用户名: 密码: 验证码:
螺杆泵容积效率特性分析与螺杆齿面精确成型方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
课题来源于国家自然科学基金面上项目“高效三螺杆泵转子型线设计新方法及关键技术研究”(项目编号:50875268)和“多级变速螺杆泵基础理论与关键技术研究”(项目编号:51175522)。
     螺杆泵因具有优越的工程适应性和经济实用性在海洋钻井平台、舰船、精密机床、石油化工等领域应用日趋广泛。《中共中央关于制定国民经济和社会发展第十二个五年规划的建议》明确指出,高端装备制造业处于七大战略性新兴产业的核心地位,将在重点领域集中力量加快推进。螺及杆泵作为重点发展的高端装备部件,将为我国高端装备制造业的发展增加动力,成为战略性新兴产业发展的重要支撑。同时,“十二五”期间我国将投入3000亿重点发展海洋工程装备,包括海洋钻井平台、各种海洋工程船舶及潜艇等。因此,螺杆泵作为重要的高端装备基础部件,需求量巨大,具有广阔的发展前景。然而,螺杆泵属于高精度机械产品,其对设计和制造的精度很敏感。由于我国生产企业对螺杆泵工作机理认识不清晰,设计及加工方面的技术不够完善,使得生产出的产品存在容积效率低、流量特性不稳定、齿面磨损严重、功耗大等技术瓶颈,长期以来高端螺杆泵产品基本上依赖进口。为此,为提高我国高端装备制造业的国际化水平,减小我国在螺杆泵等高端装备部件对国外的依赖,开展螺杆泵系统创新设计理论与方法研究,突破螺杆泵设计制造关键技术难题,对提高我国机械装备配套自主创新能力具有十分重要的社会经济意义和工程实用价值。
     本文以螺杆泵关键核心部件螺杆副为研究对象,利用流体动力学、泄漏理论、接触理论、空间包络理论等,深入分析泵腔内流场运动学、动力学特性,研究探讨螺杆构型原理及其结构与螺杆泵容积效率特性参数匹配的设计理论和方法,建立考虑啮合间隙的螺杆齿形设计模型,形成螺杆齿面成型刀具精确齿形设计方法。论文主要工作如下:
     ①在定义容积式机械吸入能力的基础上,建立螺杆泵吸入能力计算数学模型,详细分析螺杆泵转速、螺杆螺旋升角、输送介质等对螺杆泵吸入能力的影响;研究螺杆泵吸入能力对容积效率特性的影响,得到螺杆泵关键设计参数与螺杆泵吸入能力的匹配关系,提出提高螺杆泵吸入能力的设计方法。
     ②基于流体力学边界层分离理论,在深入分析螺杆泵吸入能力的基础上,结合圆柱绕流现象,对圆柱绕流迹线及其分离点进行计算,建立圆柱绕流边界层分离优化模型,运用图形和解析的方法求解优化方程,结合螺杆转子端面几何特性,获得优化流线型体三维模型,通过理论分析的方法验证优化模型的合理性。
     ③内泄漏是泵泄漏的主要因素。针对螺杆泵桶壁间隙、啮合间隙等决定螺杆泵性能的关键间隙的设计问题,在研究螺杆各项间隙构成原理的基础上,运用流体力学间隙泄漏理论和小孔泄漏理论,分别建立泵腔间隙泄漏压差流和剪切流模型,分析螺杆泵桶壁间隙和啮合间隙的泄漏量,得到螺杆泵不同间隙泄漏的数学模型;以主动螺杆2头、从动螺杆3头的双螺杆泵为例,理论计算与试验对比分析螺杆转速、压差对泵泄漏的作用机理,揭示螺杆转速、泵进出口压差对螺杆泵流量特性及容积效率特性的影响规律。
     ④针对螺杆泵关键部件螺杆转子设计过程复杂、加工难度高导致啮合间隙不均匀的问题,在分析螺杆啮合间隙形成机理基础上,运用空间解析几何基础理论,提出基于啮合间隙的螺杆齿形优化设计新方法,建立螺杆加工过程进刀轨迹-螺杆齿形-啮合间隙转换方程,深入分析轴向、径向、法向等不同进刀方式对螺杆啮合间隙、螺杆齿形偏差的影响规律;结合微分几何等距曲面构型原理,得到预定加工间隙的螺杆端面齿形。
     ⑤针对由离散点组成的任意端截面螺杆齿形,基于齿轮啮合原理,运用三次样条插值方法求得螺杆成型刀具齿形;研究螺杆与刀具在加工过程中的空间包络特性与几何特性,结合机床、螺杆、刀具的协同运动所生成的接触线的形状和空间位置参数,创新性地提出一种基于离散点齿形的螺杆加工成型刀具设计方法--形位几何法,与齿轮啮合原理的方法进行对比表明:形位几何法简化刀具-工件包络求解模型,克服传统啮合理论设计刀具时无法精确计算齿形曲线尖点的关键技术难点,提高螺杆成型刀具齿形设计精度,并通过试验验证形位几何法的可行性及精确性。
The research subject of the dissertation stems from the National Natural ScienceFunds (NNSF)"Research on key technical and new design method of rotor profile forhigh efficiency three screw pump (50875268)" and "Research on key technical andbasic theory of multistage variable speed screw pump (51175522)".
