用户名: 密码: 验证码:
高温高速旋转轴接触式密封材料研制及其密封性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空发动机中的密封、轴承等典型摩擦学部件的滑动摩擦副需要工作在高速、高温、低温和高低温交变等趋近当前材料使用极限的苛刻工作条件下,密封等摩擦副常因表面接触应力过高、摩擦生热加剧及润滑失效而发生磨损加剧现象,从而导致密封失效。为了满足航空发动机向着大推重比、高可靠性和长寿命的趋势发展的需要,密封等零部件的材料特性及其结构需要不断的改进。因此,开展高速高温复合材料摩擦学特性的研究,揭示苛刻工况下复合材料的增强规律和失效机理,以指导新材料的设计和评价,发展航空摩擦学设计规范体系,对推动航空发动机密封技术的发展有重要理论和实际应用价值。
     本文以小型高速发动机泵用接触式动密封的高速高温工况为背景,结合发动机封严密封介质,完成密封材料配方设计,对密封材料在苛刻环境下的磨损行为进行试验研究,研究填料、温度、速度对密封材料的影响规律,优化耐高温高速密封材料配方;建立密封材料磨损模型,研究密封在不同润滑状态下唇口结构、接触特性的变化关系;建立密封泄漏模型,分析结构参数、材料特性对泄漏的影响,研究密封失效原因。
     利用M-200摩擦磨损试验机测试了复合材料在常温低速干摩擦条件下的摩擦学性能,利用冲击强度测量仪、邵氏D硬度计、拉伸试验机测试了复合材料力学性能,通过对基本摩擦学和力学性能分析,初步确定了含有碳纤维、球形石墨和鳞片石墨的动密封材料配方及其成型工艺;研制了高速高温滑动磨损试验装置,利用该试验装置,研究了线速度、温度及增强体含量对复合材料磨损率的影响规律,发现速度、温度和鳞片石墨对磨损率有显著影响。
     利用扫描电子显微镜分析了常温低速、高速、高温高速复合材料磨损表面形貌及断口形貌,在此基础上研究了增强体的增强机理,发现碳纤维提高了复合材料的强度和韧性,同时在高温的条件下,能够起到骨架、阻止基体软化后流动的作用;球形石墨降低了复合材料的摩擦系数;鳞片石墨提高了复合材料的导热性能,增强了复合材料的热稳定性,同时降低了材料基体之间的结合强度。
     通过对Archard粘着磨损公式和基于分形理论的W-M磨损公式的分析,建立了密封材料磨损数学模型,模拟了开关机、加压、稳定运行阶段在不同润滑状态下磨损过程,分析了唇口结构及其接触特性随磨损时间的变化规律。结果表明由结构带来的接触应力不均匀现象消失,高速密封稳定运行阶段处于流体润滑状态。
     通过对“表面效应及泵吸作用”唇形密封机理的研究,建立了密封泄漏及回油的数学模型,分析稳定运行阶段密封泄漏量及回油量随磨损时间的变化规律。同时进行了发动机工况适应性试验研究,在给定的运行时间内,密封未出现明显泄漏。
In aircraft engines, sliding contact tribo-parts in typical tribo-elements (e.g. seals) often run with critical conditions tending to the material limitations, such as high speed, high temperature, low temperature and alternative high-low temperatures. Increases of wear often occur in the tribo-parts due to high contact pressure, intensified frictional heat and lubrication failure in aircraft engines that are trending for high thrust-weight ratio, high reliability and long life. Although materials and structures of seals has been gradually improved to meet requirements of aircraft engines, limitation of the materials has come in the applications in critical conditions. Therefore, researches on tribological performance of high speed and high temperature sliding contact tribo-materials are essential for theoretical and practical development of aircraft engine techniques. Enhance law and failure mechanism of composites under critical conditions can be revealed, severing well to design evaluation of new materials and design system of aerospace tribology.
     In the paper, sealing materials were designed under high speed and high temperature conditions combined with sealing medium of aircraft engines. Researches on wear behaviors of high speed and high temperature sealing composites in aircraft engines were carried out, the wear model of lip structure and leakage model were also established for seal performance and failure, providing theoretical basis to life prolonging and reliability growth of seals in aircraft engines.
