用户名: 密码: 验证码:
镉污染/镉—锌—铅复合污染土壤植物提取修复的根际微生态效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤重金属污染已成为我国严重的环境问题,污染土壤的修复已引起广泛的关注,植物提取修复是一种极具潜力的治理方法。本研究从矿区土壤和植物调查入手,采用聚类分析和临界浓度判别相结合的方法分析了古银矿区主要植物的重金属积累特性,并进行了分类;通过采集野外条件下的根际土壤,研究了代表性矿区耐性植物根际微生物数量与活性;通过预分层根箱试验,研究了植物提取修复模拟镉污染土壤和镉-锌-铅复合污染土壤过程中根际微生物生物量、生化活性和群落结构特性,取得了以下主要研究结果:
     1.古银矿区调查结果表明,土壤Cd、Zn和Pb的浓度范围分别是5.7-84.4,467.2-8326.7和898.8-7381.0mg kg-1,植物地上部Cd、Zn和Pb的浓度范围分别是0.39-1053.58、71.3-3508.8和11.5-1073.0mg kg-1,植物根部Cd、Zn和Pb的浓度范围分别是2.54-222.02、71.3-3508.8和122.0-3437.7mgk-1。以地上部重金属含量、富集系数和转运系数为变量,采用聚类分析和浓度判别相结合将植物分为5类:超富集植物、潜在超富集植物、富集植物、潜在富集植物和普通积累植物。植物对Cd的积累分成2类:古银矿生态型东南景天地上部Cd含量为601.87mg kg-1,是Cd超富集植物;其余20种植物是Cd普通积累植物。植物对Zn的积累分成3类:东南景天是一种潜在Zn超富集植物;小飞蓬和野艾蒿是Zn富集植物;其余18种植物是Zn普通积累植物。植物对Pb的积累分成4类:东南景天和狭叶楼梯草是Pb潜在超富集植物;湖南悬钩子、白毛夏枯草和一年蓬是Pb富集植物;小飞蓬和野艾蒿是Pb潜在富集植物;其余14种植物是Pb普通积累植物。聚类分析和临界浓度判别相结合是一种鉴定具有重金属提取潜力植物的有效方法,聚类分析结果表明,东南景天(对于Cd和Zn)、小飞蓬和野艾蒿(对于Zn和Pb)、狭叶楼梯草、湖南悬钩子、白毛夏枯草和一年蓬(对于Pb)是具有植物提取修复污染土壤潜力的超富集/富集植物。
     2.古银矿生境条件下,东南景天、湖南悬钩子、过路黄和细风轮菜根际土壤微生物量碳含量、呼吸强度、脲酶、磷酸酶和转化酶活性显著(P<0.05)高于相应非根际土壤。东南景天、湖南悬钩子、过路黄和细风轮菜根际土壤中检测到的磷脂脂肪酸种类数量分别为70、60、58、54种,对应的非根际土壤分别为49、49、48、39种。东南景天、湖南悬钩子和细风轮菜根际土壤微生物群落物种丰富度指数(H)显著(P<0.05)高于非根际土壤。四种耐性植物根际土壤PLFA总量及细菌、G+菌、G-菌、真菌、放线菌、AM真菌、原生动物特征PLFA含量均显著(P<0.05)高于非根际土壤含量。东南景天根际土壤微生物量碳含量、基础呼吸速率、磷酸酶活性、转化酶活性、微生物群落丰富度指数(H)、PLFA总量以及所有群落PLFA含量(细菌、G+菌、G-菌、真菌、放线菌、AM真菌、原生动物)均显著(P<0.05)高于其余3种耐性植物。东南景天根际与其它植物根际以及非根际土壤微生物生化特性和群落结构存在显著差异。
     3.东南景天植物提取修复模拟Cd污染土壤的预分层根箱试验结果表明,在根系分布区,生长3个月后,根际土壤基础呼吸速率、酸性磷酸酶和转化酶活性显著(P<0.01)高于近根际和未种植植物土壤;生长6个月后,根际微生物量碳、脲酶、酸性磷酸酶和转化酶活性显著(P<0.01)高于近根际和未种植植物土壤。在预分层根际区,生长3个月后,0-2mm根际土壤酸性磷酸酶活性显著(P<0.05)高于2-10mm根际土壤和非根际土壤;生长6个月后,0-2mm根际土壤微生物量碳含量、基础呼吸速率、脲酶、酸性磷酸酶和转化酶活性显著(P<0.05)高于2-10mm根际土壤和非根际土壤,2-10mm根际土壤微生物碳含量和基础呼吸速率显著高于非根际土壤。相关分析结果表明,6个月生长后的预分层区,土壤基础呼吸速率和脲酶活性与水提取态Cd呈显著(P<0.05)负相关。东南景天植物提取修复Cd污染土壤能够降低根际土壤水溶态Cd浓度,显著提高根际微生物生化活性。
     4.东南景天修复模拟Cd污染土壤的预分层根箱试验结果表明,在根系分布区,生长12个月后,根际土壤中检测到的PLFA数量为53种,未种植植物土壤只有32种,(近)根际微生物群落物种丰富度指数(H)显著(P<0.05)高于未种植植物土壤,(近)根际土壤PLFA总量及细菌、G+菌、G-菌、真菌、放线菌、AM真菌、原生动物特征PLFA含量均显著(P<0.05)高于未种植植物土壤;MicrorespTM分析结果表明,根际土壤对所选14种碳源利用强度均显著(P<0.05)高于未种植植物土壤。在预分层根际区,0-2mm根际土壤中检测到的PLFA种类数量为60种,未种植植物土壤只有39种,0-8mm根际土壤微生物群落物种丰富度指数(H)显著(P<0.05)高于非根际土壤,0-2mm根际土壤中PLFA总量及细菌、真菌、放线菌、AM真菌、原生动物特征PLFA含量均显著高于非根际土,0-2mm根际土壤对15种碳源利用强度显著(P<0.05)高于非根际土。不同微生物群落磷脂脂肪酸含量和碳源利用强度与pH、HOAc提取态、NH2OH·HCl提取态和全量Cd呈显著(P<0.05)负相关,与土壤活性有机碳呈显著(P<0.05)正相关。根际土壤中活性有机碳含量的升高以及有效Cd浓度的降低是根际微生物群落结构丰度增加以及碳源利用水平增强的原因。
     5.东南景天修复镉-锌-铅复合污染土壤的预分层根箱试验结果表明,在根系分布区,生长3个月和6个月后,根际土壤微生物量碳含量、基础呼吸速率、脲酶、酸性磷酸酶和转化酶活性均显著(P<0.05)高于未种植植物土壤;在预分层根际区,3个月生长后,0-4mm根际土壤微生物量碳和脲酶活性显著(P<0.05)高于非根际土;6个月生长后,0-2mm根际土壤微生物量碳含量、0-8mm根际土壤基础呼吸速率和0-41mm根际土壤脲酶、酸性磷酸酶和转化酶活性显著(P<0.05)高于非根际土。相关分析表明,6个月生长后的预分层区,土壤基础呼吸速率和脲酶活性与水提取态Cd呈显著(P<0.05)负相关;微生物量碳含量、酸性磷酸酶和转化酶活性与水提取态Zn呈显著(P<0.05)负相关;微生物量碳含量、基础呼吸速率、脲酶、酸性磷酸酶和转化酶活性与水提取态Pb呈显著(P<0.05)负相关。东南景天植物修复镉-锌-铅复合污染土壤能够降低土壤水提取态Cd、Zn、Pb含量,显著提高根际微生物生化活性。
     6.东南景天植物提取修复镉-锌-铅复合污染土壤的预分层根箱试验结果表明,在根系分布区,生长12个月后,根际、近根际和未种植植物土壤中检测到的PLFA种类数量分别为50种、42种和29种,(近)根际微生物群落物种丰富度指数(H)显著(P<0.05)高于未种植植物土壤,(近)根际土壤PLFA总量及细菌、G+菌、G-菌、放线菌、真菌、AM真菌和原生动物特征脂肪酸含量均显著(P<0.05)高于未种植植物土壤;MicrorespTM结果表明,根际土壤对所选14种碳源利用强度均显著高于未种植植物土壤。在预分层根际区,0-2mmm根际土壤中检测到的PLFA种类数量为41种,非根际土为31种,0-10mm根际土壤微生物群落物种丰富度指数(H)显著(P<0.05)高于非根际土壤,0-2mm根际土壤PLFA总量及细菌、革兰氏阳性细菌、革兰氏阴性细菌、放线菌、真菌、AM真菌和原生动物特征磷脂脂肪酸含量均显著(P<0.05)高于2-10mm根际土壤和非根际土壤相应磷脂脂肪酸含量;0-8mm根际土壤14种碳源利用强度均显著(P<0.05)高于非根际土。土壤PLFA总量、各类微生物特征脂肪酸含量和碳源利用强度均与土壤全量、HOAc提取态、NH2OH·HCl提取态和NH4OAC提取态Cd和Zn呈显著(P<0.05)负相关,与土壤活性有机碳含量呈显著(P<0.05)正相关。根际微生物活性的提高和群落结构丰度的增加与土壤活性有机碳的升高以及Cd和Zn浓度的降低有关。
Soil heavy metal pollution has become a serious environmental problem in our country. Remediation of heavy metal contaminated soil has attracted extensive attention. Phytoextraction, the use of metal hyperaccumulating plants to clean up contaminated soil, is being considered as a promising, cost-effective and non-intrusive technology for the remediation of metal polluted soils. In the present study, classification of plant species for metal accumulation and identification of potential species for phytoextraction was conducted using cluster analysis based on a practical survey. The rhizosphere soils of some representative tolerant plants were collected in the field condition. Microbial biomass and activities of these soils were studied to evaluate the rhizosphere microbial effects of the tolerant plants. Pre-stratified rhizobox experiments were conducted to determine the effects of phytoextraction on microbial properties through the measurement of soil microbial biomass, activities and community structure during remediation of artificial Cd contaminated soil and multiple heavy metals contaminated soil. The main results are summarized as follows:
     1. The results of the survey conduected in the ancient silver mining site showed that total metal concentrations in the soils ranged5.7-84.4mg kg-1for Cd,467.2-8326.7mg kg-1for Zn and898.8-7381.0mg kg-1for Pb. The heavy metal concentrations in plant shoots ranged39-1053.58mg kg-1for Cd,71.3-3508.8mg kg-1for Zn and11.5-1073.0mg kg-1for Pb, in the roots ranged2.54-222.02mg kg-1for Cd,71.3-3508.8mg kg-1for Zn and122.0-3437.7mg kg-1for Pb.The plant species for metal accumulation were classified by cluster analysis based on shoot metal concentration, BF and TF. Combining with the results of cluster analysis and metal hyperaccumulation thresholds, five groups such as hyperaccumulator, potential hyperaccumulator, accumulator, potential accumulator and normal accumulating plant were graded. For Cd accumulation, S. alfredii was treated as a Cd-hyperaccumulator, and the others were normal Cd-accumulating plants. For Zn accumulation, S. alfredii was considered as a potential Zn-hyperaccumulator, C. canadensis and A. lavandulaefolia were Zn-accumulators, and the others were normal Zn-accumulating plants. For Pb accumulation, S. alfredii and E. lineolatum were potential Pb-hyperaccumulators, R. hunanensis, A. decumbens and E. annuus were Pb accumulators, C. Canadensis and A. lavandulaefolia were potential Pb accumulators, and the others were normal Pb-accumulating plants. Plant species with the potential for phytoextraction were identified such as S. alfredii for Cd and Zn, C. canadensis and A. lavandulaefolia for Zn and Pb, and E. lineolatum, R. hunanensis, A. decumbens and E. annuus for Pb. Cluster analysis is effective in the classification of plant species for metal accumulation and identification of potential species for phytoextraction.