     Screw pumps have been widely used in the offshore drilling platforms, ships,precision machine tools, petrochemical industry and other fields due to its superioradaptability and economic practicability."The Central Committee of CPC onformulating the12th five-year plan for economic and social development suggestions"clearly pointed out that the high-end equipment manufacturing is the core position ofseven strategic emerging industries and will be highly supported by the government inthe important fields. As a key component of the high-end equipments, the developmentof screw pumps will power the high-end equipment manufacturing industry, and supportthe strategic emerging industry. Meanwhile, during the12th five-year, the governmentwill invest300billion in marine equipment, including offshore drilling platforms,offshore vessels and submarines, etc. Therefore, screw pump as an importantfundamental part of the high-end equipment have huge demands and broad prospects.However, screw pump, which is a high precision mechanical product, is sensitive to theprecision of the design and manufacturing. The products that are manufactured in ourcountry usually have various defects, including low volumetric efficiency, unstable flowcharacteristic, serious tooth surface wear, large power consumption, because of the lackof the understanding of the working mechanism and the lack of the comprehensivetechnique in design and machining. As a result, the high-end screw pumps basically relyon imports for a long time. In order to improve the internationalization level of high-endequipment manufacturing industry in our country and reduce the dependence on foreignhigh-end equipment parts such as screw pump, we need to carry out the innovationstudy in design principles and methods of screw pump system and solve the keytechnical problems of the design and manufacture of screw pump. Such breakthroughwill be socially and economically crucial to the independent innovation of machineryequipment in our country and have great practical value in engineering.
     In this paper, screw rotors that are the core parts of the screw pump are the researchobjects. Fluid dynamics, leak theory, contact theory, spatial envelope theory, etc., have been used as tools to analyze the flow kinematics and dynamics of the pump chamber,to study the structure of screw motors and the design principles and methods onparam-pattern between the volumetric efficiency of screw pump and the configurationprinciples, to establish the screw tooth profile model basing on the meshing clearance,and to form the precision profile of forming cutter of the screw tooth surface. The maincontents of this dissertation are shown as follows:
     ①Based on the definition of suction capacity of positive displacement machine,the screw pump suction capacity calculation model has been set up. The impacts ofscrew speed, screw helix angle, the transmission medium, etc., on the screw pumpssuction capacity have been analyzed in detail. In addition, the matching relationshipbetween the key design parameters and the suction capacity of screw pump have beenobtained by studying the volumetric efficiency characteristics influence on its suctioncapacity. Furthermore, the improving method for the capability of screw pump's suctionhas been proposed.
     ②Based on theory of hydrodynamic boundary layer separation, the path line andthe separated points have been calculated by in-depth analyzing the capacity of screwpump's suction and the flow around a cylinder. Then, the optimization model of theboundary layer separation flow around cylinder has been established and solved byusing graphics and analytical methods. Moreover, the optimized3D model of thestreamline body has been obtained through the cross section geometry of the screw rotor.Finally, the feasibility of the optimization model has been validated by the theoreticalanalysis method.
     ③Clearance leakage is the main cause of pump leakage. For the design andcontrol of the key clearance which determines the performance of screw pump such asclearance of barrel wall and meshing area, the model of differential pressure flow andshear flow of clearance leakage in pump cavity has been established. Furthermore, themathematical expressions of leakage from different clearance are obtained by analyzingthe leakage for clearance of barrel wall and meshing area. Then, the influence of therotation speed and pressure difference between import and export on flowcharacteristics and volumetric efficiency characteristics of screw pump has beenrevealed by theoretical calculation and experimental analysis of twin-screw pump (2heads for main and3heads for follower, respectively).
     ④Aiming at the problem of the nonuniform meshing clearance that is caused bythe complicated design and the highly difficult process of the rotors which are the key components of screw pump, a new optimized design method of screw tooth profilebased on the given clearance is proposed by analyzing the formation mechanism ofscrew clearance and using the space analytic geometry theory. The transformationequations related to the feed path, screw tooth profile and the clearance in screwmanufacturing process are then established. Furthermore, the influence of feed directionsuch as axial, radial and normal on the meshing clearance and the tooth profile deviationof rotors has been analyzed in detail. Thus, in combination with the isometric surfaceconfiguration of differential geometry, the screw cross tooth profile with thepredetermined clearance is obtained.
     ⑤Let’s take the processing of screws for screw pumps as an example. Based uponthe principle of gearing mesh we can use the cubic spline interpolation method to obtainthe tooth profile of the screw forming cutter according to the tooth profile at any crosssection of screw composed of discrete points. Furthermore, a design method isinnovatively proposed for the screw forming cutter based on discrete points, namelyForm-Position Geometric Method (FPGM). This method is obtained by combining thespace enveloping and geometric characteristics between the screw and cutter during theprocessing and the shape of the contact line which is generated by the cooperativemothion of the machine tool, screw and cutter, as well as the spatial location parameters.After comparing the proposed method with the principle of gear meshing, it can beobserved that the cutter-workpiece enveloping solution model which is simplified by theFPGM can overcome the key technical difficulty. For example, it is difficult toaccurately calculate the cusp of the tooth curve using the cutter-workpiece model, butthe proposed cutter design method can improve the machining precision of the screwtooth profile. Finally, the feasibility and superiority of FPGM is verified byexperiments.
