用户名: 密码: 验证码:
环境振动试验若干技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境振动试验是考核、评定产品对于耐振动环境适应性的一种重要研究手段。振动试验实施过程中,振动试验条件的归纳及确定、夹具设计和传感器布置等条件直接影响产品耐振动能力考核的真实性、可靠性、有效性。本文针对环境振动试验中存在的若干问题,对环境振动试验方法及技术进行了以下几个方面的研究:
     (1)为了对设备振动环境的实测数据进行处理,从而确定环境振动试验条件,本文从理论出发,推导出振动环境实测数据归纳的基本原理,然后,依据参数的无偏估计理论,在不依靠人为给定置信度的条件下,推导出给定概率下无偏的随机数据实测归纳方法,并运用于国内某设备安装平台振动环境数据的处理,得到振动环境下实测归纳曲线。
     (2)在获取试件振动环境实测谱后,为了快速获得准确的加速因子,本文基于对Palmgren-Miner疲劳累积损伤原理和随机振动应力作用下累积损伤分布特点的分析,推导出随机振动应力作用下的加速因子计算方程,同时结合加速寿命试验理论进行了样件的加速寿命试验,通过对试验数据的Weillbull模型验证和最小二乘数据处理,获得了样件的振动加速因子。
     (3)在试验实施过程中,为了快速获得最优的加速度控制传感器布置位置,本文依据电动振动台多点控制原理和夹具传递函数特性,建立了传感器布置优化计算模型,然后,以某夹具为例建立有限元模型,利用Patran和Nastran软件求出频响函数,并根据所建优化模型求出传感器最优布置位置,最后通过夹具振动试验测试传力点响应谱。结果表明优化布置时所测传力点响应加速度谱密度偏离度明显小于传统凭经验布置时测得的响应加速度谱密度偏离度。
     (4)为了解决振动试验过程中夹具传递给试件的振动量级的输入严重不均匀和偏离参考谱加速度均方根值的问题,本文在分析电动振动台振动试验过程和夹具频响函数特性的基础上,建立了多点控制情况下基于响应加速度谱密度偏离度最小的夹具优化计算模型,然后以某夹具为例,利用Patran和Nastran软件计算夹具的传递函数,根据所建优化模型求取夹具优化设计参数,最后通过对优化前后的数据进行比较及振动试验测试,证明该优化方法是可行的和实用的。
     (5)在振动试验夹具设计和传感器布置仿真计算过程中,为了能获得较准确的结合部仿真模型,本文通过运用赫兹接触理论和Greenwood—Williamson模型推导出实际接触面积计算公式,建立了实际接触面积内有限元单元节点刚性连接的结合部建模理论,同时以某印制板夹具组件为例,建立夹具有限元仿真模型,并通过实测模态和仿真模态的非平动前四阶模态的比较和MAC计算,证明所建夹具组合模型能够满足工程计算需要。
Ambient vibration test is an important research means in the assessment and evaluation ofproduct vibration environmental adaptability. In the process of test implementation, determination andinduction of vibration test conditions、fixture design and layout of sensors or other conditions directlyaffect the authenticity、reliability and validity of the product vibration resistance ability evaluation.This paper focus on the existing problems of environmental vibration test to study in the followingaspects, including:
     (1) In order to determine the vibration test conditions with processing of the measured data ofequipment vibration environment, the basic principle in induction of random environment measuredata was deduced from the theory. Then, based on equation of cumulative of frequency function underthe normal school, combining with the theory of unbiased evaluation, a new method was derived forinduction of random environment measure data under the given probability value. Consequently, themethod was used for dealing with data coming form an equipment, and an induction curve wasconcluded from the natural measure data of vibration environmnet.
     (2) Determining the acceleration factor which describes the equivalent relation between the timeand vibration level is one of the important steps during the vibration durability test. In order to obtainthe acceleration factor, based on the law of palmgren-miner fatigue cumulative damage and the theoryof cumulative damage under stationary narrow and wide band stress, the calculation equation ofacceleration factor is derived. The accelerated life equation, combining with the accelerated lifetesting theory, is used to design the prototype of the accelerated life test. The test is implemented, thenthe test data is verified by weillbull model and processed by least square method, finally the specimenmaterial vibration acceleration factor can be obtained.
