄漏量的计算方法,同时也可供机械密封泄漏量的计算提供参考。建立了织构化配流副的动态模型,利用Matlab/Simulink进行了动态仿真,分析了织构化配流副间油膜厚度的变化规律。
     在试验方面:依据轴向柱塞泵配流副的工作原理,研制了一台织构化配流副摩擦磨损试验机。针对配流盘相对复杂的结构,对采用光刻电解技术加工微凹坑阵列的工艺和步骤进行了探索,并成功加工出质量较高的微凹坑阵列。依据理论分析的相关结论和实际情况,选择合适的配流副工况和织构化参数进行织构化配流副的试验研究。
     通过理论分析和试验研究,得出了如下结论。
     织构化配流副间油膜特性方面:织构化配流副能够提高摩擦副间的支撑力;最优面积率与微凹坑深度和油膜厚度的比值有关;较大微凹坑直径能提供较大的支撑力;在油膜厚度与微凹坑深度相等时有最大的支撑力,支撑力随油膜厚度减小而呈现出非线性增大的趋势。
     低压区织构化配流副的摩擦学研究方面:最优面积率受到多因素的影响,在相同条件下,面积率为10%和15%表现出最好的摩擦学性能。微凹坑直径为100μm时的摩擦学性能优于其它微凹坑直径,最大减摩率为37.35%。微凹坑深度为10μm时摩擦学性能较好,最大减摩率为27.98%。
     全织构化配流副的摩擦学研究方面:面积率为10%和15%时的摩擦学性能接近,微凹坑直径为200μm时,摩擦学性能较好。其减磨机理由织构的三个基本作用决定即容纳固体颗粒、产生动压效应和二次润滑。
     在织构化配流副泄漏量方面:微凹坑深度和面积率对泄漏量有较大影响,随着微凹坑深度的增加,泄漏量随之减小。在相同面积率和微凹坑深度时,泄漏量随微凹坑直径增大而增大。
     在织构化配流副的动态特性方面:织构化配流副能改善配流副的动态特性,与织构化导致油膜刚度的提高密切相关。在较小稳态油膜厚度时,织构化配流副在避免干摩擦上有较明显的优势。
     本文的研究结果表明织构化配流副能改善轴向柱塞泵的摩擦润滑性能,也可供存在轴向不平衡力的液压零部件如齿轮泵轴套/壳体、配流轴的设计提供参考。
The port plate pair is one of the key components, and it is employed by the hydraulic powercomponent and the hydraulic actuator which adopt the way of end plane flow distribution, such asaxial piston motor, vane pump and other products. Along with the hydraulic drive system developingto high speed, high pressure, working performance and service life of the port plate pair is put forwardhigher request. Surface texture technology becomes worldwide research focus on tribology because ofits performance of increase loading capacity, decrease friction coefficient, reduce wear and improvelubricating property, its successful application of the mechanical seal, the engine piston ring, thecomputer hard drive, etc. provides a new thought for improve tribological performance of the portplate pair. The tribological performance of the textured port plate pair is studied in both theory andexperiment in this paper, and it can offer guidance for the design of the textured port plate pair.
     In theory: The textured port plate pair’s lubrication model based on its construction features and theactual working condition is established, the textured parameters such as the micro-pit’s depth, themicro-pit’s diameter, the area ratio on the oil load capacity is analyzed, it can provide a basis fordecreasing friction coefficient and reducing wear. On account of cavitation, the textured port platepair’s leakage model is established, a new computing way to the textured port plate pair’s leakage isfound, and it can provide reference for mechanical seal. the textured port plate pair’s dynamic modelis established and dynamic simulation is performed based on the software of Matlab/Simulink, thechange of the oil film thickness is analyzed by the theory.
     In experiment: Based on the working principle of the axial piston pump, a textured port plate pair’swear tester is developed. For the complex structure of the port plate, Micro-pits manufacture processand procedure by the use of photolithography combined with electrolytic etching process is found.The suitable working condition and the textured parameters is selected by the conclusions fromtheoretical analysis and physical condition, and the experiment can be carried out.
     From theoretical analysis and experimental study, the conclusions are be show as follow:
     On the aspect of the textured port plate pair’s oil film characteristics: The textured port plated pairhas a higher oil loading capacity, the optimal area ratio is related to the ratio of the micro-pit depth tothe oil film thickness, the larger micro-pit can produce the larger oil loading capacity, it has the largestoil loading capacity when the oil film thickness is equal to the micro-pit depth, with the oil filmthickness reducing, the oil film stiffness has a sharply increase.
