用户名: 密码: 验证码:
基于宝汉高速公路环境保护及资源循环利用的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
公路交通行业是我国的基础行业之一,公路交通的发展极大地推动了国民经济的快速增长,人们也越加意识到公路交通的重要性。但是,在我国这样一个以陆路运输为主的大国,随着环境保护问题的逐渐升温,公路交通面临的环境问题也日益突出,这样制约了公路交通的可持续发展。
     基于高速公路环境问题研究的热点(雨水收集处理处置、污水资源化利用、固体废弃物资源化利用、高速公路隧道生态问题等),作者初步研究了跨越我国最重要的特殊区域之一秦岭的宝汉高速公路,该区域具有特殊的秦岭地质结构、众多的自然保护区及水环境敏感的水源地-水库。这样,给宝汉高速公路带来前所未有的环境问题,同时也给项目的环境问题研究及示范提供了机遇。宝汉高速公路环境问题主要表现在:高速公路路面桥面径流污染及其收集处理处置,服务区的污水污染、固体废弃物污染以及隧道空气污染防治等环境问题,本文主要就此进行技术探讨。
     本文研究内容主要体现在:
     1、利用暴雨强度公式核算方法进行了路面桥面雨水蒸发池的容积核算,使核算方法更为科学。同时针对路面环境问题,首次提出路面桥面雨水收集处理处置全程管理体系,即“蒸滤池”方案:雨量大时采用“蒸滤池”工艺对路面桥面雨水收集处理处置,此时初期雨水进入清淤式蒸发池进行蒸发处理,余水则自动进入混凝滤池进行处理后,达标排入水体。而雨量小时,则由清淤式蒸发池进行蒸发处理。整个体系全程自动化管理,操作简便,可实现无人值守。针对高速公路路面径流污染问题,提出了混凝沉淀+PACT工艺的处理方法,并对混凝剂进行了比选研究(聚合硫酸铝+聚丙烯酰胺)。
     通过路面桥面雨水收集处理处置全程管理体系研究,利用暴雨强度公式对蒸发池容积进行核算,得到适合秦岭地区的蒸发池容积计算公式。同时以宝汉高速汉中石门水库特大桥为例,采用暴雨强度核算、容积核算等方法对跨越路桥雨水收集的蒸发池容积优化,结果表明:蒸发池的容积应为180m3。由于蒸发池聚集的沉淀物会对水源地水体威胁、造成蒸发池容积减少,拥堵、随着水量的增加流入河道及水源地,造成危害。因此蒸发池内的沉淀物因及时清理。
     通过混凝剂的混凝效果比选,对跨越路桥雨水收集的处理工艺优化,结果表明:由于初期雨水具有污染物种类多、浓度高、浓度变化范围大、初期径流污染严重等问题,应采用混凝沉淀+PACT工艺对雨水进行处理,混凝沉淀优化后的药剂为聚合硫酸铝+聚丙烯酰胺,药剂投加量为150mg/L,PAM为5ml/L,pH值取原水pH值不变。经本工艺处理后的水,水质可以达到地表水环境质量标准(GB3838-2002)的2级标准,SS,COD,BOD5,氨氮,浊度总去除率分别为100%,98.0%,99.0%,98.0%,99.8%。处理后水可以直接排放入水源地的水体或河流。根据石门水库特大桥的坡向(从石门隧道坡向牛头山隧道),以及石门及牛头山隧道的实际情况,采用沉淀池→集水池→混凝池→光催化池→生物活性碳池→出水,经处理后的水质可以达到地表水环境质量标准(GB3838-2002)的2级标准。
     2、首次采用先进污水处理组合工艺(膜生物反应器+人工湿地组合)对高速公路服务区污水进行回用处理。实现了污水的资源化利用,使得高速公路服务区此类的远离城市水管网的区域节水问题。
     通过污水处理先进技术组合工艺(膜生物反应器与人工湿地组合工艺),对高速公路服务区废水回用处理进行研究,结果表明:服务区废水基本上以COD、BOD污染为主,SS的来源主要是洗车的废水产生,石油类污染主要以洗车废水为主。氨氮含量较高,这是因为生活污水,尤其是冲厕废水较多造成的。