     (3) In order to obtain the optimal acceleration sensor placing location, according to the electricvibration table multi-point control principle and the characteristic of transfer function, a sensorplacement optimization calculation model was established. A fixture was taken as an example toestablish it’s finite element model, nastran software was used to get the transfer function. Then anoptimal acceleration sensor placing location was obtained according to the optimization modelpreviously mentioned. Finally, the response of the connection place between the fixture and a testsample was measured with the fixture vibration test. The test results indicated that the mean squaredeviation of the response acceleration obtained with the optimization method is significantly smallerthan that with the traditional method.
     (4) In order to solve the phenomenon of the severely uneven vibration magnitude passed by thetest fixture to the Specimen and deviation from the reference spectral acceleration rms value,according to the electric vibration table multi-point control principle and the characteristics of afixture frequency response, a fixture design optimization model was established. Taking a specimenfixture design as an example, the fixture FRF value was calculated by Nastran software, then theoptimal design parameters of fixture was obtained according to the optimization model previouslymentioned. Optimization results indicated that the mean square deviation of response accelerationand the acceleration rms variation range obtained the optimization method are all significantly smallerthen that with the traditional method, while the vibration test results show that the variation range ofthe acceleration rms measured on the transfer point in the vibration test is basically the same with theresult coming form the optimization calculation.
     (5) In order to obtain the combined simulation model accurately in the design of fixture andlayout of sensors in the process of simulation, the calculating formula of real contact area in thecombination party was inferred with the Hertz contact theory and Greenwood-Williamson model.Then, the theory of finite element nodal rigid connecting mode was established. A clamp assembly ofa printed circuit board was taken as an example to establish the finite element simulation model, bycomparing the non translational first four modes measured modal with the modes of the simulationcalculation and calculating the MAC value, the fixture assembly model is demonstrated that it is rightand can meet the engineering need.
引文
1HB/Z87-84,飞机飞行振动环境测量数据的归纳方法[S].北京:中国航空技术综合技术研.
    2GB10593.3-90,电工电子产品环境参数测量方法,振动数据处理和归纳方法[S].北京:中国标准出版社,1990.
    3MIL-STD-810F,环境工程考虑和实验室试验[S].
    4徐明.振动环境测量数据归纳的统计容差法[c].武器装备环境工程技术交流研讨会,北京:中国航空综合技术研究所,2002.
    5GJB/Z126-99,振动、冲击环境测量数据归纳方法[S].北京:中国标准出版社,1999.
    6丰志强,阎楚良,张书明.飞机机载设备振动环境谱的数据处理与编制[J].航空学报,2006,27(2):289~293.
    7袁宏杰,罗敏,姜同敏.随机振动环境测量数据归纳方法研究[J].航空学报,2007,28(1):289~293.
    8朱位秋.随机振动.科学出版社,1998,476~573.
    9周敏亮,陈忠明.飞机结构的随机振动疲劳分析方法.飞机设计,2008,28(2):46~50.
    10梁永发,姜辉琼.三起振动失效带来的启示[J].特种设备安全技术,2006(2):32~33.
    11Miner M A. Cumulative damage in fatigue[J]. J Appl Mech,1945,12(3):A159~A164.
    12Palmgnren A. Die Lebensdauer von Kugellagem. Verfahrenstechinik,1924,68:339~341.
    13Langer BF. Fatigue failure from stress cycles of varying amplitude. J Apple Mech,1937,59:A160~AI62.
    14Marco S M,Starkey W J. A concept of fatigue damage. Trans ASME,1954,76:627~632.
    15Henry DL. A theory of fatigue damage accumulation in stee1. Trans ASME,1955,77:913~918.
    16Levy J.C. Cumulative damage in fatigue, Engineer,1955,179:724~726.
    17Choukairi F Z,Barrault J. Use of a statistical approach to verify the cumulative damage lawsin fatigue.Int J Fatigue,1993,15(2):145~149.
    18Birnbaum Z W,Sauders S C. A probabilistic interpretation of Miner’s rule. SIAM,JAppl Math,1968.16(3):637~852.
    19Sauders S C. A probabilistic interpretation of Miner’s rule, SIAM.J Appl Math,1970,19(1):251~265.
    20Kececiogiu D, Chester L B,Gardner E D. Sequential cumulative fatigue reliability,ProcR,M Symp,Los Angeles,CA,1974:533~539.
    21Ang H S,Tang W H. Probability Concepts in Engineering Planning and Design Ⅱ,NewYork,John Wiley&Sons,1984:333~383.
    22Kececioglu D. Reliability analysis of mechanical components and systems. Nuclear Engineerring and Design,1972,19(2):259~290.
    23Kececiogiu D,Probabilistic design for reliability and their data and research requirements.Proc Failure Prevention and Reliability,ASME,1978:285~399.