     On the aspect of the tribological performance of the textured port plate pair in low pressure area: the optimal area ratio can be effected by multiple factors, in the same environment the area ratiowhose value is10%and15%has a better tribology performance. The value of micro-pit diameter is100μm, the better tribological performance can be got, the largest value of reducing the wear and tearis37.35%. the value of the micro-pit depth is10μm, the largest value of reducing friction is27.98%.
     On the aspect of the all textured port plate pair’s tribological performance: when the value of thearea ratio is10%or15%, the all textured port plate pair has a similar tribological performance, whenthe value of the micro-pit is200μm, the all textured port plate pair has a better tribologicalperformance, its anti-friction mechanism can be decided by the surface texture’s three basic role ofcontaining solid particles, dynamical effect and second lubrication.
     On the aspect of the all textured port plate pair’s leakage: The micro-pit depth and the area ratiohave large effect on the all textured port plate pair’s leakage, with an increasing the micro-pit depth,the leakage will reduce. Under the same area ratio and micro-pit depth, with an increasing themicro-pit diameter, the leakage will increase.
     On the aspect of the all textured port plate pair’s dynamic characteristics: In contrast to theuntextured port plate pair, the all textured port plate pair have better dynamic characteristic, itsdynamic characteristic is closely related to the oil film stiffness, when the less oil film thickness, theall textured port plate pair have an obvious advantage to prevent dry friction.
     The research findings in this paper show that the textured port plate can improve the performanceof the friction and lubrication, it can refer for hydraulic components such as gear pump’sbushing/shell, the flow divider pintle which withstand unbalanced axial hydraulic pressure.
引文
[1]何存兴.液压元件[M].北京:机械工业出版社,1982.
    [2]邵瑞.铁基粉末冶金配流盘蒸汽处理表面发红质量问题分析[J].湖南有色金属,2009,25(5):68-70.
    [3]邵瑞,林育阳,左鹏军.铁基粉末冶金配流盘渗铜质量影响因素[J].金属材料与冶金工程,2009(4):12-14.
    [4]戴圣海.离子束混合处理改善液压泵配流副摩擦学性能的研究[D].贵州大学,2007.
    [5]赵万生,周元康.离子束混合处理改善液压泵配流副摩擦学性能的研究[J].贵州工业大学学报:自然科学版,2002,31(6):103-106.
    [6]向文江,谢明,刘学敏,等.液压泵缸体配流副表面激光熔覆的实验研究[J].机床与液压,2006,(11):63-64.
    [7]尹克里.离子注入在航空液压泵中的应用[J].航空制造技术,2001(6):39-41.
    [8]周元康,罗述洁. N^+注入改性的25Cr3MoA材料在轴向柱塞泵配流盘上的应用研究[J].贵州工业大学学报:自然科学版,1998,27(5):50-54.
    [9] Andrew Bloyce. Coatings for high performance pumps and compressors[J]. World Pumps,2000(400):43-45.
    [10] Kenneth Holmberg, Allan Matthews, Helena Ronkainen. Coatings tribology—contactmechanisms and surface design[J]. Tribology International,1998,31(1–3):107-120.
    [11] M. Antonov, I. Hussainova, F. Sergejev, P. Kulu, A. Gregor. Assessment of gradient andnanogradient PVD coatings behaviour under erosive, abrasive and impact wear conditions[J].Wear,2009,267(5–8):898-906.
    [12] Nyberg H, Tokoroyama T, Wiklund U, et al. Design of low-friction PVD coating systems withenhanced running-in performance-carbon overcoats on TaC/aC coatings; proceedings of theNordtrib2012,15th Nordic Symposium on Tribology: Final papers, F,2012[C].
    [13] H. Hoche, J. Schmidt, S. Gro, T. Tro mann, C. Berger. PVD coating and substrate pretreatmentconcepts for corrosion and wear protection of magnesium alloys[J]. Surface and CoatingsTechnology,2011,205:145-150.
    [14] D. Van Bebber, H. Murrenhoff. Improving the wear resistance of hydraulic machines usingPVD-coating technology[J]. O+P lhydraulik und Pneumatik,2002,46(11-12):1-35.