     The matrix and fillers contents of composites,filled with CF, SG and FG, were adopted, basic performance and formed technique were tested. The tribologcial performances were tests by M-200test rig, and mechanic performances were tests by impact strength measurement,shore D hardness tester and tensile strength measurement. And components of composite was preliminary determinayed by tests. The temperature-controlling high-speed sliding contact test device, developed for investigating wear behaviors of composites, was designed according to parameters of limiting conditions in aircraft engines. The wear rate of PTFE composites with different sliding speed, temperture and fillers contents were tested by self-maded high-speed sliding contact test rig, results show that velocity, temperature and flake graphite has a significant influence on the wear rate.
     The worn surface and corss-section of composites were examed by SEM. Enhance law and failure mechanism of composites were also researched. Finding that CF can improved the intension and toughness of composites, as function of the skeleton stopping the matrix flow, SG decreased the friction coefficient of composites, FG improved the heat-conductiong properties and thermostabilities, the mechanical strength of composites decreased with FG added.
     Structure and contacted property under different lubrication condition during wear process were simulated by establishing a wear model based on Archard wear model and W-M wear model. Simulation results show that asymmetrical contacted pressure phenomenon diappeared with wear time running. Lubricated condition of high-speed lip seal steady operating period was fluid lubrication.
     Leakage rate and reverse pumping rate were analysed by establishing leakage model and reverse pumping model based on “pumping effect”. Experiment reseach at motor working condition was studied, it seemed fitted simulation well, and has none leakage during given running time.
引文
[1] Braun M J, Pierson H M, Deng D. Thermofluids Considerations and theDynamic Behavior of a Finger Seal Assembly[J]. Tribology Transactions,2005,48:531~547.
    [2] Dinc S, Demiroglu M, Turnquist N. Fundamental Design Issues of BrushSeals for Industrial Applications[J]. ASME Journal of Turbomachinery,2002,124:293~300.
    [3]孙晓萍.刷式密封性能和耐久性试验研究[J].航空发动机,2002(3):37~41.
    [4] Li J, Qiu B, Feng Z P. Experimental and Numerical Investigations on theleakage Flow Characteristics of the Labyrinth Brush Seal[J], ASME Journalof Engineering for Gas Turbines and Power,2012,134(10):1~9.
    [5]迟佳栋,王之栎.前板结构对低滞后刷式密封性能影响分析[J].航空动力学报,2012,27(8):1902-1906.
    [6] Steinefz B M, Hendricks R C. Advanced Seal Technology in Meeting NextGeneration Turbine Engine Goal. NASA Technical Memorandum,1998,206961:1~11.
    [7]王华明.金属材料激光表面改性与高性能金属零件激光快速成形技术研究进展[J].航空学报,2002,23(5):473~478.
    [8] Mackay C G. Laminated Finger Seal[P]. U.S. Patent5071138,1991.
    [9] Proctor M P, Kumar A, Delgado I R. High-speed, High-temperature FingerSeal Test Results[J]. Journal of Propulsion and Power,2004,2(20):321~318.
    [10] Proctor M P, Kumar A, Delgado I R. Leakage and Power Loss Test Results forCompeting Turbine Engine Seals[C]. Proceedings of the ASME Turbo Expo2004,2004,(4):441~451.
    [11] Braun M J, Pierson H M, Kudriavtsev V V. Finger Seal Solid ModelingDesign and Some Solid/Fluid Interaction Considerations[J]. TribologyTransition,2003,46(3):566~575.
    [12] Braun M J, Li H M. An integrated numerical fluid/solid interaction model forfinger seals with a padded low-pressure laminate[C]. Proceedings of theASME/STLE International Joint Tribology Conference,2008:245~247.
    [13] Yue G Q, Zheng Q, Zhu R K. Numerical Simulation of A Padded Finger Seal[C]. Proceedings of the ASME Turbo Expo2008,2008,(7):263~271.
    [14] I.M. Smith, M.J. Braun. A parametric experimental investigation andperformance comparison of four finger seal embodiment[C]. Proceedings ofthe ASME/STLE International Joint Tribology Conference,2008:349~351.
    [15]苏华,陈国定.指尖密封迟滞特性的机理分析[J].机械工程学报,2009,45(5):57~61.
    [16]宗兆科,苏华.圆弧型指尖密封的几何构型特征及结构优化[J].航空学报,2010,31(2):393-399.
    [17]李二圣,陈国定.一种低迟滞低磨损的指尖密封型线构形的研究[J].航空动力学报,2008,23(4):759~764.
    [18]王喜春,苏华,宗兆科.周向收敛性动压式指尖密封的结构优化及其动态性能仿真[J].2011,32(2):360-367.