     2. The microbial properties of the rhizosphere soil of4different metal accumulation patterns tolerant plants were studied by collecting the rhizosphere soils in the field condition. Soil microbial biomass carbon content, basal respiration rate, urease, acid phosphatase and invertase activities in the rhizosphere of S. alfredii, R. hunanensis, L. christinae, C. gracile were significantly (P<0.05) higher than that of non-rhizosphere soils, so were soil microbial biomass carbon content, basal respiration rate, acid phosphatase and invertase activities in the rhizosphere of S. alfredii than that in rhizosphere of the other3tolerant plants. The numbers of the kinds of individual PLFAs detected in the rhizosphere of S. alfredii, R. hunanensis, L. christinae and C. gracile were70,60,58and54, while that in the non-rhizosphere of the four plants were49,49,48and39. Shannon-Weiner index (H) of soil microbial community in the rhizosphere of S. alfredii, R. hunanensis and C. gracile were significantly (P<0.05) higher than that of non-rhizosphere soils, so were the Shannon-Weiner index (H) of soil microbial community in the rhizosphere of S. alfredii than that in rhizosphere of the other3tolerant plants. The PLFA concentrations of total, bacterial, Gram-positive and Gram-negative bacterial, actinomycete, fungal, AM fungal and protozoan in the rhizosphere of S. alfredii, R. hunanensis, L. christinae and C. gracile were significantly(P<0.05) higher than that of non-rhizosphere soils, so were these PLFA concentrations in the rhizosphere of S. alfredii than that in rhizosphere of the other3tolerant plants. Soil microbial activities and community structure in the rhizosphere of S. alfredii were significant different from the rhizosphere of the other3tolerant plants and all the non-rhizosphere soils.
     3. A pre-stratified rhizobox experiment was conducted with hyperaccumulator Sedum alfredii to determine the effects of phytoextraction an artificial Cd contaminated soil on microbial properties. The results indicated that, in the plant-grown zone, basal respiration, acid phosphatase and invertase activities of the rhizospheric soil separated by the shaking method were significantly (P<0.01) higher than that of the near-rhizospheric soil and the unplanted soil after3months growth, so were microbial biomass carbon, urease, acid phosphatase and invertase activities of the rhizospheric soil after6months growth. In the pre-stratified area, acid phosphatase activity of the0-2mm sub-layer rhizospheric soil collected by the pre-stratified method after3months growth was significantly (P<0.05) higher than that of other sub-layer rhizospheric soils and bulk soil, and so were microbial biomass carbon, basal respiration, urease, invertase and acid phosphatase activities of the0-2mm sub-layer rhizosphere soil after6months growth. It was also observed that the soil, basal respiration rate, and urease activities were significantly negatively correlated to water soluble Cd. It was concluded that phytoextraction by Sedum alfredii could decrease the water-soluble Cd and improve soil microbial properties, especially in rhizosphere.
     4. A pre-stratified rhizobox experiment with a Cd-contaminated soil was conducted to assess the effects of phytoextraction by S.alfredii on soil microbial community. In the plant-grown zone, after12months growth,53kinds of PLFAs were identified in rhizospheric soil, while only32in unplanted soil. Shannon-Weiner index (H) of soil microbial community in the (near-) rhizospheric soils were significantly (P<0.05) higher than that in unplanted soil. The PLFA concentrations of total, bacterial, actinomycete, fungal, AM fungal and protozoan in (near-) rhizospheric soils were significantly (P<0.05) higher than that in unplanted soil. The utilization rates of15substrates by rhizospheric soil were significantly (P<0.05) higher than that by unplanted soil. In the pre-stratified area, from41to60kinds of individual PLFAs in sub-layer rhizospheric soils were identified, while only39in unplanted soil. Shannon-Weiner index (H) of soil microbial community in the0-8mm soil were significantly (P<0.05) higher than that in bulk soil. The PLFA concentrations of total, bacterial, actinomycete, fungal, AM fungal and protozoan in0-2mm soil were significantly (P<0.05) higher than that in bulk soil, so were the utilization rates for the15substrates. PLFAs concentrations and substrate utilization rate were negatively correlated with pH, total, HOAc and NH2OH·HCl-extractable Cd concentratoions and positively correlated with labile carbon. The increase in microbial diversity and activities of soil microbial community were attributed to the raise of labile carbon and reduction of available Cd concentrations.
     5. To study the effects of phytoextraction by Sedum alfredii on microbial property improvement of a multiple heavy metals contaminated soil, a rhizobox experiment was conducted under greenhouse conditions. In the plant-grown zone, microbial biomass carbon content, basal respiration, urease, acid phosphatase, invertase activities of the rhizospheric soils were significantly (P<0.05) higher than that of unplanted soils after3and6months growth. In the pre-stratified area, microbial biomass C and urease of0-4mm sub-layer rhizospheric soils were significantly (P<0.05) higher than that of bulk soil after3months growth. MBC of0-2mm and BR rate of0-8mm sub-layer rhizospheric soils were significantly higher than that of bulk soil after6months growth. So were the three enzyme activities of0-4mm sub-layer rhizospheric soils. BR rate and urease were significantly (P<0.05) negatively correlated with soluble Cd, so were microbial biomass C, acid phosphatase and intervase activities with soluble Zn, microbial biomass C, basal respiration rate and three enzyme activities with soluble Pb. Phytoextraction by S. alfredii could reduce water soluble Cd, Zn, Pb concentrations in the rhizospheric soils and increase microbial biomass C, basal respiration rate and enzyme activities of the metal polluted soil.
     6. A rhizobox experiment with a Cd-Zn-Pb multiple contaminated soil was conducted to investigate the effects of phytoextraction by S.alfredii on soil microbial community structure during the phytoextraction process. In the plant-grown zone, after12months growth,50kinds of PLFAs were identified in rhizospheric soil, while only29kinds of PLFAs were identified in unplanted soil. Shannon-Weiner index (H) of soil microbial community in the (near-) rhizospheric soils were significantly (P<0.05) higher than that in unplanted soil. The PLFA concentrations of total, bacterial, actinomycete, fungal, AM fungal and protozoan in (near-) rhizospheric soils were significantly (P<0.05) higher than that in unplanted soil. The utilization rates of14substrates by rhizospheric soil were significantly (P<0.05) higher than that by unplanted soil. In the pre-stratified area,41kinds of individual PLFAs in0-2mm sub-layer rhizospheric soil were identified, while only31in unplanted soil. Shannon-Weiner index (H) of soil microbial community in the0-10mm sub-layer rhizospheric soil were significantly (P<0.05) higher than that in bulk soil.The PLFA concentrations of total, bacterial, actinomycete, fungal, AM fungal and protozoan in0-2mm sub-layer rhizospheric soil soil were significantly (P<0.05) higher than that in the2-10mm sub-layer rhizospheric soils and bulk soil. The utilization rates of14substrates by microorganisms of0-8mm sub-layer rhizospheric soils were significantly (P<0.05) higher than that by bulk soil. PLFAs concentrations and substrate utilization rate were negatively correlated with total, HOAc, NH2OH·HC1, and NH4OAC-extractable Cd and Zn concentrations, and positively correlated with labile carbon. These indicated that the enhencement of microbial activities and changes of microbial community structure were attributed to the raise of labile carbon and reduction of Cd and Zn concentrations.
引文
Aboudrar W, Schwartz C, Benizri E, Morel JL, Boularbah A.2007. Soil Microbial Diversity as affected by the rhizosphere of the hyperaccumulator Thlaspi Caerulescens under natural conditions. International Journal of Phytoremediation,9:41-52.
    Aghababaei F, Raiesi F, Hosseinpur A.2014. The combined effects of earthworms and arbuscular mycorrhizal fungi on microbial biomass and enzyme activities in a calcareous soil spiked with cadmium. Applied Soil Ecology,75:33-42.
    Ahlawat SP, Dhankhar R, Sainger M, Kaushik A, Pratap Singh R.2011. Assessment of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent. Ecotoxicology and Environmental Safety,74:2284-2291.
    Akerblom S, Baath E, Bringmark L, Bringmark E.2007. Experimentally induced effects of heavy metal on microbial activity and community structure of forest mor layers. Biology and Fertility of Soils,44:79-91.