     对膜生物反应器处理高速公路服务区污水进行了实验室小试的反应器优化,运行结果显示:COD去除可达90%以上,BOD去除可达93%以上,氨氮去除可达99%以上,总氮去除可达80%以上,具有良好的处理效果。尽管MBR反应器的处理效果很好,但是有时其出水BOD5及总氮不能满足回用标准。因此人工湿地的运行可作为对MBR出水的有效保障。人工湿地的出水无论在COD、BOD及氮素去除中都有很好的水平。通过膜生物反应器+人工湿地组合工艺处理服务区废水实验室小试运行,结果显示:COD去除可达96%以上,BOD去除可达98%以上,氨氮去除可达99%以上,总氮去除可达96%以上,具有良好的处理效果。出水可达到城市污水再生利用-景观环境用水回用标准。
     根据实验研究,在充分论证的情况下,认为:留坝服务区和石门服务区的水资源循采用膜生物反应器+人工湿地组合工艺是完全可行的,出水可以达到满足GB/T18921-2002,城市污水再生利用-景观环境用水水质标准。服务区水循环回用处理工艺:污水→化粪池→调节池→水解酸化池→MBR→人工湿地→消毒→回用。
     3、首次对服务区的剩余活性污泥和生活垃圾进行混合堆肥处理,处理后肥料可用于花圃、苗圃等非食用类植物生长基地使用。实现了固体废弃物的资源化利用,又可使污水处理的剩余污泥得以资源化解决,一举两得。
     通过服务区污水站剩余污泥和服务区生活垃圾进行混合堆肥,进行固体废弃物处理及资源化研究,结果表明:将高速公路服务区产生的固体废弃物和污水处理站产生的剩余污泥进行混合堆肥,基本能够达到废物的生态化利用。在小试试验堆肥过程中,堆体的温度发生了明显的变化。50℃以上的高温维持了12天,其中55℃以上高温6天,可以达到无害化的标准。在堆肥过程中,pH值首先快速上升到碱性范围,在第9天左右达到最高值,然后呈下降趋势,直至中性范围内。全碳的含量在前12天下降明显,表明在高温阶段,微生物的活性较强,所以对有机物的降解比较迅速。氮在前12天也有明显下降,减少了33%,表明高温阶段微生物分解代谢旺盛,产生氨类物质较多,高温造成大量氮的损失。小试试验整个高温阶段,腐殖质含量的增加显著。富里酸和胡敏酸含量的增加说明堆肥使得有机物向腐殖质的方向转化。种子发芽指率的变化说明了高温堆肥阶段是有机物降解的主要阶段,经过堆肥后,样品达到腐熟。经过小试试验认为,留坝服务区和石门服务区的水资源循采用污水处理站污泥及固体废弃物混合堆肥基本可行,腐熟后肥料可供花圃、苗圃等非食用类植物生长基地使用。服务区混合堆肥工艺:污水污泥及生活垃圾→收集→混合堆肥→清运。
     4、基于京昆高速公路西安—汉中段生态修复工程研究和实践的基础,主要针对宝汉高速公路宝鸡~汉中段沿线穿越秦岭段潜在的生态问题开展环境保护技术的研究,这些技术主要涉及珍稀动物通道、边坡水土保持功能恢复、水源涵养地保护、弃碴场生态修复、退化植被的再植恢复以及其他需要生态改造的点位等,即以点位复合修复的方式进行针对性的修复,达到以点带线的作用。
     总结了高速公路隧道竖井排气的控制措施,首次提出以大气污染物吸附型材料,吸收材料以及催化转化材料等,并在工程措施、生态措施、植物吸收结合,提出适应秦岭地区的高速公路长隧道竖井排气的处理方案。
Highway transportation is one of the basic industries of our country, and thedevelopment of highway traffic greatly promoted the rapid growth of national economy andpeople are increasingly aware of the importance of highway traffic. But in our country roadtransport is the main transport way, as the environmental protection problems are concerned,the environment problems of the road traffic are increasingly prominent, therefore thesustainable development of highway traffic is restricted.