    [19]郎达学,苏华.表面织构靴底流体动压指尖密封的性能分析[J].航空学报,2012,33(5):1-6.
    [20]王旭,岳国强,张文平,郑群.流体静压型指尖密封数值仿真分析[J].热能动力工程,2007,22(1):15-20.
    [21]顾伯勤,蒋小文,孙见君.机械密封技术最新进展[J].化工进展,2003,22(11):1160~1164.
    [22]冯永海,赵志荣,殷国华,林生义.新型旋转轴唇型密封圈流体动力结构返油能力的研究[J].特种橡胶制品.2000,(21):45~47.
    [23] Bauer F, Haas W. A New Approach to Analyze the Hydrodynamic Flow inSealing Aids-PTFE-Lip Seals with Spiral Grooves[J]. Tribology Transactions,2007,50(3):435~443.
    [24]陈社会.一种新型旋转轴密封-齿形滑环式组合密封[J].机械工程师.2000,(8):19~21.
    [25]周文韬.轴套油封[P].专利号:CN201925478U,2011
    [26]叶荣昌,刘书进,高宏,杨志伊.磁流体制备技术的研究现状及其存在问题[J].机械工程材料,2003,27(3):33-34、50.
    [27]胡志根.柔性PTFE唇片油封的研制与应用[J].汽车工艺与材料,2008,1:64-65.
    [28]张招柱,薛群基,刘维民,沈维长.几种金属氧化物填充聚四氟乙烯复合材料在干摩擦条件下的摩擦磨损性能[J].摩擦学学报,1997,17(1):45-52.
    [29] Aderikha V N, Shapovalov V A. Effect of filler surface properties on structure,mechanical and tribological behavior of PTFE-carbon black composites[J].Wear,2010,268:1455-1464.
    [30]孙庆杰,冯新,汪怀远,史以俊,陆小华.硅灰石形貌和尺寸因素对PTFE复合材料摩擦学性能的影响[J].高分子材料科学与工程,2009,25(5):56-59.
    [31]王强,姜继海.填充聚四氟乙烯复合材料在水润滑条件下的摩擦磨损特性研究[J].摩擦学学报,2007,25(3):289-293.
    [32] Jia Z N, Yang Y L, Chen J J, Yu X J. Influence of serpentine content ontribological behaviors of PTFE/serpentinecomposite under dry slidingcondition[J]. Wear,2010,268:996-1001.
    [33] Xie G Y, Zhuang G S, Sui G X, Yang R. Tribological behavior of PEEK/PTFEcomposites reinforced with potassium titanate whiskers[J]. Wear,2010,268:424-430.
    [34]颜录科,李炜光,寇开昌,徐鸥明,高莉宁.炭纤维/聚四氟乙烯复合材料的摩擦磨损性能[J].高分子材料科学与工程,2010,26(8):76-79.
    [35]肖军,樊会涛,樊来恩.改性炭纤维增强聚四氟乙烯复合材料的制备[J].高分子材料科学与工程,2011,27(4):132-134.
    [36]贾晓梅,王黎钦,应丽霞,古乐. PTFE基复合材料在干摩擦和液氮介质中的摩擦磨损性能研究[J].摩擦学学报,2007,27(2):181-186.
    [37] Aderikha V N, Shapovalov V A. Mechanical and tribological behavior ofPTFE–polyoxadiazole fiber composites.Effect of filler treatment[J]. Wear,2011,271:970-976.
    [38]肖华明,罗文波,吴国忠,赵荣国. PTFE/PA6和PTFE/PA66共混物的吸水性及流变行为[J].高分子材料科学与工程,2007,23(2):179-186.
    [39]张欣涛,廖功雄,冯学斌,靳奇峰,蹇锡高.新型PPESK/聚四氟乙烯共混物的力学和摩擦磨损性能研究[J].摩擦学学报,2007,27(4):330-334.
    [40] Li J. Friction and wear properties of PA6filled PTFE composites under oillubrication[J]. Current Applied Physic,2009,9(6):1445-1449.
    [41] Li J. Effect of PA6content on mechanical and tribological properties ofPA6-reinforced PTFE composites[J]. Plastics Rubber and Composites,2009,38(5):201-205.
    [42]张招柱,薛群基,沈维长,刘维民.金属填充PTFE复合材料的摩擦磨损性能研究[J].高分子材料科学与工程,1999,15(1):68-72.
    [43]汪怀远,冯新,朱艳吉,陆小华.高温耐磨PTFE复合材料的力学性能和摩擦性能[J].高分子材料科学与工程,2010,26(4):97-99、103.