    24Carter A S. Mechanical Reliability.2nd ed,London:Macmillan Education,1986:102~103.
    25Spoormaker J L,Reliability prediction of hairpin type spring. Proc1977Annual Reliabilityand Maintainability Symposium,Philadelphia,1977:142~147.
    26倪侃,高镇同.二维等幅加载下疲劳可靠性分析与P-Sa-Sm-N曲面簇.强度与环境,1996(4):8~15.
    27Bognaaoff J L. A new cumulative damage model,part1. J Appl Mech,1978,45(2):248~250.
    28Bognanoff J L. Krieger W. A new cumulative damage model,part2. J Appl Mech,1978,45(2):251~257.
    29Bognaaoff J L. A new cumulative damage model,part3. J Appl Mech1978,45(4):733~739.
    30Bognaaoff J L,Kozin F. A new cumulative damage model,part4. J Appl Mech,1980,47(1):40~44.
    31Bognaaoff J L,Kozin F. On nonstationary cumulative damage mode1. J Appl Mech,1982,49(1):37~42.
    32Tanaka S,Akita S. On the Miner’s damage hypothesis in notched specimen with emphasison scatter of fatigue life.Engineering Fracture Mechanics,1975,7:473~480.
    33Tanaka S,Ichikawa M,Akita S. Statistica1aspects of the fatigue life of nickel silver wireunder two level loading. Int J Fatigue,1980,2(4):159~163.
    34Shimokawa T,Tanake T.A statistical consideration of Miner’s rule. Int J Fatigue.1980,2(4):165~170.
    35Wallgfen G. Fatigue test with stress cycles of varying amplitude. FFA Reports,28,Stockholm,Aeronautical Research Institute of Sweden,1949.
    36Buch A. Fatigue trength Calculation. Trans Tech Publications,1988:173~177.
    37SAE.Fatigue Design Handbook. AE-10.2end ed. SAE,1988:238~240.
    38Iehikawa M. An extension of the reliability based design method for variable amplitudefatigue,Reliability Engineering,1987(17):181~187.
    39Manson S S, Halford G R. Reexamination of cumulative fatigue damage analysis,Engineer Fracture Mechanics,1986,25(5):539~571.
    40Miller K J,Ibrahim M E. Damage accumulation during initiation and short crack growthregimes. Fatigue of Engineering Material and Structures,1981,4(3):263~277.
    41Hashin Z. Reinterpretation of the Palmgren-Mine r rule for fatigue life prediction. J ApplMech,1980,47(2):324~328.
    42Hashin Z. Statistical cumulative damage theory for fatigue life prediction. J Appl Mech,1983,50(3):571~579.
    43Hashin Z,Rotem A. A cumulative damage theory of fatigue failure.Materials Science andengineer,1978,34:147~161.
    44Kutt T V,Bieniek M P. cumulative damage and fatigue load prediction. AIAA J,1988,26(2):213~219.
    45Wirsching P H,Torng T Y,Martin Ws. Advanced fatigue reliability analysis. Int J Fatigue1991,13(5):389~394.
    46Altus E. Fatigue,fractals,and a modified Miner’s rule. J Appl Mech,1991,58(3):571~579.
    47Kopnov V A.A randomized endurance limit in fatigue damage accumulation models. FatFract Enger Mater Struct,1993,l5(10):1041~1059.
    48Raiher V L,Some consequence from the two parameters model of durability scatterUchenve zapiski CAHI,1982,13(1):130~133(in Russian).
    49Oh K P. The prediction of fatigue life under random loading:a diffusion model, Int JFatigue,1980,(2):99~104.
    50Lin Y K,Yang J N. A stochastic theory of fatigue crack propagation. AIAA,1985,23(1):117~122.
    51Sobczyk K,Modeling of random fatigue crack growth.. Eng Frac Mech1986,24(4):609~623.
    52Tsurui A,Ishika wa H. Application of the Fokker–Planck equation to a stochastic fatiguecrack growth mode1. Structure Safety,1986,4(1):15~29.
    53Newby M. Estimation of Paris-Erdogan law parameters and the influence of environmentalfactors on crack growth,Int J Fatigue1991,13(4):291~301.
    54Zhu W Q,Lie Y, A stochastic theory of cumulative fatigue damage. Prob Eng Mech,1991,6(34):222~227.
    55Golos K,Ellyin F.Generalization of cumulative damage criterion to multi level cyclicloading. Theor Appl Frac Mech,1987(7):169~176.