    [15] J. Vetter, D. Van Bebber, A. Nevoigt. Properties of a-C: HMe coatings deposited by vacuum arcevaporation[J]. Harterei-Technische Mitteilungen(Germany),2000,55(2):93-99.
    [16] J. Vetter, C. Ackerman, F. Meunier, O. Jarry, D. Schumacher, G. Erkens. High performance hardcarbon coatings (diamond‐like coatings)[J]. Vakuum in Forschung und Praxis,2012,24(2):18-23.
    [17] C. Meunier, P. Alers, L. Marot, J. Stauffer, N. Randall, S. Mikhailov. Friction properties of ta-Cand a-C:H coatings under high vacuum[J]. Surface and Coatings Technology,2005,200(5–6):1976-1981.
    [18] J. Vetter, A. Nevoigt. aC: HMe coatings deposited by the cathodic vacuum arc deposition:properties and application potential[J]. Surface and Coatings Technology,1999,120:709-717.
    [19] S.Y. Lee, B.S. Kim, S.D. Kim, G.S. Kim, Y.S. Hong. Effect of Si doping on the wear propertiesof CrN coatings synthesized by unbalanced magnetron sputtering[J]. Thin solid films,2006,506:192-196.
    [20] Y.S. Hong, S.Y. Lee. A comparative study of Cr X N (X=Zr, Si) coatings for theimprovement of the low-speed torque efficiency of a hydraulic piston pump[J]. Metals andMaterials International,2008,14(1):33-40.
    [21]牛雪梅,冀鹏飞,杨阳,等.双供油轴向柱塞泵压力流量的脉动特性[J].振动.测试与诊断,2012,32(1):151-156.
    [22]杨阳,权龙,杨敬.轴向柱塞泵非止点配流窗口过渡区压力脉动特性分析[J].机械工程学报,2012,47(24):128-134.
    [23]杨阳.非对称泵配流特性及其在挖掘机动臂回路中的应用[D].太原理工大学,2011.
    [24]张晓刚,权龙,杨阳,等.并联型三配流窗口轴向柱塞泵特性理论分析及试验研究[J].机械工程学报,2011,47(14):151-157.
    [25]钟伟旭.并联式三油口轴向变量柱塞泵设计,建模与仿真研究[D].太原理工大学,2010.
    [26]钟伟旭,权龙.并联式三油口轴向变量柱塞泵设计,建模与仿真[J].中国机械工程,2011,22(7):869-872.
    [27]马德江.基于CFD的A11VO轴向柱塞泵配流特性研究[D].兰州理工大学,2011.
    [28]王彬,周华,杨华勇.基于FEM的轴向柱塞泵配流盘静动力学仿真研究[J].机床与液压,2006(8):85-88.
    [29]王有荣,刘桓龙,柯坚,等.水压轴向柱塞泵配流副流场的CFD解析[J].液压与气动,2007(7):21-24.
    [30]熊小平. A11VO轴向柱塞泵配流特性的研究[D].西南交通大学,2010.
    [31]单长吉,刘晓红,王国志.高压柱塞泵用压力脉动衰减器的流体特性CFD解析[J].机床与液压,2005(7):113-114.
    [32]郜立焕,刘世亮,杨毅,等.基于CFD的轴向柱塞泵配流盘仿真[J].液压与气动,2008(6):42-44.
    [33]杨华勇,王彬,周华.圆盘缝隙的平面配流副压力分布模型与解析[J].浙江大学学报:工学版,2010(5):976-981.
    [34]陈卓如,李元勋,金朝铭,等.液压马达端面配流副径向密封带压力场数值求解及分析[J].中国机械工程,1996,7(2):38-41.
    [35]陈卓如,范莉.液压马达新型端面配流副液压分离力的数值求解及分析[J].机床与液压,2000(2):7-9.
    [36]胡骁,王少萍,韩磊.轴向柱塞泵配流副动态压力分布建模与仿真[J].液压气动与密封,2012,32(8):68-71.
    [37]李元勋.油液粘度变化对配流副密封带压分布的影响[J].上海交通大学学报,1998,32(5):39-42.
    [38]艾青林,周华,杨华勇.轴向柱塞泵配流副润滑特性的数值分析[J].农业机械学报,2004,35(6):78-81.
    [39]何必海,孙健国,叶志锋.燃油柱塞泵滑靴副和配流副油膜计算研究[J].航空动力学报,2010(6):1437-1442.
    [40]邓斌.水压轴向柱塞泵的特性研究与分析[D].西南交通大学,2004.