    [44]陈宝书,罗德福,栾道成,詹印,赵正平.纳米CaCO3改性聚四氟乙烯复合材料的性能[J].高分子材料科学与工程,2011,27(7):31-35.
    [45] Su F H, Zhang Z Z, Liu W M. Tribological behavior of hybrid glass/PTFEfabric composites with phenolic resin binder and nano-TiO2filler[J]. Wear,2008,264(3):562-570.
    [46] Burrisa D L, Zhao S, Duncan R, Lowitz J, Perry S S, Schadler L S, Sawyer WG. A route to wear resistant PTFE via trace loadings of functionalizednanofillers[J]. Wear,2009,267(4):653-660.
    [47] Yan Y H, Jia Z N, Yang Y L. Preparation and Mechanical Properties ofPTFE/nano-EG Composites Reinforced with Nanoparticles[C].3rdInternational Conference on Environmental Science and InformationApplication Technology,2011,10:929-935.
    [48] Sarani A, Geyter N D. Surface modification of PTFE using an atmosphericpressure plasma jet in argon and argon+CO2[J]. Surface&CoatingsTechnology,2012,206(8-9):2226-2232.
    [49] Kolska Z, Reznickova A. PTFE surface modification by Ar plasma and itscharacterization[J]. Vacuum,2012,86(6):643-647.
    [50]黄丽,孙正滨. PTFE复合材料力学与摩擦性能的研究[J].复合材料学报,2000,17(4):54-57.
    [51]石琢,杨天兵,傅雅琴. PVC/PNBR橡塑合金对中低频噪音吸音性能的影响[J].浙江理工大学学报,2010,27(1):22-25、78.
    [52] Qi G C, Zhang X H, Li B H, Song Z H, Qiao J L. The study and itsapplication for rubber-modified plastics with higher heat resistance andhigher toughness[J]. Polymer Chemistry,2011,2(6):1271-1274.
    [53] Tavakkoli H, Meibod M P, Frounchi M, Dadbin S. Study and Productionof Silicone Rubber and Polyethylene Alloy[J]. Journal of ThermoplasticComposites Materials,2011,24(5):669-677.
    [54] Vasse C. Developing A Numerial Model to Describe the Mechanical Behaviorof Compressed Expanded Graphite for Valve Steam Sealing[C]. AsmePressure Vessels and Piping Conference,2010,2:81-87.
    [55] Bi W Y, Guan X M, Wan J F, Yang X E. Preparation and Performance Test ofAntistatic agent for Polyurethane Seal Material in mine. Advanced MaterialsResearch,2011,239-242:604-607.
    [56] Gabelli A, Poll G. Formation of lubricant film in rotary sealing contacts, part I–lubricant film modeling[J]. Tribology,1992,114:280–289.
    [57] Poll G, Gabelli A. Formation of lubricant film in rotary sealing contacts, partII–a new measuring principle for lubricant film thickness[J]. Tribology,1992,114:290–297.
    [58] Salant R F, Flaherty A L. Elastohydrodynamic analysis of reverse pumping inrotary lip seals with microundulations[J]. Tribology,1994,116:56–62.
    [59] Salant R F, Flaherty A L. Elastohydrodynamic analysis of reverse pumping inrotary lip seals with microasperities[J]. Tribology,1995,117:53–59.
    [60] Van Bavel P G M,. Ruijl T A M, van Leeuwen H J, Muijderman E A.Upstream pumping of radial lip seals by tangentially deforming rough sealsurfaces[J]. Tribology,1996,118:266–275.
    [61] Hajjam M, Bonneau D. Elastohydrodynamic analysis of lip seals withmicroundulations[C]. Proc. IMechE, Part J: J. Engineering Tribology,2004,218:13–21.
    [62] Hajjam M, Dominique B. Non-Newtonian effects on elastohydrodynamicbehavior of rotary seals[C]. Proc.IMechE, Part J: J. Engineering Tribology,2006,220:79–85.
    [63] Shi F, Salant R F. A mixed soft elastohydrodynamic lubrication model withinterasperity cavitation and surface shear deformation[J]. Tribology,2000,122:308–316.
    [64] Shi F, Salant R F. Numerical study of a rotary lip seal with a quasi-randomsealing surface[J]. Tribology,2001,123:517–524.
    [65] Hajjam M, Dominique B. A transient finite element cavitation algorithm withapplication to radial lip seals[J]. Tribology International,2007,40:1258–1269.