    56Wirschin P H. Fatigue reliability for offshore structures. J Strut Eng,1984,l00(10):2349~2356.
    57倪侃,张圣坤,钱仍绩.结构构件疲劳损伤累积的可靠性分析.中国造船,1997(4):53~60.
    58倪侃,张圣坤. Reliability analysis of fatigue damage accumulation under variableamplitude loading. Proceedings of the Eigth(1998)Offshore and Polar EngineeringConference,Montreal Canada,May24~29,1998. Vol IV:455~460.
    59倪侃.随机疲劳累积损伤理论研究进展.力学进展,1999,29(1):43~65.
    60Julius s,Bendat. Probability functions for random responses:prediction of peaks. fatiguedamage and catastrophic failures,NASA CR-33,Apr1964.
    61周传月,郑红霞,罗慧强等,MSC. Fatigue疲劳分析应用与案例.科学出版社,2005.
    62Dave S,Steinberg. Vibration analysis for electronic equipment,3rd,2000.
    63Roberto Tovo. Cycle distribution and fatigue damage under broad-band random loading,Intenational Journal of Fatigue2002,24:1137~1147.
    64王明珠.结构振动疲劳寿命分析方法研究[D].南京:南京航空航天大学航空宇航学院,2009:1~114.
    65Osgood C C.Fatigue design[M]. Oxford:Pergamon Press,1982:1~523.
    66CRANDALL S H.Random vibration[M].New York Technology Press of MIT and John,Wiley and Sons,1958:1~423.
    67CRANDALL S H,MARK W D. Random vibration in mechanical systems[M]. New York:Academic Press,l963:~l66.
    68姚起杭.谈谈加速振动试验问题[J].航空标准与质量,1975(6):7~18.
    69姚起杭,姚军.工程结构的振动疲劳问题[J].应用力学学报,2006,23(1):12~17
    70刘文光,陈国平,贺红林等.结构振动疲劳研究综述工程设计学报.2012,19(1):1~7.
    71Yeh J T,Hong H S. Effect of branch frequency on dynamic fatigue behavior of slowlynotched polyethylene polymers[J]. Journal of Polymer Research,1994,4(1):375~383.
    72Dentsoras A J,Kouvaritakis E P. Effects of vibration frequency on fatigue crack propagationof apolymer at resonance[J]. Engineering Fracture Mechanics,1995,50(4):467~473.
    73Valanis K C. On the effect of frequency on fatigue life [c]. Presented at the winter annualmeeting of the American Society of Mechanical Engineering,Washington D C, November,1981:15~20.
    74Shih Y S,Chen J J. The frequency effect on the fatigue crack growth rate of304stainlesssteel[J]. Nuclear Engineering and Design,1999,191:225~230.
    75毛罕平,陈翠英.考虑动应力时加载频率对裂纹扩展速率的影响[J].江苏工学院学报,1993,14(6):26~33.
    76沈为,高大兴,蒋松山等.加载频率对疲劳裂纹扩展速率的影响[M].武汉:湖北人民出版社,1980,2:186~195.
    77George T J,Seidt J,Shen M H,et a1. Development of a novel vibration-based fatigue testingmethodology I-J3. International Journal of Fatigue,2004,26(2):477~486.
    78Schlums DH, Dual J High. resolution crack growth measurements in vibrating b-eams[J].Fatigue and Fracture of Engineering Material and Structural,1997,20(7):1051~1058.
    79Sun X,Horowitz R,Komvo poulos K. Stability and resolution analysis of a phase locked loopnatural frequency tracking systems for MEMS fatigue testing[J]. Journal of DynamicSystems,Measurement and Control,2002,124(12):599~605.
    80Wolfgang S. Tracking of resonance frequencies of vibrating beams by phase-lockedloops(PLL)[c].Proceeding of the seventh inter national symposium on the vibrations ofcontinuous system:Zako pand,Poland,2009,7:57~60.
    81COLAKOGI U M. Measurement and analysis of damping factor in engineering materialsto assess fatigue damage[D]. Washington D.C,Washington University,200l:1~68.
    82褚卫华,李树成.振动环境下焊点疲劳失效与裂纹扩展分析.强度与环境,2012,39(4)56~63.
    83ISTA3Series General Simulation Performance Test Procedure. Test Procedure3E,2009:WWW.ista.org.
    84曾春华,郑十践.疲劳分析方法及应用[M].北京:国防工业出版社,1991:1~421.
    85熊俊江.疲劳断裂可靠性工程学[M].北京:国防工业出版社,2008:l~192.