引文
[1]国家自然科学基金委员会与材料科学部.机械工程学科发展战略报告(2011-2020)[M].北京:科学出版社,2010.
    [2]马基恩.轴向柱塞泵流量脉动及配流盘优化设计研究[D].杭州:浙江大学,2009.
    [3] James F Lea, Herald W Winkler.国内外螺杆泵采油技术发展概况[J].国外油田工程,1996,(06):20-28.
    [4] David B Parker. High temperature twin screw pumps[R]. Proceedings of15th InternationalPump Users Symposimu, Texas A&M University,1998.
    [5]魏纪德.螺杆泵工作特性研究及应用[D].黑龙江:大庆石油学院,2006.
    [6] Evan Chan. Wet-gas compression in twin-screw multiphase pumps[D]. Texas: Texas A&MUniversity,2006.
    [7]何希杰,劳学苏.螺杆泵现状与发展趋势[J].水泵技术,2007(5):1-5.
    [8] Bob Heyl. Multiphase pumping[R].24th International Pump Users Symposium, Texas A&MUniversity,2008.
    [9] Joh Heinr. Deepwell SLU series Twin screw pumps[Z]. Germany: Bornemann GmbH.
    [10]王勇.国外多相泵和多相流混输技术综述[J].油气田地面工程,1996,15(1):7-13.
    [11]曹锋,束鹏程,邢子文.双螺杆多相混输泵技术及研究进展[J].石油机械,1999,3(3):1-7.
    [12]徐建宁,冯英龙,屈文涛,徐磊,许俊如.双螺杆多相混输泵的理论研究及相关问题探讨[J].石油矿场机械,2006,35(6):5-8.
    [13]屈文涛,徐磊,徐建宁.浅谈双螺杆泵的油气混输理论[J].钻采工艺,2007,30(3):82-84.
    [14]张氏伟,徐成海,祖文文等.单头等螺距梯形齿螺杆转子型线的干涉问题研究[J],真空科学与技术学报.2007,27(1):46-49.
    [15] Roekel G J, Lips S J J, Kamp R G M, et al. Extrusion pulping of true hemp bast fibre(Cannabis Sativa L.)[C]. In: Proceedings of the1995TAPPI pulping conference, Chicago,USA,2-6October,1995:477-485.
    [16] Van Roekel G J. Bulk papermaking applications for bast fibre crops using extrusionpluping[J]. Paper Technology,1997,38(5):37.
    [17] Westenbroek, Annita P H. Extrusion pulping of natural fibre[J]. Paper Technology,2004,4(4):37.
    [18] Hwang Y W, Hsieh C F. Study on high volumetric efficiency of the Roots rotor profile withvariable trochoid ratio[J]. Proceedings of the IMECHE Part C Journal of MechanicalEngineering Science,2006(9):1375-1384.
    [19] Liu H C, Tone S H, Yang D C H. Trapping-free rotors for high-sealing lobe pumps[J]. ASMEJournal of Mechanical Design,2000,(4):536-542.
    [20] Tone S H, Yang D C H. Rotor profiles synthesis for lobe pumps with given flow ratefunctions[J]. ASME Journal of Mechanical Design,2005,(2):287-294.
    [21] Colfax. Three-screw pump solutions[Z]. US: Colfax Corporation,2008.
    [22] Jim Brennan. High efficiency multiple screw pumps[Z]. US: Colfax Corporation,2009.
    [23] Bob Jordan. Two-screw pumps provide the right stuff for chemical processing needs[Z]. US:Colfax Corporation,2011.
    [24] Joh Heinr. Twin screw pumps[Z].Germany: Bornemann Pumps,2010.
    [25] IMO Pump. Screwpump series E4[Z]. Sweden: IMO Pump,2011.
    [26] Leistritz. Twin screw multiphase pumps[Z]. Germany: Leistritz Group,2010.
    [27] Leistritz Pumpen GMBH. Screw pumos&systems[Z]. Germany: Leistritz Group,2010.
    [28] Olaer. Screw pump40bar/80bar[Z]. Britain: Olaer Corp.,2010.
    [29] Rotating Right. Screw pumps[Z]. Canada: Rotating Right Inc.,2010.
    [30] ClassNK. Two-rotor screw pump[Z]. Japan: Taiko Kikai Industries Co., Ltd.,2009.
    [31] V-FLO. W V Series twin screw pump[Z].Beijing, China: V-FLO Group,2010.
    [32]周红英.基于中国市场的Colfax公司螺杆泵产品品牌营销策略研究[D].兰州:兰州大学,2013.
    [33]操建平,孟庆昆,王向东,等.等壁厚与常规井下螺杆泵对比分析[J].石油机械,2011,39(6):4-7.
    [34]操建平,孟庆昆,高圣平,等.单螺杆泵的接触疲劳磨损分析[J].水泵技术,2011,(3):1-6.
    [35]高圣平,操建平,孟庆昆,王向东,胡贵.我国螺杆泵标准化现状与国际标准化探讨[J].石油工业技术监督,2012,(07):15-19.