    [66] Stakenborg M J L, Leeuwen H J V. Visco-elastohydrodynamic (VEHD)lubrication in radial lip seals, part1–steady-state dynamic viscoelastic sealbehavior[J]. Tribology,1990,112:578–583.
    [67] Leeuwen H J V, Stakenborg M J L. Viscoelastohydrodynamic (VEHD)lubrication in radial lip seals, part2–fluid film formation[J]. Tribology,1990,112:584–592.
    [68] Leeuwen H J V, Stakenborg M J L. Stakenborg. A new concept in rotary shaftseal lubrication: viscoelastohy-drodynamic (VEHD) lubrication[C]. InProceedings of the17th Leeds–Lyon Symposium on Tribology, Leeds,1991:373–380.
    [69] Lou L, Yamamoto K, Ikeuchi K. Elastohydrodynamic analysis of the sealingperformance of rotary shaft helix lip seals–part1[J]. Tribology,1998,120:476–481.
    [70] Gorri o A, Angulo C, Canales J. Theoretical analysis of the pumping effect ofrotary hydrodynamic seals with elastomeric lips[J]. Tribology International,2007,40:896–905.
    [71] Yang A.S.,Wen C.Y., Tseng L.Y. Analysis of flow field around a ribbed helixseal[J]. Tribol. Int.,2009,42:649–656.
    [72] Wen C.Y., Yang, A.S., Tseng L.Y., Tsai W.L. Flow analysis of a ribbed helixlip seal with consideration of fluid-stucture interaction[J]. Computers&Fluids,2011,40:324-332.
    [73] Shen D, Salant R F. Elastohydrodynamic analysis of the effect of shaftsurface finish on rotary lip seal behavior[J]. Tribology Transation,2003,46:391–396.
    [74] Shen D, Salant R F. An unsteady mixed soft EHL model, with application to arotary lip seal[J]. Tribology International,2007,40:646–651.
    [75] Shen D, Salant R F.. A transient mixed lubrication model of a rotary lip sealwith a rough shaft[J]. Tribology Transation,2006,49:621–634.
    [76] Stephens L S, Sirirpuram R, Hayden R, McCartt B. Deterministicmicroasperities on bearings and seals using a modified LIGA process[J].Engineer Gas Turbine Power,2004,126:147–154.
    [77] Kortikar S N, Stephens L S, Hadinata P C, Siripuram R B. Manufacturing ofmicroasperities on thrust surfaces using ultraviolet photolithography[C].InProceedings of the ASPE Winter Topical Meeting,2003:148–154.
    [78] Hadinata P C, Stephens L S. Soft elastohydrodynamic analysis of radial lipseals with deterministic microasperities on the shaft[J]. Tribology,2007,129:851–859.
    [79] Jia X H, Jung S, Salant R F. Numerical simulation and experimental study ofshaft pumping by laser structured shafts with rotary lip seals[J]. TribologyInternational,2011,44:651-659
    [80] Sui H, Pohl H, Schomburg U. Wear and friction of PTFE seals[J]. Wear,1999,224:175-182.
    [81]董慧芳,刘焜,王伟,刘小君.激光加工微凹坑轴表面对唇形密封泵吸及摩擦特性的影响[J].摩擦学学报,2012,32(2):126-132.
    [82]李建国,丁玉梅,杨卫民,谭晶.油封动密封的有限元分析[J].润滑与密封,2007,32(1):96-98.
    [83]周洋,刘小君,王伟,刘焜.唇式密封圈摩擦特性及泵吸效应的试验研究[J].润滑与密封,2011,36(8):74-78.
    [84]陈国定, H. Haiser, W. Haas, G. Lechner.动力密封接触表面粗糙效应的有限元分析-静态接触有限元模拟[J].西北工业大学学报,2001,19(1):136-139.
    [85]陈国定, H. Haiser, W. Haas, G. Lechner.动力密封接触表面粗糙效应的有限元分析-动态接触有限元模拟[J].西北工业大学学报,2001,19(2):209-211
    [86]周琼,李正美,唐建平,安琦.唇形密封圈润滑性能的数值模拟[J].华东理工大学学报(自然科学版),2012,38(1):127-132.
    [87] Larsen T, Andersen T L, Thorning B, Vigild M E. The Effect of ParticleAddition and Fibrous Reinforcement Onepoxy-Matrix Composites for SevereSliding Conditions[J]. Wear,2008,264:857~868.