    86肖寿庭,杜修德.飞机结构振动疲劳问题[c].第六届全国疲劳学术会议论文集(下),,厦门:[出版者不详].
    87航空空工业部630研究所. GJB67.8—1985军用飞机强度和刚度规范(振动)[s].[出版社不详].1985:1~12.
    88GREEN C.振动手册[M].北京,[出版社不详],1982:1~290.
    89何泽夏.振动与疲劳[J].火箭推进,1994(3):14~20.
    90WOZNEY G P. Resonant vibration fatigue testing [J]. Experimental Mechanics,1962,2(1):1~8.
    91HARRIS CM,CREDE C E,UNBOLTZ K. Shock and vibration hand book[M]. New York,Mc Graw Hill Book Co,961:66~69.
    92RYBAIOV N E,GUI VE. Investigation on the dynamic fatigue of composite polymermaterial [J]. Mehanika Polimerov,1965,1(5):90~94.
    93MARI OFF R H. Resonant fatigue testing of riveted joints[J]. Experimental Mechanics,1979,20(2):37~43.
    94OLDYREV PP,APINI S. On the influence of loading frequency on the multi cycle fatigueof organ plastics [J]. Mekhanika Kompozit Material,1983,4(3):629~633.
    95DAMIR A N,EI KHATI B A,NASSEF G.Prediction of fatigue life using modal analysis forgrey and ductile cast iron [J].International Journal of Fatigue,2007,29(26):499~507.
    96FOONG C H,WIERCI GROCH M,DEANS W. An experimental rig to investigate fatiguecrack growth under dynamic loading [J]. Meccanica,2003,38(1):19~31.
    97FOONG C H,PAVIOVS KAIA E,WIERCIGROCHM,et a1. Chaos caused by fatigue crackgrowth[J]. Chaos, Solitons and Fractals,2003,5(16):651~659.
    98FOONG C H,WIERCIGROCH M,DEANS W F. Novel dynamic fatigue testingdevice: design and measurements[J].Measurement Science and Technology,2006,17(8):22l8~2226.
    99GEORGE T J,SEIDT J,SHEN M H,et a1.Development of a novel vibration based fatiguetesting methodology[J]. International Journal of Fatigue,2004,26(5):477~486.
    100GEORGE T J,SHEN M H,ONOME SE,et a1. Goodman diagramate vibration based fatiguetesting[J]. Transaction of the ASME,2005,127(1):58~64.
    101SCHLUMS D H,DUAL J. High resolution crack growth measurements in vibrating beams[J].Fatigue and Fracture of Engineering Material and Structural,1997,20(7):1051~1058.
    102Sunx, HOROWITZ R,KOMVOPOULOS K. Stability and resolution analysis of aphase-locked loop natural frequency tracking systems for MEMS fatigue testing[J]. Journal ofDynamic Systems,Measurement,and Control,2002,124(12):599~605.
    103SHIRYAYEV O V,SLATER J C.Control of resonant fatigue tests in the existence ofbifurcations[J].ISABE,2003,1l93:1~6
    104WOLFGANG S. Tracking of resonance frequencies of vibrating beams by phase-lockedloops(PLL)[c]. Proceeding of the Seventh International Symposium on the Vibrations ofContinuous System,Zakopand,Poland,2009:57~60.
    105肖寿庭,杜修德. LY12CZ铝合金悬臂梁动态疲劳s-N曲线的试验测定[J].机械强度,1995,17(3):22~24.
    106高金贺.飞机结构联接件振动损伤特性研究[D].沈阳:沈阳航空工业学院,2006:1~58.
    107邵闯,葛森.材料高频振动环境疲劳实验的设想[J].结构强度研究,2009(2):11~15.
    108韩清华,韩飞,王海英等.飞机平尾振动疲劳试验分析[J].结构强度研究,2009(2):4~7.
    109DENTSORAS A J,DIMAR0G0NAs A D. Resonance controlled fatigue crack propagation in abeam under longitudinal vibrations[J]. International Journal of Fracture,l983,23(1):15~22.
    110DENTSORAS A J, DIMAROGONAS A D. Fatigue crack propagation in resonatingstructues[J]. Engineering Fracture Mechanics,1989,34(3):381~386.
    111DENTSORAS A J,KOUVARITAKIS E P. Effects of vibration frequency on fatigue crackpropagation of a polymer at resonance[J]. Engineering Fracture Mechanics,l995,50(4):467~473.