     This paper investigated the environmental items of Baohan highway in Qinling, suchas pollution characteristics of the highway pavement run-off and control measures,wastewater recycling, solid waste resource utilization and tunnel ecological ecology.
     The contents of the paper are:
     1. Rainfall evaporation tank volume was calculated by using the rainstorm intensityformula calculation method. For road environment problems, the whole managementsystem of the road bridge deck rainwater collection processing treatment was first proposed,namely "evaporate" filter scheme: when rainfall is large,"evaporate" filter process was usedto pavement bridge deck rainwater collection disposal, the early rainwater enters thedesilting evaporation evaporation pool, and the other rainwater automatically entered intocoagulation filter, then was discharged into water body. And when rainfall is small, therainwater was treated by the desilting evaporation pool. The system fully automatedmanagement, easy to operate, and can realize unattended. According to highway roadsurface runoff pollution problem, the processing method of coagulation precipitation+PACT process was put forward, and comparison coagulant was studied (polymerizationaluminum sulfate and polyacrylamide).
     In the study of special regional rainwater collection, Shimen reservoir bridge of theBao Han high-speed road in Hanzhong was researched as an example, and the results ofoptimization of evaporation pool volume used as collecting rainwater in the bridge floorcrossing the reservoir showed that, the volume of evaporation pool should be180m3; the sediment gathered in evaporation pool will result in a decrease of the evaporation poolvolume and hazard the water source. So the evaporation pool sediment should be cleared intime.
     The optimization of process treating rainwater showed that because the early rain hasthe characteristics of the variety, high concentration, pollutants concentration range, seriouspollution, coagulation precipitation+PACT technology should be adopted to deal with therain. After optimization of coagulation sedimentation, polymer aluminum sulfate+polyacrylamide were chosen as coagulation reagents, the dosing of polymer aluminumsulfate is150mg/L, and PAM is5ml/L. After treating, the quality of effluent can reach thelevel2of surface water environment quality standard (GB3838-2002), the removal ratesof SS, COD, BOD5, ammonia nitrogen, total turbidity were100%,98.0%,99.0%,98.0%,99.8%,respectively. Treated water can be discharged directly into the water body or river.According to slope direction of Shimen reservoir bridge (slope from Shimen tunnel to theNiutou mountain tunnel), and the actual situation of Shimen and Niutou mountain tunnel,the process was coagulation sedimentation tank, collecting basin, filter, biological activecarbon pool, effluent.
     2. In the study of wastewater reuse treatment in highway service area, it found thatCOD, BOD were the main pollution index of the service area wastewater, the SS mainlywas from washing wastewater; oil pollution mainly existed in car washing wastewater.Ammonia nitrogen content is higher and came from the life sewage especially due to moreflushing waste water. The results of membrane biological reactor process treating sewage inexpressway service area showed that the removal rates of COD, BOD, ammonia nitrogen,total nitrogen can reach more than90%,93%,99%and80%, respectively. Although theeffect of the MBR reactor treatment is very good, sometimes BOD5and total nitrogen of theeffluent cannot meet the reuse standard. Thus constructed wetland can be used as effectiveguarantee of the MBR effluent. Artificial wetland water has good effect for removing thenitrogen, COD, BOD. The results of Membrane bioreactor+artificial wetland treatingservice area wastewater showed that the removal rates of COD, BOD, ammonia nitrogen can reach more than96%,98%99%and96%.According to experimental research and fullydemonstration, the combination process of membrane bioreactor+artificial wetland treatingthe wastewater in Liuba service area and Shimen service area was completely feasible,andeffluent can meet the GB/T18921-2002, the urban sewage recycling-water landscape waterquality standard. The wastewater recycling treatment process: wastewater, septic tanks,adjusts pool, hydrolysis acidification pool, MBR, artificial wetland, disinfection, recycle.