    Ali H, Khan E, Sajad MA.2013. Phytoremediation of heavy metals-Concepts and applications. Chemosphere,91:869-881.
    Aviani I, Laor Y, Raviv M.2006. Limitations and potential of in situ rhizobox sampling for assessing microbial activity in fruit tree rhizosphere. Plant and Soil,279:327-332
    Azarbad H, Niklinska M, van Gestel CAM, van Straalen NM, Roling WFM, Laskowski R. 2013. Microbial community structure and functioning along metal pollution gradients. Environmental Toxicology and Chemistry,32:1992-2002.
    Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM,2006. The Role of Root Exudates in Rhizosphere Interactions with Plants and Other Organisms. Annual Review of Plant Biology,57:233-266.
    Baker AJM.1981. Accumulators and excluders strategies in the response of plants to heavy metals. Journal Plant Nutrition,3:643-654.
    Baker AJM.1987. Metal tolerance. New Phytologist,106:93-111.
    Baker AJM, Brooks RR.1989. Terrestrial higher plants which accumulate metallic elements-a review of their distribution ecology and phytochemistry. Biorecovery, 1:81-126.
    Baker AJM, Reeves RD, Hajar ASM.1994. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. C. Presl (Brassicaceae). New Phytologist,127:61-68.
    Baker AJM, Whiting SN.2002. In search of the Holy Grail-a further step in understanding metal hyperaccumulation? New Pytologist,155:1-7.
    Bang J, Kamala-Kannan S, Lee KJ, Cho M, Kim CH, Kim YJ, Bae JH, Kim KH, Myung H, Oh BT.2014. Phytoremediation of heavy metals in contaminated water and soil using Miscanthus sp. Goedae-Uksae 1. International Journal of Phytoremediation. DOI: 10.1080/15226514.2013.862209
    Barbafieri M, Dadea C, Tassi E, Bretzel F, Fanfani L.2011. Uptake of heavy metals by native species growing in a mining area in Sardinia, Italy:Discovering native flora for phytoremediation. International Journal of Phytoremediation,13:985-997.
    Barrutia O, Artetxe U, Hernandez A, Olano JM, Garcia-Plazaola JI, Garbisu C, Becerril JM. 2011a. Native plant communities in an abandoned Pb-Zn mining area of northern Spain: Implications for phytoremediation and germplasm preservation. International Journal of Phytoremediation,13:256-270.
    Barrutia O, Garbisu C, Epelde L, Sampedro MC, Goicolea MA, Becerril JM.2011b. Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils. Science of the Total Environment,409: 4087-4093.
    Bech J, Duran P, Roca N, Poma W. Sanchez I, Roca-Perez L, Boluda R, Barcelo J, Poschenrieder C.2012a. Accumulation of Pb and Zn in Bidens triplinervia and Senecio sp. spontaneous species from mine spoils in Peru and their potential use in phytoremediation. Journal of Geochemical Exploration,123:109-113.
    Bech J, Duran P, Roca N, Poma W, Sanchez I, Barcelo J, Boluda R, Roca-Perez L, Poschenrieder C.2012b. Shoot accumulation of several trace elements in native plant species from contaminated soils in the Peruvian Andes. Journal of Geochemical Exploration,113:106-111.
    Becerra-Castro C, Monterrosob C, Prieto-Fernandez A, Rodriguez-Lamas L, Loureiro-Vi-nas M, Acea MJ, Kidd PS.2012. Pseudometallophytes colonising Pb/Zn mine tailings:A description of the plant- microorganism-rhizosphere soil system and isolation of metal-tolerantbacteria. Journal of Hazardous Materials,217-218:350-359.
    Becerra-Castro C, Monterroso C, Garcia-Leston M, Prieto-Fernandez A, Acea MJ, Kidd PS. 2009. Rhizosphere microbial densities and trace metal tolerance of the nickel hyperaccumulator Alyssum serpyllifolium subsp. lusitanicum. International Journal of Phytoremediation,11:525-541.
    Belyaeva ON, Haynes RJ, Birukova OA.2005. Barley yield and soil microbial and enzyme activities as affected by contamination of two soils with lead, zinc or copper. Biology and Fertility of Soils,41:85-94
    Berard A, Mazzia C, Sappin-Didier V, Capowiez L, Capowiez Y.2014. Use of the MicroRespTM method to assess Pollution-Induced Community Tolerance in the context of metal soil contamination. Ecological Indicators,40:27-33.
    Bhattacharyya P, Tripathy S, Chakrabarti K, Chakraborty A, Banik P.2008. Fractionation and bioavailability of metals and their impacts on microbial properties in sewage irrigated soil. Chemosphere,72:543-550.
    Bossio DA and Scow KM.1998. Impacts of carbon and flooding on soil microbial communities:phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology,35:265-278.
    Brooks RR, Lee J, Reeves RD, Jaffre, T.1977. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration,7: 49-57.
    Broadhurst CL, Tappero RV, Maugel TK, Erbe EF, Sparks DL, Chaney RL.2009. Interaction of nickel and manganese in accumulation and localization in leaves of the Ni hyperaccumulators Alyssum murale and Alyssum corsicum. Plant and Soil,314: 35-48.
    Brunet J, Repellin A, Varrault G, Terryn N, Zuily-Fodil Y.2008. Lead accumulation in the roots of grass pea (Lathyrus sativus L.):a novel plant for phytoremediation systems? Comptes Rendus Biologies,331:859-864.
    Burge DO, Barker WR.2010. Evolution of nickel hyperaccumulation by Stackhousia tryonii (Celastraceae), a serpentinite-endemic plant from Queensland, Australia. Australian Systematic Botany,23:415-430.
    Burton J, Chen C, Xu Z, Ghadiri H.2010. Soil microbial biomass, activity and community composition in adjacent native and plantation forests of subtropical Australia. Journal of Soils and Sediments,10:1267-1277.
    Cabello-Conejo MI, Becerra-Castro C, Prieto-Fernandez A, Monterroso C, Saavedra-Ferro A, Mench M, Kidd PS.2014. Rhizobacterial inoculants can improve nickel phytoextraction by the hyperaccumulator Alyssum pintodasilvae. Plant and Soil,1-16.
    Calvarro LM, de Santiago-Martin A, Gomez JQ, Gonzalez-Huecas C, Quintana JR, Vazquez A, Vera RR.2014. Biological activity in metal-contaminated calcareous agricultural soils:the role of the organic matter composition and the particle size distribution. Environmental Science and Pollution Research,21:6176-6187.
    Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM.2003. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Applied and Environmental Microbiology,69:3593-3599.
    Cang L, Zhou, D.M., Wang, Q.Y., Wu, D.Y.,2009. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities. Journal of Hazardous Materials,172:1602-1607.
    Cardelli R, Saviozzi A, Cipolli S, Riffaldi R.2009. Biochemical parameters in monitoring soil contamination by cadmium. Fresenius Environmental Bulletin.18:438-444.
    Ciadamidaro L, Madejon P, Madejon E.2014. Soil chemical and biochemical properties under Populus alba growing:Three years study in trace element contaminated soils. Applied Soil Ecology,73:26-33.
    Castaldi S, Rutigliano FA, Virzo SA.2004. Suitability of soil microbial parameters as indicators of heavy metal pollution. Water, Air and Soil Pollution,158:21-35.
    Carrasco L, Gattinger A, FlieBbach A, Roldan A, Schloter M, Caravaca F.2010. Estimation by PLFA of microbial community structure associated with the rhizosphere of Lygeum spartum and Piptatherum miliaceum growing in semiarid mine Tailings. Microbial Ecology,60:265-271.
    Cecchi L, Gabbrielli R, Arnetoli M, Gonnelli C, Hasko A, Selvi F.2010. Evolutionary lineages of nickel hyperaccumulation and systematics in European Alysseae (Brassicaceae):evidence from nrDNA sequence data. Annual Botany,106:751-767.
    Cebron A, Louvel B, Faure P, France-Lanord C, Chen Y, Murrell JC, Leyval C.2011. Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates. Environmental Microbiology,13:722-736.
    Chapman SJ, Campbell CD, Artz RRE.2007. Assessing CLPPs using MicroRespTM. Journal of Soil and Sediments,7:406-410
    Chen Y, Shen Z, Li X.2004. The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Applied Geochemical,19: 1553-1565.
    Chen J, He F, Zhang X, Sun X, Zheng J, Zheng J.2014a. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil. FEMS Microbiology Ecology,87:164-181.
    Chen YP, Liu Q, Liu YJ, Jia FA. He XH.2014b. Responses of soil microbial activity to cadmium pollution and elevated CO3 Scientific Reports.4, DOI:10.1038/srep04287.
    Chodak M, Golebiewski M, Morawska-Ploskonka J, Kuduk K, Niklinska M.2013. Diversity of microorganisms from forest soils differently polluted with heavy metals. Applied Soil Ecology,64:7-14.
    Ciarkowska K, Solek-Podwika K, Wieczorek J.2014. Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area. Journal of Environmental Management,132:250-256.
    Ciadamidaro L, Madejon P, Madejon E.2014. Soil chemical and biochemical properties under Populusalba growing:Three years study in trace element contaminated soils. Applied Soil Ecology 73,26-33.
    Clemente R, Fuente C, Moral R, Bernal MP.2007. Changes in microbial biomass parameters of a heavy metal-contaminated calcareous soil during a field remediation experiment. Journal of Environmental Quality,36:1137-1144
    Courchesne F, Cloutier-Hurteau B, Turmel MC.2008. Relevance of rhizosphere research to the ecological risk assessment of trace metals in soils. Human and Ecological Risk Assessment,14:54-72
    Dangi SR, Stahl PD, Wick AF, Ingram LJ, Buyer JS.2012. Soil microbial community recovery in reclaimed soils on a surface coal mine site. Soil Science Society of America Journal,76:915-924.