    [36] GB/T21411.1-2008石油天然气工业井下设备人工举升用螺杆泵系统第1部分:泵[S].北京:中国标准出版社,2008.
    [37] JB/T8644-2007单螺杆泵[S].北京:中国机械工业出版社,2008.
    [38] SY/T6084-2007地面驱动螺杆泵使用与维护[S].北京:石油工业出版社,2008.
    [39]中国机械工业年鉴编辑委员会,中国通用机械工业协会.中国通用机械工业年鉴[M].北京:机械工业出版社,2005.
    [40]中国机械工业年鉴编辑委员会,中国通用机械工业协会.中国通用机械工业年鉴[M].北京:机械工业出版社,2006.
    [41]中国机械工业年鉴编辑委员会,中国通用机械工业协会.中国通用机械工业年鉴[M].北京:机械工业出版社,2007.
    [42]中国机械工业年鉴编辑委员会,中国通用机械工业协会.中国通用机械工业年鉴[M].北京:机械工业出版社,2008.
    [43]工业和信息化部,发展改革委,科技部,国资委,国家海洋局.海洋工程装备制造业中长期发展规划[Z].北京:工业和信息化部,2012.
    [44]何存兴.液压元件[M].北京:机械工业出版社,1982.
    [45] Ulrich Becher. Twin feed screw[P]. US:6129535,2000.
    [46] Chiu Fan Hsieh, Yii-Wen Hwang, Zhang-Hua Fong. Study on the tooth profile for the screwclaw-type pump[J]. Mechanism and Machine Theory,2008,43:812-828.
    [47]李碧浩.金属双螺杆泵螺杆转子性能分析[D].西安:西北工业大学,2006.
    [48]朱永有.双螺杆油气混输泵机理研究及结构优化设计[D].成都:西南石油大学,2006.
    [49]魏静.差速双螺杆捏合机型线设计理论及螺旋面高效高精度加工研究[D].重庆:重庆大学,2008.
    [50]刑子文.螺杆压缩机--理论、设计及应用[M].北京:机械工业出版社,2003.
    [51]林德.螺杆压缩机[M].北京:机械工业出版社,1986.
    [52]陈金海,王丽霞,陈德伟.双螺杆泵型线的修正[J].流体机械.2006,34(6):41-43.
    [53]宋超.135型螺杆泵螺杆的设计过程及力学性能研究[D].南京:南京林业大学,2005.
    [54]张开峰.密封型双螺杆泵研制报告[J].燕山油化.1985,2:90-99.
    [55]吴仕贵,冯永泉.螺杆泵优化设计方法及应用[J].石油钻采工艺,1997,19(1):73-77.
    [56]庄洋.潜油螺杆泵采油系统中推力轴承的改进设计及强度分析[D].沈阳:沈阳工业大学,2011.
    [57]王喜滨.螺杆泵工艺设计优化及工况诊断[D].大庆:东北石油大学,2012.
    [58]李福天.螺杆泵[M].北京:机械工业出版社,2010.
    [59]高瞻.密封型双螺杆泵型线设计理论及流场特性研究[D].重庆:重庆大学,2009.
    [60] Ohbayashi T, Sawada T, Hamaguchi M, Miyamura H. Study on the performance predictionof screw vacuum pump[J]. Applied Surface Science,2001,768-771.
    [61] Jian Xu. Modeling of wet gas compression in twin-screw multiphase pump[D]. Texas: TexasA&M University,2008.
    [62]陈兆梅.金属定子螺杆泵的研制[D].大庆:大庆石油大学,2007.
    [63]屈文涛,胥掌世,张弘,等.潜油双螺杆泵泄漏模型的理论研究[J].石油钻探技术,2007,35(6):76-78.
    [64] Litvin F L, Feng P H. Computerized design and generation of cycloidal gearings[J].Mechanism and Machine Theory,1996,(7):891-911.
    [65] Litvin F L, Feng P H. Computerized design, generation, and simulation of meshing of rotorsof screw compressor[J]. Mechanism and Machine Theory,1997,(2):137-160.
    [66]曹锋,刑子文,束鹏程.双螺杆转子的受力分析[J].应用力学学报,2002,19(03):90-92
    [67]曹锋,邢子文,束鹏程.双螺杆油气多相流混输泵内部工作机理研究[J].机械工程学报,2001,37(3):73-77.
    [68]刘代中.双螺旋线螺杆泵的流体流动性分析[D].西安:西安交通大学,1997.
    [69]韩永辉.液化石油气双螺杆泵型线理论及实验研究[D].天津:天津大学,2002.
    [70]肖文生,万邦烈.双头双螺杆齿形型线啮合原理[J].石油大学学报,1997,21(6):45-47.
    [71]刘厚林,林洪义.梯形齿双螺杆泵几何参数的优化[J].排灌机械,1997,4:7-11.
    [72]王琼娥.双螺杆真空泵转子型线设计与方针研究[D].杭州:浙江大学,2005.
    [73]杨凯,黄润林.孟氏定律的局限及B-A-B齿形单头双螺杆泵[J].水泵技术,1994,4:11-13.