     3. In the study of solid waste treatment and resource recovery studies, it found thatmixed compost of solid waste from the expressway service area and excess sludge formsewage treatment station can achieve ecological utilization of waste. In the compostingprocess, the temperature of the pile body changed significantly. Temperature over50℃maintained12days, and temperature over55℃maintained6days, which can achieveharmless standards. In the composting process, pH value, first of all, rapidly rose to alkalinerange, peaked in about9days, then had a downward trend until a neutral range. The totalcarbon content decreased significantly before12days, indicating that the high temperaturephase, the microbial activity is stronger, so the degradation of organic matter was quicker.Nitrogen before12days also have obvious drop and decreased by33%. The results showedthat microbial decomposition metabolism was high in high temperature phase, ammonia ismore, and high temperature caused a large amount of nitrogen loss. During the hightemperature phase, the humus content increased significantly.
     The increase of fulvic acid and humic acid content indicate that compost made towardsthe direction of the humic organic matter transformation. Changes of seed germinationshowed that the high temperature phase is the main phase for organic matter degradation,after composting, the samples reached mature. The composting of sludge form sewagetreatment station and solid waste in Liuba service area and Shimen service area was basicfeasible, the mature compost matter was used as fertilizer for non-edible plants growingbase in nurseries, nursery. The mixed compost process in service area: sewage sludge andsolid waste, collection, mixed compost, pickup.
     4. Based on the research and practice of Xi'an-hanzhong ecological restoration engineering belong to Bao han highway section of expressway, the environmentaltechnologies were studied mainly for potential ecological problems of Baoji-Hanzhongsection across the Qinling in Bao han highway.These technologies are mainly related to rareanimals channel,function recovery about the slope of soil and water conservation, protectionof water conservation, abandon dross field ecological restoration, replantation of restorationof degraded vegetation, and other ecological transformation points.The targeted mode ofcomposite repairing.
     In the study of the ecological problems in highway tunnel, cycle is long and scale is bigin the highway tunnel construction, so it has a huge impact on ecological environment. Ifimproper measures of construction, tunnel will affect the ecological environment,atmospheric environment, sound environment, the natural landscape.
引文
[1]王研,唐克旺,徐志侠,等.全国城镇地表水饮用水水源地水质评价[J].水资源保护.2009,25(2):1-4.
    [2]国务院关于保障饮用水安全工作情况的报告.2012.
    [3]张勇,王东宇,杨凯.1985-2005年中国城市水源地突发污染事件不完全统计分析[J].安全与环境学报.2006,02:79-84.
    [4] Stotz G. Investig ations of the properties of the surface water run-off from federal highways in theFRG[J]. The Science of the Total Environment1987,59:329-337
    [5] Darren Drapper, Rodger Tom linson and Philip Williams. Pollutant concentration in road runoffSoutheast Queensland case study. J. o f Envir. Engrg[J]., A SCE,2000,126(4):313~320
    [6] Kayhanian M., et al Im生物活性炭池o f annualaverage daily traffic on highw ay runo ff po llutantconcentrations[J]. J. of Env ir. Engrg., A SCE2003,129(11):975~990
    [7]赵剑强,刘珊,等.高速公路路面径流水质特征及排放规律[J].中国环境科学.2001,21(5):445-448
    [8]赵金辉,陈卫.高速公路降雨径流污染特征及其污染控制[J].环境污染治理技术与设备.2006,7(11):66-70.
    [9]赵剑强,邱艳华.公路路面径流水污染与控制技术探讨[J].长安大学学报(建筑与环境科学版).2004,21(3):50-53.
    [10] Ellis J.B, Revitt D.M., et al.The contribution of high way surfaces to urban stormwater sedimentsand metal loadings [J]. The Science of the Total Environment.1987,59:339-349.
    [11] Pontier H, Williams J B, May E. Progressive Changes in Water and Sediment Quality in a WetlandSystem for Control of Highway Runoff [J]. Scien ce of the Total Environment.2004,319(1-3):215-224.
    [12]陆宇,张雪,李贺.高速公路路面雨水径流污染特征分析[J].现代交通技术.2007,4(6):81-84.
    [13]甘华阳,卓慕宁,李定强,周永章.公路暴雨径流的水质及其污染负荷的初期冲刷分析[J].公路.2007,8:193-198.