    [88] Shi Y J, Feng X, Wang H Y, Liu C, Lu X H. Effects of Filler Crystal Structureand Shape on The Tribological Properties of PTFE Composites[J]. TribologyInternational,2007,40:1195~1203.
    [89] Samyn P. Tribophysical Phenomena on Sliding Surfaces of PolyesterComposites Evaluated by Spectroscopic and Thermal Analysis[J]. TribologyLetters,2006,24(3):229~235.
    [90] Li M, Jeong Y G. Influences of exfoliated graphite on structures, thermalstability, mechanical modulus, and electrical resistivity of poly(butyleneterephthalate)[J]. Journal of Applied Polymer Science,2012,125:532-540.
    [91] Lai J, Guo H J, Wang Z X, Li X H, Zhang X P, Wu F X, Yue P. Preparationand characterization of flake graphite/silicon/carbon spherical composite asanode materials for lithium-ion batteries[J]. Journal of Alloys andCompounds.2012,530:30-35.
    [92]谭清明.聚四氟乙烯复合材料烧结过程温度控制研究[J].润滑与密封.2009,34(7):121-123.
    [93]汪萍.聚四氟乙烯的烧结工艺技术[J].工程塑料应用.2001,19:19~21.
    [94]李云雁,胡传荣.实验设计与数据处理(第二版)[M].北京:化学工业出版社,2008:184-196.
    [95] Price D M, Jarratt M. Thermal conductivity of PTFE and PTFEcomposites[C].28th North-American-Thermal-Analysis-Society Conference,2000,392:231-236.
    [96] Wen C Y, Jian J L, Lee C Y, Kuo W S. Design Methodology for theMinimization of Contact Width between Pressure Lip Seal and Shaft[J].Journal of the Chinese Society of Mechaniacl Engineers,2011,32(5):419-428.
    [97] Lee C Y, Lin, C S, Jian R Q, Wen C Y. Simulation and experimentation on thecontact width and pressure distribution of lip seals[J]. Tribology International,2006,39(9):915-920.
    [98] Bignardi C, Bertetto A M, Mazza L. Photoelastic measurements andcomputation of the stress field and contact pressure in a pneumatic lip seal[J].Tribology International,32(1):1-13.
    [99] Avila da C R A, Pintaude G. Uncertainty analysis on the wear coefficient ofArchard model[J]. Tribology International,2008,41(6):473-481.
    [100] Zhou G Y, Leu M C, Blackmore D. Fractal Geometry Model For WearPrediction[J]. wear,1993,170(1):1-14.
    [101] Deleanu L, Birsan I G, Andrei G, Ripa M, Badea P. PTFE composites andwater lubrication-I. Tribogical characterization[J]. Materiale Plastic,2007,44(1):66-71.
    [102] Zhang Z Z, Liu W M, Xue Q J, Shen W C. Friction and wear characteristicsof PTFE composites filled with metal oxides under lubrication by oil[J].Journal of Applied Polymer Science,1997,66(1):85-93.
    [103]郝俊英,翁立军,孙嘉奕,刘维民.固体-油脂复合润滑Ⅰ:二硫化钼膜在干摩擦及空间用油脂润滑下的摩擦学性能[J].摩擦学学报,2010,30(2):105-110.
    [104] Dowson D, higginson G. Theory of Roller Bearing Lubrication and Failure ofRolling Contacts[C]. Pro. of Inst. Mech. Eng.,1963,117.
    [105] Hesketh J, Hu X M, Dowson D, A. Neville. Tribocorrosion reactions betweenmetal-on-metal and metal-on-polymer surfaces for total hip replacement[C].Proceedings of the Institution of Mechanical Engineers, Part J-Journal ofEngineering Tribology,2012,226:564-674.
    [106] Sun F G, Yu T X, Cui W M, Zong X. The Seal Reliability Analysis of OringSeals[C]. Proceedings of20098th International Conference on Reliablity,Maintainablity and Safety,2009,1-2:1293-1296.
    [107] Zhang Z, Chen X. Multiaxial ratcheting behavior of PTFE at roomtemperature[J]. Ploymer Testing,2009,28:288-295.
    [108] Kletschkowski T, Schomburg U, Bertram A. Endochronic viscoplasticmaterial models for filled PTFE[J]. Mechanics of Materials,2002,34:795-808.
    [109] Kletschkowski T, Schomburg U, Bertram A. Computational analysis of PTFEshaft seals[J]. Computational Materials Science,2005,32:392-399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700