    [74]《数学在螺杆泵设计与制造中的应用》编写组.数学在螺杆泵设计与制造中的应用[M].科技出版社,1977
    [75] R biger K, Maksoud T M A, Ward J, et al. Theoretical and experimental analysis of amultiphase screw pump, handling gas-liquid mixtures with very high gas volumefractions[J]. Experimental Thermal and Fluid Science,2008,32(8):1694-1701.
    [76] Brandt J U, Muller-Link D, Rohlfing G. Leakage management by a new sealing system fortwin-screw multiphase pumps[C]. In:2nd North American Conference on MultiphaseTechnology,2000,(40):445-455.
    [77] Tatebayashi Y, Tanaka K, Kobayashi T. Pump performance improvement by restraining backflow in screw-type centrifugal pump[J]. Journal of Turbomachinery-Transactions of theASME,2005,127(4):755-762.
    [78] General Electric Company. Screw pump rotors and ring seals for screw pump rotors[P]. US:0040499A1,2010.
    [79]熊伟,冯全科.基于三维的双螺杆压缩机转子干涉研究[J].机械工程学报,2005,41(6):55-59.
    [80]熊伟,冯全科.双螺杆压缩机齿间间隙分布的计算[J].西安交通大学学报,2004,38(7):682-685.
    [81]王炯,徐建宁,屈文涛,等.潜油双螺杆泵间隙的优化设计[J].石油机械,2008,36(8):32-35.
    [82] Ryazantsev V M, Plyasov V V. Determining the forces on the screw in two-and three-bearing two-screw pumps[J]. Russian Engineering Research,2010,30(9):877-885.
    [83] Fong Z H, Huang F C. Evaluating the interlobe clearance and determining the sizes andshapes of all the leakage paths for twin-screw vacuum pump[J]. Proceedings of theInstitution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science,2006,220(4):499-506.
    [84] Fong Z H, Huang F C, Fang H S. Evaluating the inter-lobe clearance of the twin-screwcompressor by the ISO-clearance contour diagram (ICCD)[J]. Mechanism and MachineTheory,2001,36(6):725-742.
    [85] Rabiger K, Maksoud T, Ward J, et al. Development of a finite volume model for thecompressible gap flow inside a screw pump[J]. Schriftenreihe Der Georg-Simon-Ohm-Fachhochschule Nurnberg,2005,30(7):2-19.
    [86] Li H F, Tu J Y, Subic A, et al. Computational methods[M]. German: Springer,2006.
    [87] Egashira K, Shoda S, Tochikawa T, et al. Backflow in twin-screw-type multiphase pump[J].SPE Production&Facilities,1998,13(1):64-69.
    [88] Nakashima C Y, Oliveira S, Caetano E F. Heat transfer in a twin-screw multiphase pump:Thermal modeling and one application in the petroleum industry[J]. Energy,2006,31(15):3415-3425.
    [89]屈文涛,何文涛,赵宁,徐建宁.基于Pro/MM模块的同步式双螺杆泵动态干涉检查[J].石油机械,2008,(02):50-52.
    [90] Dzhanakhmedov A K. Investigation of the destructive effect of two-phase liquid on screwpump lip seals[J]. Journal of Friction and Wear,2008,29(4):310-313.
    [91]曹锋,邢子文,李新宏,束鹏程.一种双螺杆多相流混输泵型线的理论分析[J].西安交通大学学报,1999,33(11):43-46.
    [92] Hosangadi A, Ahuja V, Arunajatesan S. A generalized compressible cavitation model[C]. In:CAV2001: Fourth International Symposium on Cavitation, June20-23, California Instituteof Technology, Pasadena, CA, USA,2001:1-8.
    [93] Fortes-Patella R, Challier G, Reboud J L. Cavitation Erosion Mechanism: Numericalsimulations of theinteraction between pressure waves and solid boundaries[C]. In: CAV2001:Fourth International Symposium on Cavitation, June20-23, California Institute ofTechnology, Pasadena, CA, USA,2001:1-8.
    [94] Mikael Grekula, Goran Bark. Experimental study of cavitation in a kaplan model turbine[C].In: CAV2001: Fourth International Symposium on Cavitation, June20-23, CaliforniaInstitute of Technology, Pasadena, CA, USA,2001:1-8.
    [95] Gerhard Vetter, Wolfgang Wirth, Heiko K rner, Sabine Pregler. Multiphase pumping withtwin-screw pumps--understand and model hydrodynamics and hydroabrasive wear[C].Proceedings of the17th International Pump Users Symposium,2000.
    [96] Aleksieva G, Scharf A, Mewes D. Multiphase transport with conventional and newlydesigned twin screw pumps in a pipeline network[C]. In: Fedsm2007: Proceedings of the5th Joint ASME/JSME Fluids Engineering Summer Conference,2007:779-786.
    [97]王旭,李洪艳等.3G螺杆泵的研制与应用[J].科技与效益,1997,10(5):56-60.
    [98]曹锋.双螺杆油气多相混输泵热力性能和动力特性研究[D].西安:西安交通大学,2001.
    [99]中国创新型企业发展报告编委会.中国创新型企业发展报告2012[M].北京:经济管理出版社,2013.