    [41]许耀铭.油膜理论与液压泵和马达的摩擦副设计[M].北京:机械工业出版社,1987.
    [42]周士瑜,段占旭.轴向柱塞泵配流副间隙的实验研究[J].液压与气动,1986(3):12-12.
    [43]艾青林.轴向柱塞泵配流副润滑特性的试验研究[D].浙江大学,2005.
    [44]马砚英,刘家起.轴向柱塞泵配流副油膜的实验研究[J].润滑与密封,1999(3):35-39.
    [45] J. M. Bergada, D. L. Davies, S. Kumar, J. Watton. The effect of oil pressure and temperature onbarrel film thickness and barrel dynamics of an axial piston pump[J]. Meccanica,2011,47(3):639-654.
    [46] J. M. Bergada, S. Kumar, D. Ll Davies, J. Watton. A complete analysis of axial piston pumpleakage and output flow ripples[J]. Applied Mathematical Modelling,2012,36(4):1731-1751.
    [47] A. Yamaguchi. Formation of a fluid film between a valve plate and a cylinder block of pistonpumps and motors(2nd report, a valve plate with hydrostatic pads)[J]. TRANS. JAPAN SOC.MECH. ENG.(SER. B).1986,52(478):2412-2417.
    [48] T. Kazama, H. Sasaki, Y. Narita. Simultaneous temperature measurements of bearing and sealparts of a swash plate type axial piston pump—effects of piston clearance and fluid property[J].Journal of mechanical science and technology,2010,24(1):203-206.
    [49] A. Yamaguchi. Formation of a fluid film between a valve plate and a cylinder block of pistonpumps and motors. I: A valve plate with hydrodynamic pads[J]. Bulletin of the JSME,1986,29(251):1494-1498.
    [50] A. Yamaguchi. Formation of a fluid film between a valve plate and a cylinder block of pistonpumps and motors (2nd report: a valve plate with hydrostatic pads)[J]. Bulletin of the JSME,1987,30(259):87-92.
    [51] A. Yamaguchi. Pressure distribution on valve plate of axial plunger pumps and motors[J].Seisan-Kenkyu,1966(18):18-20.
    [52] A. Yamaguchi, Y. Fujitani, Y. Isoda. Characteristics of fluid film between a valve plate and acylinder block of axial piston pumps and motors[J]. Japan Hydraulics and Pneumatics Society,1984,15(4):314-322.
    [53] J.K. Kim, H.E. Kim, Y.B. Lee, J.Y. Jung, S.H. Oh. Measurment of fluid film thickness on thevalve plate in oil hydraulic axial piston pumps (Part II: Spherical design effects)[J]. Journal ofmechanical science and technology,2005,19(2):655-663.
    [54] J. Ki Kim, J.Y. Jung. Measurement of fluid film thickness on the valve plate in oil hydraulic axialpiston pumps (I)-bearing pad effects[J]. Journal of Mechanical Science and Technology,2003,17(2):246-253.
    [55] I. Etsion. State of the art in Laser Surface Texturing[J]. Journal of tribology,2005,127(1):248-253.
    [56] D.K. Singh, Vk Jain, V. Raghuram, R. Komanduri. Analysis of surface texture generated by aflexible magnetic abrasive brush[J]. Wear,2005,259(7):1254-1261.
    [57] P. St pień. Deterministic and stochastic components of regular surface texture generated by aspecial grinding process[J]. Wear,2011,271(3):514-518.
    [58] I. Etsion, G. Halperin. A laser surface textured hydrostatic mechanical seal[J]. TribologyTransactions,2002,45(3):430-434.
    [59] Amanov A, Tsuboi R, Oe H, et al. The influence of bulges produced by laser surface texturing onthe sliding friction and wear behavior [J]. Tribology International,2013,60(0):216-223.
    [60] H. Yamakiri, S. Sasaki, T. Kurita, N. Kasashima. Effects of laser surface texturing on frictionbehavior of silicon nitride under lubrication with water[J]. Tribology International,2011,44(5):579-584.
    [61] M. Wakuda, Y. Yamauchi, S. Kanzaki, Y. Yasuda. Effect of surface texturing on frictionreduction between ceramic and steel materials under lubricated sliding contact[J]. Wear,2003,254(3):356-363.