    Darrah PR, Jones DL, Kirk GJD, Roose T.2006. Modelling the rhizosphere:a review of methods for 'upscaling' to the whole-plant scale. European Journal of Soil Science, 57:13-25
    Deng DM, Shu WS, Zhang J, Zou HL, Lin Z, Ye ZH, Wong MH.2007. Zinc and cadmium accumulation and tolerance in populations of Sedum alfredii. Environmental Pollution, 147:381-386.
    Deng DM, Deng JC, Li JT, Zhang J, Hu M, Lin Z, Liao B.2008. Accumulation of zinc, cadmium, and lead in four populations of Sedum alfredii growing on lead/zinc mine spoils. Journal of Integrative Plant Biology,50:691-698.
    Dessureault-Rompre J, Luster J, Schulin R, Tercier-Waeber ML, Nowack B.2010. Decrease of labile Zn and Cd in the rhizosphere of hyperaccumulating Thlaspi caerulescens with time. Environmental Pollution,158,1955-1962.
    De Vries FT, Hoffland E, van Eekeren N, Brussaard L, Bloem J,2006. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biology and Biochemistry,38:2092-2103.
    Delorme TA, Gagliardi JV, Angle JS, Chaney RL.2001. Influence of the zinc hyperaccumulator Thlaspi caerulescens J.& C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations. Canadian journal of microbiology, 47:773-776.
    Ding N, Guo H, Hayat T, Wu Y, Xu J.2009. Microbial community structure changes during Aroclor 1242 degradation in the rhizosphere of ryegrass (Lolium multiforum L.). FEMS Environmental Microbiology,70:305-314.
    Ding N, Hayat T, Wang J, Wang H, Liu X, Xu J.2011. Responses of microbial community in rhizosphere soils when ryegrass was subjected to stress from PCBs. Journal of Soils and Sediments,11:1355-1362.
    Egamberdieva D, Renella G, Wirth S, Islam R.2011. Enzyme activities in the rhizosphere of plants. In Soil Enzymology (pp.149-166). Springer Berlin Heidelberg.
    Ellis RJ, Best JG, Fry J C, Morgan P, Neish B, Trett MW, Weightman AJ.2002. Similarity of microbial and meiofaunal community analyses for mapping ecological effects of heavy-metal contamination in soil. FEMS Microbiology Ecology,40:113-122.
    Epelde L, Becerril JM, Hernandez-Allica J, Barrutia O, Garbisu C.2008. Functional diversity as indicator of the recovery of soil health derived from Thlaspi caerulescens growth and metal phytoextraction. Applied Soil Ecology,39:299-310.
    Epelde L, Mijangos I, Becerril JM, Garbisu C.2009a. Soil microbial community as bioindicator of the recovery of soil functioning derived from metal phytoextraction with sorghum. Soil Biology and Biochemistry,41:1788-1794.
    Epelde L, Becerril JM, Mijangos I, Garbisu C.2009b. Evaluation of the efficiency of a phytostabilization process with biological indicators of soil health. Journal Environment Quality,38:2041-2049.
    Epelde L, Becerril JM, Kowalchuk, GA, Deng Y, Zhou J, Garbisu C.2010. Impact of metal pollution and Thlaspi caerulescens growth on soil microbial communities. Applied and Environmental Microbiology,76:7843-7853.
    Epelde L, Burges A, Mijangos I, Garbisu C.2014. Microbial properties and attributes of ecological relevance for soil quality monitoring during a chemical stabilization field study. Applied Soil Ecology,75:1-12.
    Farrell M, Griffith GW, Hobbs PJ, Perkins WT, Jones DL.2010. Microbial diversity and activity are increased by compost amendment of metal-contaminated soil. FEMS Microbiology Ecology,71:94-105.
    Favas PJ. Pratas J. Varun M. DSouza R. Paul MS.2014. Phytoremediation of Soils Contaminated with Metals and Metalloids at Mining Areas:Potential of Native Flora. Environmental Risk Assessment of Soil Contamination,485-517.
    Fernandez-Calvino D, Arias-Estevez M, Diaz-Ravina M, Baath E.2012. Assessing the effects of Cu and pH on microorganisms in highly acidic vineyard soils. European Journal of Soil Science,63:571-578.
    Fellet G, Marchiol L, Perosa D, Zerbi G. 2007. The application of phytoremediation technology in a soil contaminated by pyrite cinders. Ecological Engineering, 31:207-214
    Fitamo D and Leta S.2010. Assessment of plants growing on gold mine wastes for their potential to remove heavy metals from contaminated soils. Journal of Environmental Studies,67:705-724.
    Fitz WJ and Wenzel WW.2002. Arsenic transformation in the soil-rhizosphere-plant system, fundamentals and potential application of phytoremediation. Journal of Biotechnology,99:259-278
    Fitz WJ, Wenzel WW, Zhang H, Nurmi J, Stipek K, Fischerova Z, Schweiger P, Kollensperger G, Ma LQ, Stingeder G.2003. Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency. Environmental Science and Technology,37:5008-5014
    Freitas EV, Nascimento CW, Souza A, Silva FB.2013. Citric acid-assisted phytoextraction of lead:A field experiment. Chemosphere,92:213-217.
    Frostegard A and Baath E.1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils,22:59-65.
    Frostegard A, Tunlid A, Baath E.2011. Use and misuse of PLFA measurements in soils. Soil Biology and Biochemistry,43:1-5.
    Gao Y, Zhou P, Mao L, Zhi Y, Shi WJ.2010. Assessment of effects of heavy metals combined pollutionon soil enzyme activities and microbial community structure: modified ecological dose-response model and PCR-RAPD. Environmental Earth Science,60:603-612
    Garbisu C, Alkorta I, Epelde L.2011. Assessment of soil quality using microbial properties and attributes of ecological relevance. Applied Soil Ecology,49:1-4.
    Garcia C, Roldan A, Hernandez T.2005. Ability of different plant species to promote microbiological processes in semiarid soil. Geoderma,124:193-202
    Ge T, Chen X, Yuan H, Li B, Zhu H, Peng P, Li K, Jones DL, Wu, J.2013. Microbial biomass, activity, and community structure in horticultural soils under conventional and organic management strategies. European Journal of Soil Seience,58:122-128.
    Ghaderian SM and Ravandi AAG.2012. Accumulation of copper and other heavy metals by plants growing on Sarcheshmeh copper mining area, Iran. Journal of Geochemical Exploration,123:25-32.
    Glick BR.2010. Using soil bacteria to facilitate phytoremediation. Biotechnology Advances, 28:367-374.
    Gonzaga MIS, Ma LQ, Santos JAG, Matias MIS.2009. Rhizosphere characteristics of two arsenic hyperaccumulating Pteris ferns. Science of the Total Environment,407: 4711-4716.
    Grayston SJ, Vaughan D, Jones D.1997. Rhizosphere carbon flow in trees, in comparison with annual plants:the importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology,5:29-56
    Ha NTH, Sakakibara M, Sano S, Nhuan MT.2011. Uptake of metals and metalloids by plants growing in a lead-zinc mine area, Northern Vietnam. Journal of Hazardous Materials.186:1384-1391.
    Hassan Z, Aarts MG.2011. Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environmental and Experimental Botany,72:53-63.
    Hernandez-Allica J, Becerril JM, Zarate O, Garbisu C.2006. Assessment of the efficiency of a metal phytoextraction process with biological indicators of soil health. Plant and Soil.281:147-158.
    Hinojosa MB, Carreira JA, Garci'a-Rui'z R, Dick RP.2005. Microbial response to heavy metal-polluted soils:community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts. Journal of Environmental Quality,34:1789-1800.
    Hinsinger P, Plassard C, Tang C, Jaillard B.2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints:a review. Plant and Soil,248:43-59.
    Hortal S, Bastida F, Armas C, Lozano YM, Moreno JL, Garcia C, Pugnaire F1.2013. Soil microbial community under a nurse-plant species changes in composition, biomass and activity as the nurse grows. Soil Biology and Biochemistry,64:139-146.
    Hu B, Liang D, Liu J, Xie J.2013. Ecotoxicological effects of Cu and Se combined pollution on soil enzyme activity in planted and unplanted soils. Environmental Toxicology and Chemistry,32:1109-1116.
    Ipsilantis I and Coyne MS.2007. Soil microbial community response to hexavalent chromium in planted and unplanted soil. Journal of Environmental Quality,36: 638-645.
    Jaffre T, Pillon Y, Thomine S, Merlot S.2013. The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Frontiers in Plant Science,4.???
    Jaffre T, Brooks RR, Lee J, Reeves RD.1976. Sebertia acuminata:a hyperaccumulator of nickel from New Caledonia. Science,193:579-580.
    Jestrow B, Gutierrez Amaro J, Francisco-Ortega J.2012. Islands within islands:a molecular phylogenetic study of the Leucocroton alliance (Euphorbiaceae) across the Caribbean Islands and within the serpentinite archipelago of Cuba. Journal of Biogeography,39: 452-464.
    Jiang J, Wu L, Li N., Luo Y, Liu L, Zhao Q, Zhang L, Christie, P.2010. Effects of multiple heavy metal contamination and repeated phytoextraction by Sedum plumbizincicola on soil microbial properties. European Journal of Soil Biology,46:18-26.
    Jusselme MD, Miambi E, Mora P, Diouf M, Rouland-Lefevre C.2013. Increased lead availability and enzyme activities in root-adhering soil of Lantana camara during phytoextraction in the presence of earthworms. Science of the Total Environment, 445-446:101-109
    Juarez-Santillan LF, Lucho-Constantino CA, Vazquez-Rodriguez GA, Ceron-Ubilla NM, Beltran-Hernandez RI.2010. Manganese accumulation in plants of the mining zone of Hidalgo, Mexico. Bioresource Technology,101:5836-5841.
    Kabata-Pendias A and Pendias H.1984. Trace Elements in Soil and Plants, Boca Raton, FL, CRC Press.
    Kabata-Pendias A and Mukherjee AB.2007. Trace Elements from Soil to Human. Springer, Berlin, Heidelberg.