    [100] Pennacchi P, Sexto L F. Design improvement of screw pump power sources for hydraulicelevators to reduce noise emissions[J]. Noise Control Engineering Journal,2007,55(2):164-171.
    [101] Ryazantsev V M. Radial forces and screw rigidity in a two-screw multiphase pump[J].Chemical and Petroleum Engineering,2001,37(11-12):617-622.
    [102]聂书彬,李福天,吕伟领,冯彦华,郭大泉. B型双螺杆泵型线的改进与密封性分析[J].机电设备,2009,(05):47-51.
    [103] Zhang S W, Zhang Z J, Xu C H. Virtual design and structural optimization of dry twin screwvacuum pump with a new rotor profile[J]. Engineering&Digital Enterprise Technology VII,Pts1and2,2009,16-19/1392-1396.
    [104]曹锋,邢子文,束鹏程.理查森(Richardson)外推法在双螺杆多相混输泵型线设计中的应用[J].水泵技术,1999,(04):15-26.
    [105]陈光亮.一种双螺杆泵的双头螺杆齿形[P].中国, ZL03221865.6,2003.
    [106]通用机械研究所.螺杆泵[M].化工与通用机械参考资料,1974.
    [107]陈行.一种大流量高压的双螺杆泵的螺杆齿形[P].中国, ZL200510060977.3,2006.
    [108]毛海峰,张元勋,张惠等.嵌入式复合齿形螺杆泵[P].中国,201110135916.4,2011.
    [109]孙显生.一种新型摆线两螺杆泵的设计[J].海军工程学院学报,1995,(73):33-37.
    [110]华宣积. GC1双螺杆泵线型[J].高校应用数学学报,1996,11(3):355-360.
    [111]周永旭.具有新齿形型线的双螺杆泵螺杆[P].中国, ZL99201251.1,1999.
    [112]陈行,陈光亮.一种不等齿数的双螺杆泵的螺杆齿形[P].中国, ZL200520015333.8,2005.
    [113]陈行.一种不等齿数不等半径的双螺杆泵的螺杆齿形[P].中国, ZL200620100326.2,2006.
    [114]马仙龙.基于NURBS的双螺杆压缩机转子型线研究[D].无锡:江南大学,2008.
    [115]曾敏.三螺杆泵设计及转子型线优化研究[D].重庆:重庆大学,2008.
    [116]唐倩,高瞻,张元勋.大流量高压螺杆泵[P].中国, ZL200820100374.0,2008.
    [117]李增亮,李风涛.双螺杆泵转子型线啮合特性分析[J].石油机械,2009,37(6):28-32.
    [118]唐倩,张元勋,李忠华等.大流量组合线型螺杆泵[P].中国, ZL201110021489.7,2011.
    [119] Ryazantsev V M, Plyasov V V. Comparison of high-head three-screw and wheel pumpscharacteristics[J]. Khimicheskoe I Neftegazovoe Mashinostroenie,2002,10:23-25.
    [120]李福天.一种新型的双螺杆泵的型线[J].机电设备,1989,(1):1-4.
    [121]张元勋.密封型双螺杆泵转子设计与加工技术研究[D].重庆:重庆大学,2010
    [122]陈金海,陈德伟.双螺杆泵型面加工、刀具设计及计算方法[J].流体机械,2002,30(6):37-39.
    [123]周斌,魏伟锋.国内外螺杆转子精密加工设备综述[J].制造技术与机床,2011,(12):66-70.
    [124]伍贤君.螺杆压缩机转子磨削成形法[J].流体机械,2000,28(7):33-35.
    [125]屈文涛,徐磊,徐建宁.电动潜油双螺杆泵转子设计中的难点探讨[J].石油机械,2006,34(10):29-31.
    [126]沈玉琢.圆弧母线逼近理论在双螺杆泵转子加工中研究及应用[D].沈阳:沈阳工业大学,2002.
    [127]侯慧宁,陈明,胡运彪等.双螺杆泵的改造[J].石油化工设备技术,2003,24(3):32-34.
    [128] Jack Sauls. Application of Manufacturing Simulation for Screw Compressor Rotors WernerSoedel[C]. In: Proceedings of the2000International Compressor Engineering Conference atPurdue. West Lafayette: Purdue University,2000(2):877-884.
    [129]王可,赵文珍,唐宗军等.异形螺杆无瞬心包络铣削技术研究[J].中国机械工程,2001,12(3):294-296.
    [130]陈金海,陈德伟.螺杆泵型面及其加工刀具的计算机辅助设计[J].水泵技术,2001,(05):12-17.
    [131]王维,么健石,蔡光起.异形螺杆铣削过程刀具磨损建模研究[J].工艺与检测,2006,(5):71-74.
    [132]王维,么健石,唐宗军.螺杆包络铣削过程刀具磨损状态的小波分析[J].制造业自动化,2001,23(10):30-32.
    [133]徐建春.基于通用数控系统的异型螺杆加工[J].机械工程师,2003,(8):76-78.
    [134] Stosic N. A geometric approach to calculating tool wear in screw rotor machining[J].International Journal of Machine Tools&Manufacture,2006,46:1961-1965.