    112COLAKOGI U M. Measurement and analysis of damping factor in engineering materials toassess fatigue damage[D]. Washington D.C,Washington University,200l:1~68.
    113VALANIS K C. On the effect of frequency on fatigue life [C]. The Winter Annual Meeting ofthe American Society of Mechanical Engineering. Washington D.C,1981:15~20.
    114WHAlE P W,CHEN P S,SMITH G M. Continuous measurement of material dampingduring fatigue tests[J].Experimental Mechanics,1984,25(12):342~348.
    115SANILTURK K Y,IMREGUN M.Fatigue life prediction using frequency responsefunction[J].Journal of Vibration and Acoustics,1992,114(7):381~386.
    116BISHOP N W M.Vibration fatigue analysis in finite element environme nt [C].TheVi Encuentrodel Group Espanol Hannza. Vibration fatigue assessment finite elementanalysis and test correlation[D]. Windsor:University of Winds,2005:1~153
    117SHIH Y S,CHEN J J. Analysis of fatigue crack growth on a cracked shaft [J]. InternationalJournal of Fatigue,1997,19(6):477~486.
    118SHIH Y S,Wu G Y. Effect of vibration on fatigue crack growth of an edge crack for arectangular plate [J]. International Journal of Fatigue,2002,24(5):557~566.
    119Wu G Y,SHIH Y S. Dynamic instability of rectangular plate with an edge crack[J].Computers and Structures,2005,84(1):1~10.
    120姚起杭,姚军.结构振动疲劳的工程分析方法[J].飞机工程,2006(1):39~43.
    121姚起杭,姚军.防止振动疲劳破坏的设计技术[J].飞机工程,2006(3):9~18.
    122姚军,姚起杭.结构随机振动响应的简化分析[J].应用力学学报,2002,19(1):103~105.
    123张积亭,周苏枫.飞机典型构件振动疲劳寿命分析[J].机械科学与技术,2002,21(4):38~41.
    124曹明红,齐丕骞,葛森.涉及双模态应力响应谱的振动疲劳寿命估算方[J].结构强度研究,2007(1):22~27.
    125周敏亮,陈忠明.飞机结构的随机振动疲劳分析方法[J].飞机设计,2008,28(2):46~49.
    126金奕山.宽带随机振动结构疲劳寿命预估问题的理论研究[D].北京:北京航空航天大学,,2004:1~107.
    127孙伟.结构振动疲劳寿命估算方法研究[D].南京:南京航空航天大学航空宇航学院,2005:1~-48.
    128王明珠,姚卫星,孙伟.结构随机振动疲劳寿命估算的样本方法[J].中国机械工程,2008,19(8):972~975.
    129WANG R J, SHANG D G. Fatigue life prediction based on natural frequency changes forspot welds under radom loading [J]. International Journal of Fatigue,2009,31(2):361~366.
    130LIFSHITZ J M,ROTEM A. Determination of reinforcement unbonding of composites by avibration technique[J]. Journal of Composite Materials,l969,3(3):412~423.
    131RIZOS P F,ASPRAGATHOS N,DIMAR0GoNAs A D. Identification of crack location andmagnitude in a cantilever beam from the vibration modes[J]. Journal of Sound andVibration,l990,138(3):381~388.
    132PANTEILOU S D,DIMAROGONAS. Thermodynamic damping in porous materials withellipsoidal cavities[J]. Journal of Sound and Vibration,1997,201(5):555~565.
    133MIL-A-8860B(AS)系列美国军用规范飞机强度和刚度[s].航空航天工业部飞行试验研究中心飞机强度规范研究室翻译[出版社不详].
    134David S hires.Time Compression of Random Vibration Tests [J]. ISTA Packaging Forum:Florida,2010.
    135航空空工业部630研究所.GJB67.8—1985军用飞机强度和刚度规范(振动)[s].[出版社不详].1985:1~12.
    136秦桂骧.加速振动及其在标准设计中的应用[J]环境技术,1984(5):43~44.
    137秦桂骧译.随机振动加速试验依据.航空标准化与质量,1981(3):53~54.
    138LANNE Christian. Mechanical Vibration and Shock Ⅳ Fatigue Damage Volume[M].HermesPentonLtd,2002:86~88.
    139朱学旺.疲劳损伤等效在随机振动试验中的应用.装备环境工程,2007,4(1):11~13.
    140US Department of the Air Force,Military standard environmental test methods for aerospaceand ground equipment,MIL—STD一810F,Method514:vibration,5May2003.
    141周海亭,陈光冶,林卫东等.汽车燃油分配管加速振动试验研究.机械强度,2003,25(5)572~575.