    [62] C.D. Lu, M.F. Wu, D.H. Wen, G.Z. Chai. Experimental Study on Magnetorheological (MR) JetPolishing of Mould Free Surface[J]. Key Engineering Materials,2012,500(1):287-290.
    [63] X. Wang, K. Kato, K. Adachi, K. Aizawa. Loads carrying capacity map for the surface texturedesign of SiC thrust bearing sliding in water[J]. Tribology International,2003,36(3):189-197.
    [64] Ls Stephens, R. Siripuram, M. Hayden, B. Mccarft. Deterministic micro asperities on bearingsand seals using a modified LIGA process[J]. Journal of engineering for gas turbines and power,2004,126(1):147-154.
    [65] I. Etsion, E. Sher. Improving fuel efficiency with laser surface textured piston rings[J]. TribologyInternational,2009,42(4):542-547.
    [66] S. Mezghani, I. Demirci, H. Zahouani, M. El Mansori. The effect of groove texture patterns onpiston-ring pack friction[J]. Precision engineering,2012,36(2):210-217.
    [67] A. Spencer, A. Almqvist, R. Larsson. A semi-deterministic texture-roughness model of the pistonring–cylinder liner contact[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology,2011,225(6):325-333.
    [68] Ulrika Pettersson, Staffan Jacobson. Influence of surface texture on boundary lubricated slidingcontacts[J]. Tribology International,2003,36(11):857-864.
    [69] L. Burstein, D. Ingman. Effect of pore ensemble statistics on load support of mechanical sealswith pore-covered faces[J]. Journal of tribology,1999,121(4):927-932.
    [70] V.G. Marian, D. Gabriel, G. Knoll, S. Filippone. Theoretical and experimental analysis of a lasertextured thrust bearing[J]. Tribology Letters,2011,44(3):335-343.
    [71] C. Sinanoglu. Investigation of load carriage capacity of journal bearings by surface texturing[J].Industrial Lubrication and Tribology,2009,61(5):261-270.
    [72] V Brizmer, Y Kligerman, I Etsion. A laser surface textured parallel thrust bearing[J]. TribologyTransactions,2003,46(3):397-403.
    [73] Mb Dobrica, M. Fillon, Md Pascovici, T. Cicone. Optimizing surface texture for hydrodynamiclubricated contacts using a mass-conserving numerical approach[J]. Proceedings of theInstitution of Mechanical Engineers, Part J: Journal of Engineering Tribology,2010,224(8):737-750.
    [74] S. Kango, D. Singh, Rk Sharma. Numerical investigation on the influence of surface texture onthe performance of hydrodynamic journal bearing[J]. Meccanica,2012,47(2):469-482.
    [75] J. Van Kuilenburg, Ma Masen, Mnw Groenendijk, V. Bana, E. Van Der Heide. An experimentalstudy on the relation between surface texture and tactile friction[J]. Tribology International,2012,48:15-21.
    [76] H. Yu, X. Wang, F. Zhou. Geometric shape effects of surface texture on the generation ofhydrodynamic pressure between conformal contacting surfaces[J]. Tribology Letters,2010,37(2):123-130.
    [77] T. Nanbu, N. Ren, Y. Yasuda, D. Zhu, Q.J. Wang. Micro-Textures in concentratedconformal-contact lubrication: effects of texture bottom shape and surface relative motion[J].Tribology Letters,2008,29(3):241-252.
    [78] L. Haubold, T. Schuelke, M. Becker, G. Woodrough. The influence of the surface texture ofhydrogen-free tetrahedral amorphous carbon films on their wear performance[J]. Diamond andRelated Materials,2010,19(2):225-228.
    [79]胡天昌,胡丽天,丁奇.45#钢表面激光织构化及其干摩擦特性研究[J].摩擦学学报,2010,30(1):46-52.
    [80]连峰,张会臣,庞连云. Ti6A14V表面激光织构化及其干摩擦特性研究[J].润滑与密封,2011,36(9):1-5.
    [81] Aa Voevodin, Js Zabinski. Laser surface texturing for adaptive solid lubrication[J]. Wear,2006,261(11):1285-1292.
    [82]黄仲佳,熊党生,李建亮,等.金属表面织构化微孔填充干膜润滑剂的摩擦学性能[J].材料保护,2011,44(6):28-30.
    [83] Yi Wan, Dang-Sheng Xiong. The effect of laser surface texturing on frictional performance offace seal[J]. Journal of Materials Processing Technology,2008,197(1):96-100.