    [135] Wu Y R, and Fong Z H. Rotor profile design for the twin-screw compressor based on thenormal-rack generation method[J]. Journal of Mechanical Design,2008,130(4):0426011-0426018.
    [136] Stosic N. Plural Screw Positive Displacement Machines-Having High Pressure IntermeshingFlanks Generated by Cycloidal Parts of One Rack Formation[P]. US,6296461-B1,2001.
    [137] Chiang C J, and Fong Z H. Design of form milling cutters with multiple inserts for screwrotors[J]. Mechanism Machine Theory,2010,45(11):1613-1627.
    [138] Jing W, and Zhang G H. A precision grinding method for screw rotors using CBN gridingwheel[J]. International Journal of Advanced Manufacturing Technology,2010,48(5-8):495-503.
    [139] Fang H S, and Tsay C B. Effects of the hob cutter regrinding and settint on ZE-type wormgear manufacture[J]. International Journal of Machine Tools Manufacture,1996,36(10):1123-1135.
    [140] Litvin F L, Alessandro N, et al. New geometry of face worm gear drives with conical andcylindrical worms: generation, simulation of meshing, and stress analysis[J]. ComputerMethods in Applied Mechanics and Engineering,2002,191:3035-3054.
    [141] Litvin F L, Ignacio G P, et al. Design, simulation of meshing, and contact stresses for animproved worm gear drive[J]. Mechanism and Machine Theory,2007,42(8):940-959.
    [142] Yann H, Miche`le G, and Jean P V. Numerical simulation and optimisation of worm gearcutting[J]. Mechanism and Machine Theory,2006,41:1090-1110.
    [143] Park S Y, Lee H K, et al. A study on the machining of compressor rotors using formedtools[J]. International Journal of Precision Engineering and Manufacturing,2010,11(2):195-200.
    [144] Abdullah, R A, and Shreehah T, Abu A. A new method for machining concave profile of theworms' thread[J]. Research Journal of Applied Sciences, Engineering and Technology,2010,2(6):614-621.
    [145] Giovanni Mimmi, Paolo Pennacchi. Determination of tool profile for the milling ofthree-screw pump rotors[J].Meccanica,1997,32:363-376.
    [146] Stosic N, Smith I K, Kovacevic A. Geometry of screw compressor rotors and their tools[J].Journal of Zhejiang University-Science A (Applied Physics&Engineering),2011,12(4):310-326.
    [147] Stosic N. On Gearing of Helical Screw Compress Rotors[J]. Proceedings of the Institution ofMechanical Engineers Part C-Journal of Mechanical Engineering Science,1998,212(7):587-594.
    [148] Yang and Cheng S. Modeling and Manufacturing of PP-Type Single Screw Compressor[J].Transactions of the Canadian Society for Mechanical Engineering,2007,31(2):219-234.
    [149]赵文珍,孙建涛,段振云.复杂螺旋面加工中刀具干涉检查算法研究[J].沈阳工业大学学报,2006,26(5):481-484.
    [150]赵文珍,杨向红,孙新等.包络法数控加工螺杆的刀具轨迹计算方法[J].组合机床与自动化加工技术,2000,(5):20-25.
    [151]吴沁,芮执元,杨建.复杂螺旋曲面铣削加工刀具的廓形设计[J].组合机床与自动化加工技术,2009,(7):78-81.
    [152]孙兴伟,张萍,王可等.复杂螺旋曲面加工刀具参数的优化设计[J].工艺与装备,2007,(2):61-70.
    [153]吴宝海,张娟,杨建华,等.螺杆压缩机转子成形砂轮刃形计算[J].机械工程学报,2012,48(19):192-198.
    [154] Xu Jian, Feng Quanke, Wu Weifeng. Geometrical design and investigation of a new profileof the three screw pump[J]. Journal of Mechanical Design,2011,133(9):0945011-0945015.
    [155] Wu Yuren, Fong Zhanghua. Improved rotor profiling based on the arbitrary sealing line fortwin-screw compressors[J]. Mechanism And Machine Theory,2008,43(6):695-711.
    [156] Li Yun, Fan Jinwei, Wang Xiaofeng, et al. Design of formed milling cutter for double-helixscrew based on noninstantaneous envelope method[J]. Advances in Mechanical Engineering,2013,2013:1-10.
    [157] Gerrard J H. The Mechanics of the Formation region of Vortices behind Bluff Bodies[J].Fluid Mechanical,1966,25:401-413.
    [158]杨琳,邹正平,李维.低雷诺数下尾迹与分离边界层的相互作用研究[J].航空学报,2007,28(1):58-63.
    [159]黄苗苗,缪泉明,吴维武.不同雷诺数的圆柱绕流比较计算与分析[A].见:第二十三届全国水动力学研讨会暨第十届全国水动力学学术会议,2011.08[C].中国陕西西安,2011:94-99.
    [160]乔渭阳,赵磊,罗华玲,伊进宝,张军胜.低雷诺数涡轮叶片边界层转捩及分离特性测量[J].推进技术,2012,33(6):859-865.
    [161]丁祖荣.流体力学(上册)[M].北京:高等教育出版社,2003,第一版.
    [162]丁祖荣.流体力学(中册)[M].北京:高等教育出版社,2003,第一版.