    [14] Yousef Y A, Hvitved-Jacobsen T, Wan ielistaM P, et al. Removal of Contaminants in HighwayRunoff Flowing Through Swales[J]. The Science of the Total Environment.1987,59:391-399.
    [15] Deletic A, Fletcher T D. Performance of Grass Filters used for Stomrwater Treatment-a Field andModelling Study[J]. Journal of Hydrology.2006,317(3-4):261-275.
    [16]宗净.城市的蓄水囊-滞留池和储水池在美国园林设计中的应用[J].中国园林.2005(3):51-55.
    [17]卢正宇,李华,孔亚平,等.广州绕城高速公路(九江-小塘段)桥面径流生态处理系统设计[J].公路.2008,04:191-196.
    [18]张自杰,林荣忱.排水工程第4版[M].北京:中国建筑工业出版社,1999.
    [19]刘珊,赵剑强,商连.氧化塘处理初期路面雨水技术分析[J].西安公路交通大学学报,1999,19:34-35.
    [20] The performances of vegetative treatment systems for highway runoff during dry and wetconditions.
    [21] Floating treatment wetland retroft to improve stormwater pond performance for suspended solids,copper and zinc.
    [22]杨敦,徐丽花,周琪.潜流式人工湿地在暴雨径流污染控制中应用[J].农业环境保护.2002,04:334-336.
    [23]周海燕.高速公路桥面径流处理方法的探讨[J].公路交通科技(应用技术版).2010,10:488-490.
    [24]宋吉明.日本当前污水生物处理技术的动向、课题及展望[J].环境科技,1991(4):82-83.
    [25]郭建.捷克开发出污水处理新技术[J].全球科技经济瞭望,2004(11):63-64.
    [26]陈肖飞,林新斌.高速公路服务区污水处理现状与对策[J].现代交通技术,2007,4(l):88-91
    [27]赵琴.我国高速公路附属设施污水处理方法研究[D].西安:长安大学,2003:1-56
    [28]任南琪,赵庆良.水污染控制原理与技术[M],北京:清华大学出版社,2007
    [29]温可,张子云.高速公路服务区环境保护探讨[J].交通环保,2003,24(增刊):210-211.
    [30]葛梅.高速公路生活区污水处理初探[J].交通环保,1999,20(5):20-26.
    [31]朱玉峰,邢奕,等.高速公路服务区污水回用技术探讨[J].公路交通科技,2006(12):138-140.
    [32]刘颖,高艳玲,吕立宏.MBR技术在污水处理中的应用[J].沈阳大学学报,2006,18(2):70-72.
    [33]陈肖飞,林新斌.高速公路服务区污水处理现状与对策[J].现代交通科技,2007,4(1):88-91.
    [34]吴鸿钧.城市垃圾处理技术及应用前景[J].环境保护.2000,12:14-16.
    [35]韩怀芬,金漫彤,迟春娟等.适合我国国情的城市生活垃圾处理方法[J].环境污染与防治.2000,06:40-41.
    [36]杨锐.景观突围:城市垃圾填埋场的生态恢复与景观重建[J].城市发展研究,2010,(8):13-14.
    [37]耿保江.农村固体废弃物污染防治对策研究[J].畜牧与饲料科学.2009,30(2):81-84.
    [38]金冬梅.城市生活垃圾的处理和防治污染对策[J].城市环境与城市生态,1996,9(3):62-64.
    [39]温志良,温琰茂,吴小锋.城市生活垃圾综合处理研究[J].环境保护科学.2000,26(99):14-16.
    [40]江源.解决中国城市生活垃圾问题的系统工程思路[J].科技导报.1998,3:8-10.
    [41]聂永丰.三废处理工程技术手册(固体废物卷)[M].北京:化学工业出版社.
    [42]倪骏,孙可伟.城市垃圾堆肥技术评述[J].中国资源综合利用.2004,(8):28~31.
    [43]唐地.浅谈我国现有主要高速公路服务区的景观作用[J].北方交通.2008(8):68-71.
    [44]赵焕胤,朱劲伟.林带和牧草径流研究[J].水土保持学报,1994,(5):30-32.