    [84] Jianliang Li, Dangsheng Xiong, Jihui Dai, Zhongjia Huang, Rajnesh Tyagi. Effect of surfacelaser texture on friction properties of nickel-based composite[J]. Tribology International,2010,43(5):1193-1199.
    [85]王晓雷,王静秋,韩文非.边界润滑条件下表面微细织构减摩特性的研究[J].润滑与密封,2008,32(12):36-39.
    [86] Ulrika Pettersson, Staffan Jacobson. Friction and wear properties of micro textured DLC coatedsurfaces in boundary lubricated sliding[J]. Tribology letters,2004,17(3):553-559.
    [87]胡天昌,丁奇,胡丽天.激光表面织构化对GCr15钢摩擦磨损性能的影响[J].摩擦学学报,2011,31(5):447-451.
    [88] J Keller, V Fridrici, Ph Kapsa, Jf Huard. Surface topography and tribology of cast iron inboundary lubrication[J]. Tribology International,2009,42(6):1011-1018.
    [89] I. Etsion, Y. Kligerman, G. Halperin. Analytical and experimental investigation of laser-texturedmechanical seal faces[J]. Tribology Transactions,1999,42(3):511-516.
    [90] Aviram Ronen, Izhak Etsion, Yuri Kligerman. Friction-reducing surface-texturing inreciprocating automotive components[J]. Tribology Transactions,2001,44(3):359-366.
    [91] Sihuan Yuan, Wei Huang, Xiaolei Wang. Orientation effects of micro-grooves on slidingsurfaces[J]. Tribology International,2011,44(9):1047-1054.
    [92]于海武,袁思欢,孙造,等.微凹坑形状对试件表面摩擦特性的影响[J].华南理工大学学报:自然科学版,2011,39(001):106-110.
    [93] Cong Shen, Wei Huang, Guoliang Ma, Xiaolei Wang. A novel surface texture for magnetic fluidlubrication[J]. Surface and Coatings Technology,2009,204(4):433-439.
    [94] Bo Zhang, Wei Huang, Jingqiu Wang, Xiaolei Wang. Comparison of the effects of surfacetexture on the surfaces of steel and UHMWPE[J]. Tribology International,2013(accepted).
    [95]裴世源,徐华,马石磊,等.多尺度表面织构流体润滑问题的快速求解方法[J].西安交通大学学报,2011,45(5):119-126.
    [96]汪家道,陈大融,孔宪梅.规则凹坑表面形貌润滑研究[J].摩擦学学报,2003,23(1):52-55.
    [97] Miki Nakano, Koji Miyake, Atsushi Korenaga, Shinya Sasaki, Yasuhisa Ando. Tribologicalproperties of patterned NiFe-covered Si surfaces[J]. Tribology Letters,2009,35(2):133-139.
    [98]吴泽,邓建新,邢佑强,等.椭圆状微织构自润滑车刀切削性能试验[J].农业机械学报,2012,43(7):228-234.
    [99]马吉恩,徐兵,杨华勇.轴向柱塞泵流动特性理论建模与试验分析[J].农业机械学报,2010,41(1):188-194.
    [100]李小金,苑士华,胡纪滨.球面配流副二维稳态压力场的数值求解方法研究[J].中国机械工程,2010(2):150-154.
    [101]马晨波,朱华,孙见君.椭圆形截面织构的最优参数设计模型[J].中南大学学报(自然科学版),2012,43(3):953-959.
    [102]周元凯,朱华,唐玮,等.往复运动下圆凹坑形表面织构减摩性能研究[J].润滑与密封,2012,37(3):45-48.
    [103]纪敬虎,符永宏,王祖权,等.激光表面跨尺度织构化机械密封摩擦性能[J].排灌机械工程学报,2012,30(4):452-456.
    [104]杨金福,杨昆,于达仁,等.滑动轴承非线性油膜力研究[J].振动工程学报,2005,18(1):118-123.
    [105]许贤良,王传礼.液压传动系统[M].北京:国防工业出版社,2008.
    [106]华同曙,翁鹏,陈晓阳.变速多尺度润滑油膜测量试验机设计[J].润滑与密封,2010,35(3):101-103.
    [107]吴明晖,袁细传,谭援强,等.基于虚拟仪器技术的多功能摩擦磨损试验机的研制[J].润滑与密封,2010,35(6):96-100.