    Kramer U.2010. Metal hyperaccumulation in plants. Annual Review of Plant Biology, 61:517-534.
    Kaur A, Chaudhary A, Kaur A, Choudhary R, Kaushik R.2005. Phospholipid fatty acid-a bioindicator of environment monitoring and assessment in soil ecosystem. Current Science,89:1103-1112.
    Kaplan H, Ratering S, Hanauer T, Felix-Henningsen P, Schnell S.2014. Impact of trace metal contamination and in situ remediation on microbial diversity and respiratory activity of heavily polluted Kastanozems. Biology and Fertility of Soils,50:735-744 Keltjens WG and Van Beusichem ML.1998. Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.):combined effects of copper and cadmium. Plant and Soil 203:119-126
    Kenarova A. Radeva G, Traykov 1, Boteva S.2014. Community level physiological profiles of bacterial communities inhabiting uranium mining impacted sites. Ecotoxicology and Environmental Safety 100:226-232.
    Kim S, Baek K, Lee I.2010a. Phytoremediation and microbial community structure of soil from a metal-contaminated military shooting range:Comparisons of field and pot experiments. Journal of Environmental Science and Health Part A,45:389-394.
    Kim KR, Owens G, Naidu R.2010b. Effect of root-induced chemical changes on dynamics and plant uptake of heavy metals in rhizosphere soils. Pedosphere,20:494-504.
    Kim KR, Owens G, Kwon SK.2010c. Influence of Indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils:A rhizobox study. Journal of Environmental Science,22:98-105
    Khan S, Hesham AEL, Qiao M, Rehman S, He JZ.2010. Effects of Cd and Pb on soil microbial community structure and activities. Environmental Science and Pollution Research.17:288-296.
    Khoshgoftarmanesh AH, Sharifi HR, Afiuni D. Schulin R.2012. Classification of wheat genotypes by yield and densities of grain zinc and iron using cluster analysis. Journal of Geochemical Exploration,121:49-54.
    Kumpiene J, Guerri G, Landi L, Pietramellara G, Nannipieri P, Renella G.2009. Microbial biomass, respiration and enzyme activities after in situ aided phytostabilization of a Pb-and Cu-contaminated soil. Ecotoxicology and Environmental Safety,72:115-119
    Lalor BM, Cookson WR, Murphy DV.2007. Comparison of two methods that assess soil community level physiological profiles in a forest ecosystem. Soil Biology and Biochemistry,39:454-462.
    Lei D, Duan C.2008. Restoration potential of pioneer plants growing on lead-zinc mine tailings in Lanping, southwest China. Journal of Environmental Sciences,20: 1202-1209.
    Leita L, De Nobili M, Muhlbachova G, Mondini C, Marchiol L, Zerbi G. 1995. Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation. Biology and Fertility of Soils,19:103-108.
    Lessard I, Renella G, Sauve S, Deschenes L.2013. Metal toxicity assessment in soils using enzymatic activity:Can water be used as a surrogate buffer?. Soil Biology and Biochemistry.57:256-263.
    Lessard 1. Sauve S. Deschenes L.2014. Enzvmatic functional stability of Zn-contaminated field-collected soils:An ecotoxicological perspective. Science of the Total Environment,484:1-9.
    Li JT, Liao B, Dai ZY, Zhu R, Shu WS.2009. Phytoextraction of Cd-contaminated soil by carambola (Averrhoa carambola) in field trials. Chemosphere,76:1233-1239.
    Li JT, Baker AJ, Ye ZH, Wang HB, Shu WS.2012. Phytoextraction of Cd-contaminated soils:current status and future challenges. Critical Reviews in Environmental Science and Technology,42:2113-2152.
    Li J, Jin Z, Gu Q.2011. Effect of plant species on the function and structure of the bacterial community in the rhizosphere of lead-zinc mine tailings in Zhejiang, China. Canadian Journal of Microbiology,57:569-577.
    Li Z, Wu L, Luo Y, Christie P.2014a. Dynamics of plant metal uptake and metal changes in whole soil and soil particle fractions during repeated phytoextraction. Plant and Soil, 374:857-869.
    Li Z, Wu L, Hu P, Luo Y, Zhang H, Christie, P.2014b. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola. Environmental Pollution,189:176-183.
    Liu Y, Zhou T, Crowley D, Li L, Liu D, Zheng J, Zheng J.2012a. Decline in topsoil microbial quotient, fungal abundance and C utilization efficiency of rice paddies under heavy metal pollution across South China. Plos One,7:e38858.
    Liu D, Fang SZ, Tian Y, Dun XJ.2012b. Variation in rhizosphere soil microbial index of tree species on seasonal flooding land:An in situ rhizobox approach. Applied Soil Ecology,59:1-11.
    Liu L, Wu L, Li N, Luo Y, Li S, Li Z, Han C,Jiang Y,Christie P.2011. Rhizosphere concentrations of zinc and cadmium in a metal contaminated soil after repeated phytoextraction by Sedum plumbizincicola. International Journal of Phytoremediation, 13:750-764.
    Liu Z, He X, Chen W, Yuan F, Yan K, Tao D.2009. Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator-Lonicera japonica Thunb. Journal of Hazardous Materials,169:170-175.
    Lombi E, Zhao FJ, Dunham SJ, McGrath SP.2000. Cadmium accumulation in population of Thlaspi caerulescens and Thlaspi goesingense. New Phytologist,145:11-20.
    Long XX, Zhang YG, Jun D, Zhou Q.2009. Zinc, Cadmium and Lead accumulation and characteristics of rhizosphere microbial population associated with hyperaccumulator Sedum Alfredii Hance under natural conditions. Bull Environmental Contamination Toxicology,82:460-467
    Lorestani B, Cheraghi M, Yousefi N.2012. The potential of phytoremediation using hyperaccumulator plants:a case study at a Lead-Zinc mine site. International Journal of Phytoremediation,14:786-795.
    Lorenz N, Hintemann T, Kramarewa T, Katayama A, Yasuta T, Marschner P, Kandeler E. 2006. Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biology and Biochemistry,38: 1430-1437.
    Lu M, Xu K, Chen J.2013. Effect of pyrene and cadmium on microbial activity and community structure in soil. Chemosphere,91:491-497.
    Masciandaro G, Di Biase A, Macci C, Peruzzi E, Iannelli R, Doni S.2014. Phytoremediation of dredged marine sediment:Monitoring of chemical and biochemical processes contributing to sediment reclamation. Journal of Environmental Management,134: 166-174.
    Masakazu A, Ryo T.2013. Effects of Heavy Metal Pollution of Apple Orchard Surface Soils Associated with Past Use of Metal-Based Pesticides on Soil Microbial Biomass and Microbial Communities. Journal of Environmental Protection,4:27-36.
    Masto RE, Ahirwar R, George J, Ram LC, Selvi VA.2011. Soil biological and biochemical response to Cd exposure. Open Journal of Soil Science,1:8-15.
    Martinez-Inigo MJ, Perez-Sanz A, Ortiz I, Alonso J, Alarcon R, Garcia P, Lobo MC.2009. Bulk soil and rhizosphere bacterial community PCR-DGGE profiles and β-galactosidase activity as indicators of biological quality in soils contaminated by heavy metals and cultivated withSilene vulgaris (Moench) Garcke. Chemosphere, 75:1376-1381
    Martinez-Alcala I, Walker DJ, Bernal MP.2010. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation. Ecotoxicology and Environmental Safety,73:595-602.
    Martinez-Sanchez MJ, Garcia-Lorenzo ML, Perez-Sirvent C, Bech J.2012. Trace element accumulation in plants from an acidic area affected by mining activities. Journal of Geochemical Exploration,123:8-12.
    Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK.2006. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere, 65:1027-1039.
    McGrath SP and Zhao FJ.2003. Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology,14:277-282.
    McLachlan GJ.1992. Cluster analysis and related techniques in medical research. Statistical Methods in Medical Research,1:27-48.
    McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ.2006. Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environmental Pollution,141:115-125.
    Meng L and Zhu YG.2010. Pyrene biodegradation in an industrial soil exposed to simulated rhizodeposition:how does it affect functional microbial abundance? Environmental Science and Technology,45:1579-1585.
    Mench M, Renella G, Gelsomino A, Landi L, Nannipieri P.2006. Biochemical parameters and bacterial richness in soils contaminated by sludge-borne metals and remediated with inorganic soil amendments. Environmental Pollution,144:24-31.
    Mora APD, Ortega-Calvo JJ, Cabrera F, Madejon E.2005. Changes in enzyme activities and microbial biomass after "in situ" remediation of a heavy metal-contaminated soil. Applied Soil Ecology,28:125-137.
    Mohammadi SA and Prasanna BM.2003. Analysis of genetic diversity in crop plants-salient statistical tools and considerations.Crop Science,43:1235-1248.
    Muniz S, Lacarta J, Pata MP, Jimenez JJ, Navarro E.2014. Analysis of the Diversity of Substrate Utilisation of Soil Bacteria Exposed to Cd and Earthworm Activity Using Generalised Additive Models. PloS One,9:e85057.
    Muhammad A, Xu J, Li Z, Wang H, Yao H.2005. Effects of lead and cadmium nitrate on biomass and substrate utilization pattern of soil microbial communities.Chemosphere, 60:508-514.
    Myers RT, Zak DR, White DC, Peacock A.2001. Landscapelevel patterns of microbial community composition and substrate use in upland forest ecosystems. Soil Science Society of America Journal,65:359-367.
    Niemeyera JC, Lolata GB, de Carvalho GM, Da Silva EM, Sousa JP, Nogueira MA.2012. Microbial indicators of soil health as tools for ecological risk assessment of a metal contaminated site in Brazil. Applied Soil Ecology,59:96-105.
    Nouri J, Lorestani B, Yousefi N, Khorasani N, Hasani AH, Seif F, Cheraghi M.2011. Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead-zinc mine (Hamedan, Iran). Environmental Earth Science,62:639-644.
    Olsson PA, Baath E, Jakobsen I, Soderstrom B.1995. The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycological Research,99:623-629.