    [45]山寺喜成,安保昭,吉田宽著,罗晶,等译.恢复自然环境绿化工程概论—坡面绿化基础与模式设计[M].北京:中国科学技术出版社,1997.
    [46]李海芬,卢欣石,江玉林.高速公路边坡生态恢复技术进展[A].草坪园艺,2006,(2):34-38.
    [47]江玉林,等.中国南方公路生物环境工程实施的原则与实践[J].交通环境,2000,21(2):23-26.
    [48]胥晓刚,杨冬生,等.公路区域生态破坏及植被恢复技术应用与研究进展[J].中国园林,2005,(1):50-54.
    [49]李志清,胡瑞林.生态防护在高速公路护坡中的应用研究[J].工程地质学报,2005,13(2):280-284.
    [50] Sctirr R B,Soil bio-engineering takes vigor ASCE[J].1998,568(7):50-53.
    [51]邓辅唐,邓辅商.植生袋在高速公路石质边坡生态防护中的应用[J].中国水土保持,2005(1):42-43.
    [52]刘颖才.宝天高速公路建设中的生态环境保护措施[J].交通环保,2010,(2):31-34.
    [53]李广英,张同作.浅谈公路建设对生态环境的影响及其对策[A].青海环境,2002,(4):169-171.
    [54]程胜高,鱼红霞1高速公路生态环境评价的研究[J].环境保护,20001(10):21-23.
    [55]李晋文.高速公路建设对生态环境的影响分析及防护对策[A].山西交通科技,2008,10(5):74-76.
    [56]高冬光.对山区公路建设生态环境保护的探讨[B].公路,2004,8(8):167-170.
    [57]朱罡,程胜高,余伟.建设“生态高速公路”的方法初探[J].环境保护,2003,6:31-34.
    [58]陈会东.高速公路穿越饮用水源保护区的防护措施探讨[C].绿色科技.2011.11(11):130-131.
    [59]薛华清,李晓波.重庆高速公路建设对地表水饮用水源地的影响及防治对策[C].中国环境科学学会学术年会论文集.2010:2369-2372.
    [60]路兵华.水源保护区内高速公路路面的面源污染处置措施[J].净水技术,2013,32(5):41-43.
    [61]赵剑强,刘珊,邱立萍,等.高速公路路面径流水质特性及排污规律[J].中国环境科学,2001,21(5):445-448.
    [62]左晓俊,傅大放,李贺.高速公路路面径流沉降过程中重金属去除特性[J].环境科学报,2009,29(12):2525-2531.
    [63]丁志斌,赵智,郑璞.基于降雨过程理论分析的初期雨水调蓄容积计算[J].净水技术,2011,30(1):75-78.
    [64]谭显英,张鑫武,张欣.公路排水系统初期雨水沉淀池设计[J].给水排水,2007,33(1):34~36.
    [65]王蓉.水源保护区路段高速公路排水设计[J].全国中文核心期刊.2008(5):177-178
    [66]刘佳,肖瑛,宁江波,等.水源保护区高速公路排水设计的新方法[C].中国公路学会2005年学术年会论文集:82-88.
    [67]刘贵君,孙宏光.高速公路建设对生态环境的影响分析[J].黑龙江交通科技.2009(12):30-31.
    [68]马永排.云南高速公路建设对生态环境的影响及对策分析[J].林业调查规划.2011.6(3):112-116.
    [69]王栋,李家春,高明永.京昆高速公路秦岭段生态修复技术[J].公路.2013.2(2):189-193.