    142韩雪山,牛淑梅,何渊井.运输包装随机振动加速试验探讨.中国包装,2011,11:50~54.
    143王冬梅,谢劲松.随机振动试验加速因子的计算方法.环境技术,2010,28(2):47~51.
    144胡小弟,朱伟繁.用多点振动控制的方法优化夹具动态特性的研究.环境技术,1999,1:11~19.
    145周桐,张思箭,李健等.夹具特性与振动控制方式对试件响应的影响.振动、测试与诊断,2007,27(1):58~61.
    146Klee B J,klimb DV,Tustin W著,“振动与冲击试验夹具设计”翻译组译.振动与冲击试验夹具设计[M].“强度与环境”编辑组,1979.
    147胡波,何林.振动试验夹具的设计[J].可靠性设计与工艺控制,2005,23(3):45~48.
    148孙晓洁,陈俊,王安柱等.大型振动台夹具的模态分析及结构改进,苏州大学学报(工科版)2011,31(5):56~59.
    149胡志强.随机振动试验应用技术[M].北京:中国计量出版社,1996,108~l12.
    150唐德效,邵兆申.一种通用振动夹具的设计[J].空间电子技术,2009(2):95~99.
    151查建新,刘继承.车载电子设备机柜通用振动试验夹具设计[J].现代雷达,2007(8):35~36.
    152周博,陈剑,毕传兴等.基于灵敏度分析的振动试验夹具优化设计[J].机械设计与制造,2010,11:29~31.
    153李威.空间光学遥感器振动夹具的设计与研究.光机电信息,2010,27(9):16~22.
    154张伟.振动夹具的一种优化设计方法[J].机械研究与应用,2009(3):l15~l16.
    155沈颖凡,刘士华,王鹏.某型机载红外仪振动夹具设计[J].科学技术与工程,2008,8(22):6106~6109.
    156王伟,李铁男.振动夹具设计技术研究[J].科技咨询导报,2007,11:10~11.
    157安长暖,赵洪阳,张尊伟等.光电设备振动夹具的设计探析[J].光电技术应用,2004,19(6):50~54.
    158Choi K K. Design sensitivity analysis of structure induced noise and vibration[J]. Journal ofvibration and Acoustics,1997,119:173~179.
    159Haftka RT,Addlman H M.Recent developments in structural sensitivity analysis.StructuralOptimization,1989,1(3):137~152.
    160郑术力,常少莉.振动试验夹具设计研究[J].可靠性设计与工艺控制,2006,24(5):14~17.
    161胡波.振动试验夹具的设计[J].电子产品可靠性与环境试验,2005,23(3):45~48.
    162周桐,王雄祥.柔性夹具动态特性对随机振动试验的影响[J].机械科学与技术,2005,24(12)1482~1486.
    163胡小弟.振动试验夹具动态特性的鉴定测试及评价[J].环境试验,1996,21(5):l2~19.
    164周桐,张思箭.夹具特性与振动控制方式对试件响应的影响[J].振动测试与诊断,2007,27(1):58~61.
    165顾松年,姜节胜,周苏枫.柔性夹具与环境振动试验.机械强度,2003,25(2):l19~122.
    166费丽梅,陈剑,马文明.汽车前大灯振动可靠性试验夹具的设计与研究,噪声与振动控制,2010,5:79~83.
    167胡志强,法庆衍.随机振动试验应用技术[K].北京,中国计量出版版社,1996.
    168朱妹,常志刚.振动冲击试验夹具设计技术浅析[J].可靠性与环境通讯,2009,1:11~26.
    169姜同敏.振动冲击试验夹具设计制造技术.航空工程与维修,1997,5:21~23.
    170张伟.振动夹具的一种优化设计方法.机械研究与应用,2009,3:115~116.
    171张阿舟.振动环境工程[M].航空工业出版社,1986.
    172王伟.振动夹具设计技术研究[J].高新技术,2007,11:10~11.
    173俞秋惠,陈剑.振动试验夹具的优化设计及模态试验[J].噪声与振动控制,2010(6):67~69.
    174刘继承,周传荣.某机载雷达天线振动试验夹具设.振动、测试与诊断,2003,23(3):210~212.
    175杭赕,张磊,陈春飞等.电子设备机柜振动试验夹具设计,电子机械工程,2011,27(2):31~53.
    176任志乾,陶俊勇,袁杰红.基于动力学仿真软件的油箱振动试验夹具设计.现代制造工程2005,3:871~88.