    Ortas I.1997. Determination of the extent of rhizosphere soil. Communications in Soil Science and Plant Analysis,28:1767-1776.
    Otero XL, Alvarez E, Fernandez-Sanjurjo MJ, Macias F.2012. Micronutrients and toxic trace metals in the bulk and rhizospheric soil of the spontaneous vegetation at an abandoned copper mine in Galicia (NW Spain). Journal of Geochemical Exploration, 112:84-92
    Paderewski J, Gauch HG, Madry W, Drzazga T, Rodrigues PC.2011. Yield response of winter wheat to agro-ecological conditions using additive main effects and multiplicative interaction and cluster analysis. Crop Science,51:969-980.
    Parraga-Aguado I, Querejeta JI, Gonzalez-Alcaraz MN. Jimenez-Carceles FJ, Conesa HM. 2014. Usefulness of pioneer vegetation for the phytomanagement of metal (loid) s enrichedtailings:Grasses vs. shrubs vs. trees. Journal of Environmental Management, 133:51-58.
    Pan J and Yu L.2011. Effects of Cd or/and Pb on soil enzyme activities and microbial community structure. Ecological Engineering,37:1889-1894.
    Patras A, Brunton NP, Downey G Rawson A, Warriner K, Gernigon G.2011. Application of principal component and hierarchical cluster analysis to classify fruits and vegetables commonly consumed in Ireland based on in vitro antioxidant activity. Journal of Food Composition and Analysis,24:250-256.
    Pardo T, Clemente R, Epelde L, Garbisu C, Bernal MP. 2014. Evaluation of the phytostabilisation efficiency in a trace elements contaminated soil using soil health indicators. Journal of Hazardous Materials,268:68-76.
    Pennanen T, Frostegard A, Fritze H, Baath E.1996. Phospholipid fatty acids and heavy metal tolerance of soil microbial communities along two heavy metalpolluted gradients in coniferous forests. Applied and Environmental Microbiology,62:420-428.
    Pignataro A, Moscatelli MC, Mocali S, Grego S, Benedetti A.2012. Assessment of soil microbial functional diversity in a coppiced forest system. Applied Soil Ecology,62: 115-123.
    Potashev K, Sharonova N, Breus I.2014. The use of cluster analysis for plant grouping by their tolerance to soil contamination with hydrocarbons at the germination stage. Science of the Total Environment,485:71-82.
    Potthoff M, Steenwerth KL, Jackson LE, Drenovsky RE, Scow KM, Joergensen RG.2006. Soil microbial community composition as affected by restoration practices in California grassland. Soil Biology and Biochemistry,38:1851-1860.
    Puschenreiter M, Schnepf A, Millan IM, Fitz WJ, Horak O, Klepp J, Schrefl T, Lomb E,Wenzel WW.2005. Changes of Ni biogeochemistry in the rhizosphere of the hyperaccumulator Thlaspi goesingense. Plant and Soil,271:205-218.
    Pueyo M, Mateu J, Rigol A, Vidal M, Lo'pez-Sa'nchez JF, Rauret G 2008. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environmental Pollution,152:330-341
    Qin H, Brookes PC, Xu J.2014. Cucurbitaspp. and Cucumis sativusenhance the dissipation of polychlorinated biphenyl congeners by stimulating soil microbial community development. Environmental Pollution,184:306-312.
    Qiu RL, Fang XH, Tang YT, Du SJ, Zeng XW, Brewer E.2006. Zinc hyperaccumulation and uptake by Potentilla Griffithii Hook. International Journal of Phytoremediation,8: 299-310.
    Rajkumar M, Sandhya S, Prasad MNV, Freitas H.2012. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances,30:1562-1574.
    Ramsey PW, Gibbons SM, Rice P, Mummey DL, Feris KP, Moore JN, Rillig MC, Gannon JE.2012. Relative strengths of relationships between plant, microbial, and environmental parameters in heavy-metal contaminated floodplain soil. Pedobiologia 55:15-23.
    Rascio N, Navari-Izzo F.2011. Heavy metal hyperaccumulating plants:how and why do they do it? And what makes them so interesting? Plant Science,180:169-181.
    Reeves RD, Baker AJM, Borhidi A, Berazain R.1999. Nickel hyperaccumulation in the serpentine flora of Cuba. Annual Botany,83:29-38.
    Renella G, Ortigoza AR, Landi L, Nannipieri P.2003. Additive effects of copper and zinc on cadmium toxicity on phosphatase activities and ATP content of soil as estimated by the ecological dose (ED50). Soil Biology and Biochemistry,35:1203-1210.
    Robson TC, Braungardt CB, Rieuwerts J, Worsfold P.2014. Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering. Environmental Pollution,184:283-289.
    Roldan A, Garcia-Orenes F, Lax A.1994. An incubation experiment to determine factors involving aggregation changes in an arid soil receiving urban refuse. Soil Biology and Biochemistry,26:1699-1707.
    Romesburg HC.2004. Cluster Analysis for Researchers. Lulu. com.
    Ros M, Pascual JA, Moreno JL, Hernandez MT, Garcia C.2009. Evaluation of microbial community activity, abundance and structure in a semiarid soil under cadmium pollution at laboratory level. Water, Air and Soil Pollution,203:229-242.
    Rousk J, Brookes PC, Baath E.2010. The microbial PLFAcomposition as affected by pH in an arable soil. Soil Biology and Biochemistry,42:516-520.
    Ruiz E, Rodriguez L, Alonso-Azcarate J, Rincon J.2009. Phytoextraction of metal polluted soils around a Pb-Zn mine by crop plants. International Journal of Phytoremediation, 11:360-384.
    Sassi MB, Dollinger J, Renault P, Tlili A, Berard A.2012. The FungiResp method:An application of the MicroRespTM method to assess fungi in microbial communities as soil biological indicators. Ecological Indicator,23:482-490.
    Setala H, Berg MP, Jones TH.2005. Trophic structure and functional redundancy in soil communities. In:Bardgett, R.D., Usher, M.B., Hopkins, D.W. (Eds.), Biological Diversity and Function in Soils. Cambridge University Press, Cambridge, pp.236-249.
    Seguin V, Gagnon C, Courchesne F.2004. Changes in water extractable metals, pH and organic carbon concentrations at the soil-root interface of forested soils. Plant and Soil, 260:1-17
    Sinha S, Masto RE, Ram LC, Selvi VA, Srivastava NK, Tripathi RC, George J.2009. Rhizosphere soil microbial index of tree species in a coal mining ecosystem. Soil Biology and Biochemistry,41:1824-1832
    Simarro R, Gonzalez N, Bautista LF, Molina MC.2013. Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil:Change in bacterial community. Journal of Hazardous Materials,262:158-167.
    Silva Gonzaga MI, Santos JA, Ma LQ.2006. Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L. Environmental Pollution.143:254-260.
    Shen ZG and Liu YL.1998. Progress in the study on the plants that hyperaccumulate heavy metal. Plant Physiology Community 34:133-139.
    Sprocati AR, Alisi C, Pinto V, Montereali MR, Marconi P, Tasso F.2014. Assessment of the applicability of a "toolbox" designed for microbially assisted phytoremediation:the case study at Ingurtosu mining site (Italy). Environmental Science and Pollution Research,21:6939-6951.
    Stefanowicz AM, Niklinska M, Kapusta P, Szarek-Lukaszewska G. 2010. Pine forest and grassland differently influence the response of soil microbial communities to metal contamination. Science of the Total Environment.408:6134-6141.
    Stefanowicz AM, Kapusta P, Szarek-Lukaszewska G, Grodzinska K, Niklinska M, Vogt RD. 2012. Soil fertility and plant diversity enhance microbial performance in metal-polluted soils. Science of the Total Environment,439:211-219.
    Sun Y, Zhou Q, Wang L, Liu W.2009. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. Journal of Hazardous Materials, 161:808-814.
    Su D. Xing, J., Jiao, W, Wong, W.2009. Cadmium uptake and speciation changes in the rhizosphere of cadmium accumulator and non-accumulator oilseed rape varieties. Journal of Environmental Sciences,21,1125-1128.
    Sulowicz S, Plociniczak T, Piotrowska-Seget Z,& Kozdroj J.2011. Significance of silver birch and bushgrass for establishment of microbial heterotrophic community in a metal-mine spoil heap. Water, Air and Soil Pollution,214:205-218.
    Tlili A, Marechal M, Montuelle B, Volat B, Dorigo U, Berard A.2011. Use of the MicroRespTM method to assess pollution-induced community tolerance to metals for lotic biofilms. Environmental Pollution,159:18-24.
    Tokahoglu S, Kartal S.2004. Bioavailability of soil-extractable metals to tea plant by BCR sequential extraction procedure. Instrumentation Science Technology,32:387-400.
    Turpeinen R, Kairesalo T, Haggblom MM.2004. Microbial community structure and activity in arsenic-, chromium-and copper-contaminated soils. FEMS Microbiology Ecology,47:39-50
    Van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H.2013. Hyperaccumulators of metal and metalloid trace elements:Facts and fiction. Plant and Soil,362:319-334.
    Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lie D, Mench M.2009. Phytoremediation of contaminated soils and groundwater lessons from the field. Environmental Science and Pollution Research,16:765-794
    Vance ED, Brookes PC, Jenkinson DS.1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry,19:703-707.
    Vogeler I, Vachey A, Deurer M, Bolan N.2008. Impact of plants on the microbial activity in soils with high and low levels of copper. European Journal of Soil Biology.44:92-100.
    Wang YP, Shi JY, Lin Q, Chen XC, Chen YX.2007a. Heavy metal availability and impact on activity of soil microorganisms along a Cu/Zn contamination gradient. Journal of Environmental Sciences,19:848-853
    Wang YP, Shi JY, Wang H, Lin Q, Chen XC, Chen YX.2007b. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicology and Environmental Safety,67: 75-81
    Wang YP, Li QB, Shi JY, Lin Q, Chen XC, Wu WX, Chen YX.2008. Assessment of microbial activity and bacterial community compo-sitionin the rhizosphere of a copper accumulator and a non-accumulator. Soil Biology and Biochemistry,40:1167-1177.