    [70]Ohashi H, Mizuno A, Nakabori I et al. A new ventilation method for the Kan-etsu road tunnel [C]. Proc.4th ISAVVT, BHRA Fluid Engineering,1982
    [71]Chang T Y, Modzelewski S W, Nordeck J M e tal. Tunnel air quality and vehicle emissions[J]. Atmos.Environ,1982,16(6):1011-1016
    [72]Weingartner E C, Keller W A. Aerosol emission in a road tunnel [J]. Atmos. Environ.,1986,31(3):451-562
    [73]M. El-Fadel, Z. Hashisho. Vehicular emissions and air quality assessment in roadway tunnels: theSalim Slam tunnel [J]. Transportation Research Part D5,2000:355-372
    [74] M. El-Fadel, Z. Hashisho. Vehicular emission in roadway tunnel: a critical review [J]. Critical reviewsin environment science and technology,31(2):125-174
    [75]郑道访.对《公路隧道设计规范》中有关通风条文的探讨[J].世界隧道,1998,(5):14-16
    [76]李祖伟,何川,方勇等.运营公路隧道空气污染物纵向分布的数值模拟[J].现代隧道技术,2005,42(4):68-71
    [77]张荣鹏.长大隧道竖井污染物排放的影响因素分析[J].环境工程,2008,26(2):26-29.
    [78]王军,张旭,张荣鹏.城市长大隧道集中排放的环境影响分析[J].地下空间与工程学报,2009,5(1):196-200
    [79]全国勘察设计注册工程师公用设备专业管理委员会秘书处.《全国勘察设计注册公用设备工程师给水排水执业资格考试教材》第四册常用资料[M].北京:中国建筑工业出版社,2011:39-40.
    [80]全国勘察设计注册工程师公用设备专业管理委员会.全国勘察设计注册公用设备工程师给水排水专业考试标准规范汇编[M].北京:中国计划出版社,2011:117.
    [81]全国勘察设计注册工程师公用设备专业管理委员会秘书处.全国勘察设计注册公用设备工程师给水排水专业考试复习教材,第2版[M].北京:中国建筑工业出版社,2006:726.
    [82]左晓俊.高速公路路面雨水径流沉降特性研究[D].南京:东南大学硕士学位论文,2009.
    [83] Kayhanian M Singh A, Suverkropp C, et al. Im biological activated carbon pool of Annual AverageDaily Traffic on Highway Runoff Pollutant Concentrations [J]. Journal of Environmental Engineering,2003,129(11):975-990.
    [84]赵剑强.路面径流污染特性及排污规律的研究[D].西安:西安建筑科技大学,1999.
    [85]严喣世、范瑾初,给水工程(第三版),中国建筑工业出版社,1996.
    [86]刘守新,刘鸿.光催化及光电催化基础与应用.北京:化学工业出版社,2006.
    [87] U. O zgu r, Y. I. Alivov, C. Liu, et al. A comprehensive review of ZnO materials and devices [J].Journal of Applied Physics,2005,98(4):2-103.
    [88] E. S. Elmolla and M. Chaudhuri. Degradation of amoxicillin, ampicillin and cloxacillin antibioticsin aqueous solution by the UV/ZnO photocatalytic process [J]. Journal of Hazardous Materials,2010,173:445-449.
    [89] H. S. Hilal, G. Y. M. Al-Nour, A. Zyoud, et al. Pristine and supported ZnO-based catalysts forphenazopyridine degradation with direct solar light [J]. Solid State Sciences,2010,12(4):578-586.
    [90] Y. Zheng, L. Zheng, Y. Zhan, et al. Ag/ZnO Heterostructure Nanocrystals: Synthesis,Characterization, and Photocatalysis[J]. Inorganic Chemistry,2007,46:6980-6986.
    [91]全国勘察设计注册工程师公用设备专业管理委员会秘书处.全国勘察设计注册公用设备工程师给水排水专业执业资格考试教材第1册给水工程[M].北京:中国建筑工业出版社(第三版),2011.
    [92]全国勘察设计注册工程师公用设备专业管理委员会秘书处.全国勘察设计注册公用设备工程师给水排水专业执业资格考试教材第2册排水工程[M].北京:中国建筑工业出版社(第三版),2011.
    [93]何亚丽,朱伟萍.利用人工湿地处理小区污水的技术研究[J].许昌学院学报,2003,2(22):49-50.
    [94]宋志文,毕学军,曹军.人工湿地及其在我国小城市污水处理中的应用[J].生态学杂志,2003,22(3):74-78.
    [95] Coveney M.F., Stites D.L., Lowe E.F., et al.,―Nutrient removal from eutrophic lake water bywetland filtration,‖Ecol. Eng. vol.19(2), pp.141–159,2002.