    177苏铁熊,杨世文,崔志琴等.复杂结构结合部动力学仿真模型研究.华北工学院学报2001,22(3):218~222.
    178Ito Y, Masuko. Study on the horizontal bending stiffness of bolted joint [J]. Bulletin ofJSME,1971,14:876~889.
    179Dekoninck C. Deformation properties of metallic contact surfaces of joints under theinfluence of dynamic tangential loads [J]. International Journal of Machine Tool Design andResearch,1972,l93~199.
    180Nalltolela N G. A mass or stiffness addition technique for structural parameter updating [J].The International Journal of Analytical and Experimental Modal Analysis,1992,7(3):157~168.
    181Fritzen C P. identification of mass,damping and stiffness matrices of mechanical system[J].ASME Journal of Vibration,Acoustics. Stress and Reliability in Design.1986,18:9~16.
    182Hjelmstad K D. Mutual residual energy method for parameter estimation in structures[J].Journal of Structural in Engineering,1992,118(1):223~242.
    183Tlusty J,Ismail F. Dynamic structural identification task and method [c]. Annals of theCIRP,1980,29.
    184Lee J M. Annals of the CIRP:A study on the dynamic modeling of structures with bolted andbearing joints [c].1988,37.
    185向锦武.一种用实验模态数据识别结构系统支撑刚度的新方法[J].振动工程学报,1993,6(3):238~245.
    186Friswell M T. Updating model parameters from frequency domain data via reduced ordermodels [J]. Journal of Mechanical System and Signal Processing,1990,14:377~391.
    187周传荣.机械振动参数识别及其应用[M].北京,科学出版社,1989,50~57.
    188Yoshimura M.Annals of the CIRP:Measurement of dynamic rigidity and damping pro-perty for simplified joint models and computer simulation [C].1977,25:193~198.
    189Yoshimura M.Annals of the CIRP:Computer-aided design improvement of machine toolstructural incorporation joint dynamic data [c].1979,28:241~246.
    190Wang J H. Experimental identification of mechanical joint parameters [J]. ASME Journalof Vibration and Acoustics.1991,l13(1):28~36.
    191Liu C M. Identification of Parameters of Structural Joints by Dynamic Experimental Data [M].International Conference89DTC,ASME,1989.
    192Tsai J S. The identification of dynamic characteristics of a single bolt Joint [J]. Journal ofSound and Vibration,1988,125:487~502.
    193Yuan J X, Wu X M. Identification of the joint structural parameters of machine tool byDDS and FEM[J]. ASME Journal of Engineering for Industry,1985,107:64~69
    194徐燕申.机械动态设计[M].北京:机械工业出版社,1992:34~36.
    195宋建伟.机械结构的动力修改与实验模态分析[D].天津:天津大学,1991.
    196Wang J H. Identification of parameters of strucural joints by use of noise contaminatedFRFS [J]. Journal of Sound and Vibration,1990,142:261~277.
    197Hou C. Experimental substructures synthesis with linear joints[C].12th Biennial Con ferenceon MVNM,1989.
    198陈新.机械结构动态设计理论方法及应用[M].北京:机械工业出版社,1997,72~76.
    199艾延廷,翟学,王志等.法向接触刚度对装配体振动模态影响的研究,振动与冲击,2012,31(6):171~174.
    200高镇同,熊峻江.疲劳可靠性[M].北京:北京航空航天大学出版社,2000,210~214.
    201欧进萍,王光运.结构随机振动[M].北京:高等教育出版社,1998.
    202Feng-Bin Sun&Dimitri B Kececioglu. Fatigue Reliability Evaluation and PreventiveMaintenance Policy for A Structural Element under Random Vibration. The American Instituteof Aeronautics and Astronautics Journal,1996:2166~2174.
    203Wrisching P.H, Light M.C. Digital Simulation of Fatigue Damage inOffshoreStructures,Computational Methode in Offshore Structures, American Society ofMechanical Engineers,1980:177~184.
    204李奇志.综合应力作用下航天电连接器加速寿命试验研究[D].杭州:浙江大学,2013,65~74.
    205瓦伦丁,L.波波夫.接触力学与摩擦学的原理及其应用.李强,雒建斌译.北京:清华大学出版社,2011,43~76.
    206饶柱石.拉杆组合式特种转子力学特性及其接触刚度的研究[D].哈尔滨:哈尔滨工业大学,1992,72~76.
    207张永昌. MSC.Nastran有限元分析理论基础与应用[M].北京::科学出版社,2004,247~256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700