    Wasilkowski D, Mrozik A, Piotrowska-Seget Z, Krzyzak J, Pogrzeba M, Plaza G.2014. Changes in Enzyme Activities and Microbial Community Structure in Heavy metal-contaminated soil under in situ aided phytostabilization. Clean-Soil, Air, Water, 42:1-8.
    Waranusantigul P, Kruatrachue M, Pokethitiyook P, Auesukaree C.2008. Evaluation of Pb Phytoremediation Potential in Buddleja asiatica and B. paniculata. Water, Air and Soil Pollution,193:79-90.
    Wakelin S, Lombi E, Donner E, MacDonald L, Black A, O'Callaghan M.2013. Application of MicroRespTM for soil ecotoxicology. Environmental Pollution,179:177-184.
    Wang AS. Angle JS. Chaney RL. Delorme TA. Reeves RD.2006. Soil pH effects on uptake of Cd and Zn by Thlaspi caernlescens. Plant and Soil,281:325-337.
    Wakelin SA, Macdonald LM, Rogers SL, Gregg AL. Bolger TP. Baldock JA.2008. Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biology and Biochemistry,40: 803-813.
    Wang SL, Liao WB, Yu FQ, Liao B, Shu WS.2009. Hyperaccumulation of lead, zinc, and cadmium in plants growing on a lead/zinc outcrop in Yunnan Province, China. Environmental Geology,58:471-476.
    Waranusantigul P, Kruatrachue M, Pokethitiyook P, Auesukaree C.2008. Evaluation of Pb Phytoremediation Potential in Buddleja asiatica and B. paniculata. Water, Air and Soil Pollution,193:79-90.
    Weatherall M, Shirtcliffe P, Travers J, Beasley R.2010. Use of cluster analysis to define COPD phenotypes. European Respiratory Journal,36:472-474.
    Wei SH, Zhou QX, Saha UK, Xiao H, Hu YH, Ren LP, Ping G.2009. Identification of a Cd accumulator Conyza Canadensis. Journal of Hazardous Materials.163:32-35.
    Wei S, Twardowska I.2014. Main rhizosphere characteristics of the Cd hyperaccumulator Rorippa globosa (Turcz.) Thell. Plant and Soil,372:669-681.
    Wei J, Liu X, Zhang X, Chen X, Liu S, Chen L.2014a. Rhizosphere effect of Scirpus triqueter on soil microbial structure during phytoremediation of diesel- contaminated wetland. Environmental Technology,35:514-520.
    Wei J, Liu X, Wang Q, Wang C, Chen X, Li H.2014b. Effect of rhizodeposition on pyrene bioaccessibility and microbial structure in pyrene and pyrene-lead polluted soil. Chemosphere,97:92-97.
    Wenzel WW,2009. Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant and Soil,321:385-408.
    Wojcik M, Jaco Vangronsveld J, Tukiendorf A.2005. Cadmium tolerance in Thlaspi caerulescens. I. Growth parameters, metal accumulation and phytochelatin synthesis in response to cadmium. Environmental Experimental Botany,53:151-161.
    Wojcik M, Sugier P, Siebielec G 2014. Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits. Science of the Total Environment,487: 313-322.
    Wu FY, Ye ZH, Wu SC, Wong MH.2007. Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta,226:1363-1378.
    Xie XM, Liao M, Fang S, Peng Y, Yang J, Chai JJ.2012. Spacial characteristics of pyrene degradation and soil microbial activity with the distance from the ryegrass (Lolium perenne L.) root surface in a multi-interlayer rhizobox. Journal of Hazardous Materials, 213-214:156-160
    Xue L, Liu J, Shi S, Wei Y, Chang E, Gao M, Chen LZ, Jiang ZP.2014. Uptake of heavy metals by native herbaceous plants in an antimony mine (Hunan, China). Clean-Soil, Air, Water,42:81-87.
    Xu Y, Sun GD, Jin JH, Liu Y, Luo M, Zhong ZP, Liu ZP.2014. Successful bioremediation of an aged and heavily contaminated soil using a microbial/plant combination strategy. Journal of Hazardous Materials,264:430-438.
    Yang Y, Campbell CD, Clark L, Cameron CM, Paterson E.2006. Microbial indicators of heavy metal contamination in urban and rural soils. Chemosphere,63:1942-1952.
    Yang L, Wang GP, Cheng Z, Liu Y, Shen ZG, Luo CL.2013. Influence of the application of chelant EDDS on soil enzymatic activity and microbial community structure. Journal of Hazardous Materials,262:561-570.
    Yao HY, Campbell CD, Qiao XR.2011. Soil pH controls nitrification and carbon substrate utilization more than urea or charcoal in some highly acidic soils. Biology and Fertility of Soils,47:515-522.
    Ying JY, Zhang LM, Wei WX, He JZ.2013. Effects of land utilization patterns on soil microbial communities in an acid red soil based on DNA and PLFA analyses. Journal of Soils and Sediments,13:1223-1231.
    Yoon J, Cao XD, Zhou QX, Ma LQ.2006.Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment,368: 456-464.
    Yuan X, Luan J, Shi J.2014. Spatial variability of bacteria in the rhizosphere of Elsholtzia splendens under Cu contamination. Environmental Science and Pollution Research, DOI 10.1007/s 11356-014-2981-x.
    Zelles L.1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil:a review. Biology and Fertility of Soils,29:111-129.
    Zhang C, Liu GB, Xue S, Zhang CS.2012. Rhizosphere soil microbial properties on abandoned croplands in the Loess Plateau, China during vegetation succession. European Journal of Soil Biology,50:127-136.
    Zhang S, Lin H, Deng L. Gong G, Jia Y. Xu X, T Li.Yun Li.Chen, H.2013. Cadmium tolerance and accumulation characteristics of Siegesbeckia orientalis L. Ecological Engineering,51:133-139.
    Zhang S, Chen M, Li T, Xu X, Deng L.2010a. A newly found cadmium accumulator-Malva sinensis Cavan. Journal of Hazardous Materials,173:705-709.
    Zhang X, Zhang S, Xu X, Li T, Gong G, Jia Y, Li Y,Deng L.2010b. Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L. Journal of Hazardous Materials,180:303-308.
    Zhang FP, Li CF, Tong LG, Yue LX, Li P, Ciren YJ, Cao CG.2010c. Response of microbial characteristics to heavy metal pollution of mining soils in central Tibet, China. Applied Soil Ecology,45:144-151.
    Zhang Y. Zhang HW. Su ZC, Zhang CG.2008. Soil microbial characteristics under long-term heavy metal stress:a case study in Zhangshi wastewater irrigation area, Shenyang. Pedosphere,18:1-10.
    Zhao FJ, Lombi E, McGrath SP.2003. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil,249: 37-43.
    Zhao YG, Feng G, Bai J, Chen M, Maqbool F.2014. Effect of copper exposure on bacterial community structure and function in the sediments of Jiaozhou Bay. China. World Journal of Microbiology and Biotechnology, DOI 10.1007/s11274-014-1628-x.
    Zhou D, Zhang F, Duan Z, Liu Z, Yang K, Guo R, Yuan F, Tian Y, Li C.2013. Effects of heavy metal pollution on microbial communities and activities of mining soils in Central Tibet, China. Journal of Food, Agriculture and Environment,11:676-681.
    Zhou, YW, Peng YS, Li XL, Chen G Z.2011. Accumulation and partitioning of heavy metals in mangrove rhizosphere sediments. Environmental Earth Sciences,64: 799-807.
    Zhou X, Wu H, Koetz E, Xu Z, Chen C.2012. Soil labile carbon and nitrogen pools and microbial metabolic diversity under winter crops in an arid environment. Applied Soil Ecology,53:49-55.
    Zhou X, Chen C, Wang Y, Xu Z, J Duan,Y Hao, Simeon Smaill.2013. Soil extractable carbon and nitrogen, microbial biomass and microbial metabolic activity in response to warming and increased precipitation in a semiarid Inner Mongolian grassland. Geoderma,206:24-31.
    Zogg GP, Zak DR, Ringelberg DB, MacDonald NW, Pregitzer KS, White DC.1997. Compositional and functional shifts in microbial communities due to soil warming. Soil Science Society of America Journal,61:475-481.
    Zou TJ, Li TX, Zhang XZ, Yu HY, Huang HG 2012. Lead accumulation and phytostabilization potential of dominant plant species growing in a lead-zinc mine tailing. Environmental Earth Sciences,65:621-630.
    Zou J, Liu X, He C, Zhang X, Zhong C, Wang C, Wei J.2013. Effect of Scripus triqueter of its rhizosphere and root exudates on microbial community structure of simulated diesel-spiked wetland. International Biodeterioration & Biodegradation,82:110-116.
    毕德,吴龙华,骆永明,周守标,谭长银,尹雪斌,姚春霞,李娜.2006.浙江典型铅锌矿废弃地优势植物调查及其重金属含量研究.土壤,38:591-597.
    陈晓娟,吴小红,刘守龙,袁红朝,李苗苗,朱捍华,葛体达,童成立,吴金水.2013.不同耕地利用方式下土壤微生物活性及群落结构特性分析:基于PLFA和MicroRespTM方法.环境科学,34:2375-2382.
    程金金,宋静,余海波,黄玉娟,吴龙华,骆永明.2013.镉污染对红壤和潮土微生物的生态毒理效应.生态毒理学报8:577-586.
    迟占东,钱建平.2005.浅析中国铅锌矿的污染.第五届中国矿山地质学术会议暨振兴东北生产矿山资源高层论坛论文集.
    崔爽,周启星,晁雷.2007.某冶炼厂周围8种植物对重金属的吸收与富集作用.应用 生态学报,17:512-515.
    杜平,赵欢欢,王世杰,张兆君,李慧颖,韩春媚,伍斌,李发生.2013.大冶市农田土壤中镉的空间分布特征及污染评价.土壤,45:1028-1035.