    [108]许磊,杨寅威,唐小行.摩擦磨损试验机用电液比例加载系统的性能分析设计[J].煤矿机械,2009,30(10):26-28.
    [109]盛永世.内燃机缸套一活塞环双联摩擦磨损试验机的研究[D].大连海事大学,2012.
    [110]马晨波,朱华,历建全.摩擦副不同表面织构化的润滑减摩性能试验研究[J].中国矿业大学学报,2010,39(2):244-248.
    [111]T. F. Lin, T. A. Palmer, K. C. Meinert, N. R. Murray, R. Majeski. Capillary wicking of liquidlithium on laser textured surfaces for plasma facing components[J]. Journal of Nuclear Materials,2013,433(1–3):55-65.
    [112]Eduardo Tomanik. Modelling the hydrodynamic support of cylinder bore and piston rings withlaser textured surfaces[J]. Tribology International,2013,59(01):90-96.
    [113]A. Datta, S. Dutta, S.K. Pal, R. Sen, S. Mukhopadhyay. Texture Analysis of Turned SurfaceImages using Grey Level Co-occurrence Technique[J]. Advanced Materials Research,2012,365(11):38-43.
    [114]纪敬虎.摩擦副表面微凹槽织构相关摩擦学理论及试验研究[D].江苏大学,2012.
    [115]彭旭东,杜东波,李纪云.不同型面微孔对激光加工多孔端面机械密封性能的影响[J].摩擦学学报,2006,26(4):367-371.
    [116]No l Brunetière, Bernard Tournerie. Numerical analysis of a surface-textured mechanical sealoperating in mixed lubrication regime[J]. Tribology International,2012,49(10):80-89.
    [117]王彬,周华,杨华勇.轴向柱塞泵配流副油膜试验原理及控制特性[J].机械工程学报,2009,45(11):113-118.
    [118]H.C. Pedersen, P. Johansen, C. Yigen, T.O. Andersen, D.B. R mer. Analysis of Temperature'sInfluence on a Digital Displacement Pump's Volumetric Efficiency[J]. Applied Mechanics andMaterials,2012,233(10):24-27.
    [119]胡罡.斜轴式海水液压柱塞泵的理论研究[D].华中科技大学,2007.
    [120]李安元.锥轴配流海水泵初步研究[D].华中科技大学,2008.
    [121]潘晓梅,彭旭东,李纪云.激光加工多孔端面机械密封泄漏量的影响因素[J].润滑与密封,2007,32(3):31-34.
    [122]赵中,彭旭东,盛颂恩,等.多孔扇形分布端面机械密封性能的数值分析[J].化工学报,2009,60(4):965-971.
    [123G. Zhu. Computer prediction of mechanical seal performance and experimental validation[J].Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology,1999,213(6):433-449.
    [124]方慎权.煤矿采掘机械的液压传动[M].北京:煤炭工业出版社.1998.
    [125]N. Patir, Hs Cheng. An average flow model for determining effects of three-dimensionalroughness on partial hydrodynamic lubrication[J]. ASME, Transactions, Journal of LubricationTechnology,1978,100(1):12-17.
    [126]H. Chen, M. Ishida, T. Nakahara. Analysis of adhesion under wet conditions forthree-dimensional contact considering surface roughness[J]. Wear,2005,258(7):1209-1216.
    [127]L. Chang. A deterministic model for line-contact partial elastohydrodynamic lubrication[J].Tribology international,1995,28(2):75-84.
    [128]张文谦,朱华,马晨波,等.表面凹痕织构动压承载性能的CFD分析[J].润滑与密封,2011,36(9):59-62.
    [129]A De Kraker, Raj Van Ostayen, Dj Rixen. Development of a texture averaged Reynoldsequation[J]. Tribology International,2010,43(11):2100-2109.
    [130]艾青林,计时鸣,杨华勇.阻尼槽型连续供油配流副润滑机理的数值模拟[J].农业机械学报,2006,37(12):155-158.
    [131]胡纪滨,邹云飞,杜玖玉.轴向柱塞泵配流副短阻尼孔效应研究[J].润滑与密封,2009,34(3):20-23.
    [132]邓海顺,祁胜,于海武,等.轴向柱塞泵配流副低压区织构化数值分析[J].农业机械学报,2011,42(6):203-207.
    [133]刘红彬,孟永钢.基于区域分解法的纹理表面流体润滑分析——纹理分布模式的影响[J].摩擦学学报,2008,27(6):555-561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700