    [163] Apelt C J, West G S, Szewczyk A A. The effects of wake splitter plates on the flow past acircular cylinder in the range104    [164] Apelt C J, West G S.The effects of wake splitter plates on bluff body flow in the range104    [165] Lu K, Xie Y H, Zhang D, Lan J B. Numerical investigations into the asymmetric effects onthe aerodynamic response of a pitching airfoil[J]. Journal of Fluids and Structures,2013,39:76-85.
    [166] Cimbala J M, Garg S. Flow in the wake of a freely rotatable cylinder with splitter plate[J].AIAA J,1991,29:1001-1010.
    [167] Kiyoung Kwon, Haecheon Choi. Control of laminar vortex shedding behind a circularcylinder using splitter plates[J]. Phys.Fluids,1996,8(2):479-486.
    [168]刘树红,吴玉林.应用流体力学[M].北京:清华大学出版社,2006.
    [169]张力,丁林,唐强.分隔板偏角对圆柱受力和旋涡脱落频率的影响[J].工程热物理学报,2011,32(10):1695-1698.
    [170] Zhang P F, Wang J J, Huang L X. Numerical simulation of flow around cylinder with anupstream rod in tandem at low Reynolds numbers[J]. Applied Ocean Research,2006,28:182-192.
    [171]段志强.低雷诺数下尾部隔板影响圆柱绕流的数值研究[D].重庆:重庆大学,2012.
    [172]史爱明,戎亚楠,杨永年. T型尾翼风洞颤振实验保护装置绕流特性分析[J].实验流体力学,2013,27(4):57-61.
    [173] John C Lin. Review of research on low-profile vortex generators to control boundary-layerseparation[J]. Progress in Aerospace Sciences,2002,38:389-420.
    [174]黄为民,游晖,林向群.前驻点加热圆柱绕流场的实验研究[J].上海机械学院学报,1994,16(3):99-102.
    [175]张进,张彬乾,阎文成,等.微型涡流发生器控制超临界翼型边界层分离实验研究[J].实验流体力学,2005,19(3):58-60.
    [176]吴徐平.热力非均匀下垫面条件下对流边界层特征的水槽模拟研究[D].合肥:中国科学技术大学,2013.
    [177]邱跃统,杨阳,李东升,朱正道.非规则水下结构物边界层参数的数值计算[A].见:第十四届船舶水下噪声学术讨论会,2013.08.22[C].中国重庆,2013:414-418.
    [178] Redha Wahidi, Wing Lai, James P Hubner, Amy Lang. Time-averaged and time-resolvedvolumetric velocimetry measurements of a laminar separation bubble on an airfoil[J].European Journal of Mechanics B/Fluids,2013,41:46-59.
    [179]宋德福,郭涛,朱惠人.脉动流对壁面边界层流动的数值研究[J].科学技术与工程,2013,13(13):3670-3675.
    [180]谢华,张楠,吕世金.水下航行体绕流边界层特征参数建模[A].见:第十四届船舶水下噪声学术讨论会.2013.08.22[C].中国重庆,2013:407-413.
    [181]苑明顺.高雷诺数圆柱绕流的二维大涡模拟[J].水动力学研究与进展,1992, A7(SUP):614-622.
    [182]王亚玲,刘应中,缪国平.圆柱绕流的三维数值模拟[A].见:自然、工业与流动--第六届全国流体力学学术会议论文集[C].上海,2001:118-122.
    [183]胡鹏举,王超,张亮,郑金鑫.翼型俯仰简谐振荡跨声速粘性绕流的数值模拟[J].第十六届全国流体力学数值方法研讨会,2013.08.23,中国北京:142-143.
    [184] Kandula M, Buning P G. Implementation of LU-SGG algorithm and Roe upwinding schemein overflow thin-layer Navier-Stokes code[R]. AIAA94-2357,1994.
    [185]刘树红,吴玉林.应用流体力学[M].北京:清华大学出版社,2006.
    [186]张鸣远.流体力学[M].北京:高等教育出版社,2010.
    [187]屈文涛,胥掌世,张弘,徐磊,徐建宁.潜油双螺杆泵泄漏模型的理论研究[J].石油钻探技术,2007,35(6):76-78.
    [188]陈朝光,唐余勇,吴鸿业.微分几何及其在机械工程中的应用[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [189]吴序堂.齿轮啮合原理[M].北京:机械工业出版社,1982.
    [190]王俊豪,程柳航.离散曲面的等距面生成算法[J].微型电脑应用,2010,26(1):22-25.
    [191]余正生,崔坤鹏,王毅刚.一种有效的等距面构造方法[J].系统仿真学报,2006,18(1):49-51.
    [192] Seshaiah N, Subrata Kr Ghosh, et al. Mathematical modeling of the working cycle of oilinjected rotary twin screw compressor[J]. Applied Thermal Engineering,2007,27(1):145-155.
    [193]王开荣,杨大地.应用数值分析[M].北京:高等教育出版社,2010.
    [194]姚南珣,王炽鸿,陈志杰.数学在刀具设计中的应用[M].北京:机械工业出版社,1988.
    [195]邓定国,束鹏程.回转式压缩机[M].北京:机械工业出版社,1982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700