    杜丽娜,余若祯,王海燕,陆韻,刘征涛.2013.重金属镉污染及其毒性研究进展.环境与健康杂志,30:167-174.
    傅国伟.2012.中国水土重金属污染的防治对策.中国环境科学,32:373-376.
    高扬,毛亮,周培,支月娥,张春华.2010.Cd, Pb污染下植物生长对土壤酶活性及微生物群落结构的影响.北京大学学报(自然科学版),46:339-345.
    龚继明.2014.重金属污染的缓与急.植物生理学报,50:567-568.
    辜运富,张小平,涂仕华.2008.变性梯度凝胶电泳(DGGE)技术在土壤微生物多样性研究中的应用.土壤,40:344-350.
    郭星亮,谷洁,陈智学,高华,秦清军,孙薇,张卫娟.2012.铜川煤矿区重金属污染对土壤微生物群落代谢和酶活性的影响.应用生态学报,23:798-806.
    关松荫.1986.土壤酶及其研究法.北京:农业出版社
    韩桂琪,王彬,徐卫红,陈贵青,王慧先,张海波,张晓璟,熊治庭.2010.重金属Cd、Zn、Cu、Pb复合污染对土壤微生物和酶活性的影响.水土保持学报,24:238-242.
    韩桂琪,王彬,徐卫红,王慧先,张海波,刘俊,张明中,周坤,熊治庭.2012.重金属Cd, Zn, Cu和Pb复合污染对土壤生物活性的影响.中国生态农业学报,20:1236-1242.
    胡婵娟,刘国华,吴雅琼.2011.土壤微生物生物量及多样性测定方法评述.生态环境学报,20:1161-1167.
    黄云凤,高扬,毛亮,周培,黄志勇.2011.Cd, Pb单一及复合污染下土壤酶生态抑制效应及生态修复基准研究.农业环境科学学报,30:2258-2264.
    李交昆,龚育龙,唐璐璐,朱建裕.2011.金属型植物的研究进展.生命科学研究,15:560-564.
    李小林,颜森,张小平,韦成.2011.铅锌矿区重金属污染对微生物数量及放线菌群落结构的影响.农业环境科学学报,30:468-475.
    李伟,韦晶晶,刘爱民,王友保,朱志鹏,王兴飞.2013.吊兰生长对锌污染土壤微生物数量及土壤酶活性的影响.水土保持学报,27:276-281.
    林黎,崔军,陈学萍,方长明.2014.滩涂围垦和土地利用对土壤微生物群落的影响. 生态学报,2014,34:899-906
    林启美.1997.土壤微生物量研究方法综述.中国农业大学学报,2:1-11.
    林先贵,胡君利.2008.土壤微生物多样性的科学内涵及其生态服务功能.土壤学报,45:892-900.
    刘合明,杨志新,刘树庆.2008.不同粒径土壤活性有机碳测定方法的探讨.生态环境,17:2046-2049.
    刘月莉,伍钧,唐亚,杨刚,祝亮.2009.四川甘洛铅锌矿区优势植物的重金属含量.生态学报,2020-2026.
    刘意章,肖唐付,宁增平,贾彦龙,黎华军,杨菲,姜涛,孙曼.2013.三峡库区巫山建坪地区土壤镉等重金属分布特征及来源研究.环境科学,34:2390-2398.
    陆海波,刘方,朱健,赵晓燕,陈思琳.2012.煤矸石堆场自然植被优势植物根际有效态重金属含量.生态学杂志,31:3207-3212.
    孟庆峰,杨劲松,姚荣江,余世鹏,张春银,吉荣龙.2012.单一及复合重金属污染对土壤酶活性的影响.生态环境学报,21:545-550.
    能凤娇,吴龙华,刘鸿雁,任婧,刘五星,骆永明.2013.芹菜与伴矿景天间作对污泥农用锌镉污染土壤化学与微生物性质的影响.应用生态学报,24:1428-1434.
    彭芳芳,罗学刚,王丽超,赵鲁雪.2013.铀尾矿周边污染土壤微生物群落结构与功能研究.农业环境科学学报,32:2192-2198.
    秦建桥,赵华荣,张修玉,黎颖治,李明明,胡德礼,黎忠.2012.粤北铅锌矿区土壤生态系统微生物特征及其重金属含量.水土保持学报,26:221-225.
    申时立,黎华寿,夏北成,杨常亮.2013.大生物量植物治理重金属重度污染废弃地可行性的研究.农业环境科学学报,32:572-578.
    沈其荣,史瑞和.1991.土壤预处理对不同起源氮矿化的影响.南京农业大学学报,14:54-58.
    孙瑞波,盛下放,李娅,何琳燕.2011.南京栖霞重金属污染区植物富集重金属效应及其根际微生物特性分析.土壤学报,48:1013-1020.
    孙波,赵其国,张桃林,俞慎.1997.土壤质量评价的生物学指标.土壤,29:225-234.
    谭立敏,李科林,李顺.2013.株洲霞湾港域乡土植物及其根际土壤重金属蓄积特性.水土保持学报,27:161-165.
    唐世荣.超积累植物在时空、科属内的分布特点及寻找方法.2001.农村生态环境,17: 56-60.
    田雅楠,王红旗.2011.Biolog法在环境微生物功能多样性研究中的应用.环境科学与技术,34:50-57.
    滕应,黄昌勇,骆永明,龙健,姚槐应,李振高.2004.重金属复合污染下土壤微生物群落功能多样性动力学特征.土壤学报,41:735-741.
    滕应,骆永明,李振高.2008.土壤重金属复合污染对脲酶、磷酸酶及脱氢酶的影晌.中国环境科学,28:147-152.
    王广林,王立龙,李征,丁佳红,刘登义.2005.杂草对土壤重金属的富集与含量特征研究.生态学杂志,24:639-643.
    王婷,王静,孙红文,张彦峰.2012.天津农田土壤镉和汞污染及有效态提取剂筛选.农业环境科学学报,31:119-124.
    王江,张崇邦,常杰,柯世省,张磊.2008.五节芒对重金属污染土壤微生物生物量和呼吸的影响.应用生态学报,19:1835-1840.
    王江,张崇邦.2009.重金属污染土壤植被恢复过程中的土壤微生物特征.生态学报,29:1636-1646.
    王友保,张莉,张凤美,周银宣,刘登义.2006.大型铜尾矿库区节节草(Hippochaete ramosissimum)根际土壤重金属形态分布与影响因素研究.环境科学学报,26:76-84.
    王学礼,常青山,侯晓龙,雷梅,马祥庆.2010.三明铅锌矿区植物对重金属的富集特征.生态环境学报,19:108-112.
    魏树和,周启星,张凯松,梁继东.2003.根际圈在污染土壤修复中的作用与机理分析.应用生态学报,14:143-147.
    吴建军,蒋艳梅,吴愉萍,徐建明.2008.重金属复合污染对水稻土微生物生物量和群落结构的影响.土壤学报,45:1102-1109.
    吴愉萍.2009.基于磷脂脂肪酸(PLFA)分析技术的土壤微生物群落结构多样性的研究.博士学位论文.浙江大学.
    向言词,冯涛,刘炳荣,许中坚,曾荣今,严明理,杨柳.2007.植物修复对锰尾渣污染土壤特性的影响.水土保持学报,21:79-82.
    谢小进,康建成,闫国东,张建平,朱文武.2010.黄浦江中上游地区农用土壤重金属含量特征分析.中国环境科学,30:1110-1117.
    徐华伟,张仁陟,谢永.2009.铅锌矿区先锋植物野艾蒿对重金属的吸收与富集特征.农业环境科学学报,28:1136-1141.
    徐卫红,王宏信,刘怀,熊治庭,Balwant S.2007. Zn、Cd单一及复合污染对黑麦草根分泌物及根际Zn、Cd形态的影响.环境科学,28:2089-2095.
    阎姝,潘根兴,李恋卿.2008.重金属污染降低水稻土微生物商并改变PLFA群落结构.生态环境,17:1828-1832.
    杨胜香,易浪波,刘佳,王辉,索悠扬.2012.湘西花垣矿区蔬菜重金属污染现状及健康风险评价.农业环境科学学报,31:17-23.
    袁可能,陈通权.1963.土壤有机矿质复合体研究.Ⅰ.土壤有机矿质复合体中腐殖质氧化稳定性的初步研究.土壤学报,?:286-293.
    曾希柏,徐建明,黄巧云,唐世荣,李永涛,李芳柏,周东美,武志杰.2013.中国农田重金属问题的若干思考.土壤学报,50:186-194.
    张长青,芮宗瑶,陈毓川,王登红,陈郑辉,娄德波.2013.中国铅锌矿资源潜力和主要战略接续区.中国地质,40:248-272.
    张慧,党志,姚丽贤,易筱筠,杨琛.2007.镉芘单一污染和复合污染对土壤微生物生态效应的影响.农业环境科学学报,26:2225-2230.
    张涪平,曹凑贵,李苹,次仁央金,通乐嘎,李成芳.2010.藏中矿区重金属污染对土壤微生物学特性的影响.农业环境科学学报,29:698-704.
    张平,甘国娟,廖柏寒,曾敏,李科林.2013.铅锌矿区重金属复合污染对土壤酶活性的影响.安全与环境学报,13:147-150.
    张妍,崔骁勇,罗维.2010.重金属污染对土壤微生物生态功能的影响.生态毒理学报,5:305-313.
    朱佳文,邹冬生,向言词,谭淑端,刘灿,刘文祥.2012.先锋植物对铅锌尾矿库重金属污染的修复作用.水土保持学报,25:207-210.
    周航,曾敏,刘俊,廖柏寒.2011.湖南4个典型工矿区大豆种植土壤Pb、Cd和Zn污染调查与评价.农业环境科学学报,30:476-481.
    周生贤.2011.中国1.5亿亩耕地被污染.创新科技.
    中华人民共和国环境保护部和国土资源部.2014.全国土壤污染状况调查公报.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700