    [96] Srinivasan. N, Weaver R W, Lesikar B.J., Persyn R.A.,―Improvement of domestic wastewaterquality by subsurface flow constructed wetlands,‖Biore. Technol. vol.75(1), pp.19–25,2000.
    [97] Green M., Iris Safray, Moshe, Agami,―Constructed wetlands for river reclamation experimentaldesign, start-up and preliminary results,‖Biore. Technol. vol.55(2), pp.157–162,1996.
    [98]吴晓磊.人工湿地废水处理机理[J].环境科学,1995,16(3):83-86.
    [99]Jing S.R., Lin Y.F.,―Seasonal effect on ammonia nitrogen removal by constructed wetlands treatingpolluted river in Southern Taiwan,‖Environ. Pollut. vol.127(2), pp.291–301,2004.
    [100]YF Lin, SR Jing, DY Lee et al.,―Nitrate removal from groundwater using constructed wetlandsunder various hydraulic loading rates,‖Biore. Technol. vol.99, pp.7504–7513,2008.
    [101]Margaret Greenway,―The role of constructed wetlands in secondary effluent treatment and waterreuse in subtropical and aridAustralia,‖Ecological Engineering, vol.25, pp.501–509,2005.Akratos
    [102]Christos, S., Tsihrintzis Vassilios, A.,2007. Effect of temperature, HRT, vegetation and porousmedia on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol. Eng.29(2),173–191.
    [103]Barber, L.B., Leenheer, J.A., Noyes, T.I., et al.,2001. Nature and transformation of dissolvedorganic matter in treatment wetlands. Environ. Sci. Technol.35(24),4805–4816.
    [104]Burgoon, P.S., Reddy, K.R., DeBusk, T.A.,1995. Performance of subsurface flow wetlands withbatchload and continuous-flow conditions. Water Environ. Res.67(5),855–862.
    [105]Greenway, M., Woolley, A.,1999. Constructed wetlands in Queensland: performance efficiency andnutrient bioaccumulation. Ecol. Eng.12(1–2),39–55.
    [106]Huang, J., Reneau, R., Hageborn, C.,2000. Nitrogen removal in constructed wetlands employed totreat domestic wastewater. Water Res.34(9),2582–2588.
    [107]Ibekwe, M., Grieve, Catherine M., et al.,2003. Characterization of microbial communities andcomposition in constructed dairy wetland wastewater effluent. App. Environ. Microbiol.69(9),5060–5069.
    [108]Jing, S.R., Lin, Y.F.,2004. Seasonal effect on ammonia nitrogen removal by constructed wetlandstreating polluted river in Southern Taiwan. Environ. Pollut.127(2),291–301.
    [109]Martin, I., Fernandez, J.,1992. Nutrient dynamics and growth of a cattail crop (Typha-latifolia L.)developed in an effluent with high eutrophic potential-Application to waste–water purification systems.Biore. Technol.42(1),7–12.
    [110]Wen, Y., Huang, X.F., Qiu, Z.,2006. Experimental study on the mechanism of oilfield wastewatertreatment by using hydrolysisacidification+anoxic biological processes.. China Environ. Sci.26(3),288–292.
    [111] Grebenchikova, I. A., Ruchay, N. S., Markevich, R. M. Purification of hydrolysis alcoholmanufacturing wastewater in anaerobic bioreactors. Biotechnologya.2002, Vol.4:70-79.
    [112] Siqing Xia, Jifeng Guo, Rongchang Wang. Performance of a pilot-scale submerged membranebioreactor (MBR) in treating bathing wastewater, Bioresource Technology,2008, Vol.15(99):6834-6843
    [113] Qiang Liu, Xiaochang Wang, Yongjun Liu, Honglin Yuan, Yujiao Du,2010. Performance of ahybrid membrane bioreactor in municipal wastewater treatment. Desalination.258,143-147.
    [114]郭冀峰.膜生物反应器处理表面活性剂废水与膜污染特性研究[D].上海:同济大学博士学位论文,2009.
    [115] Mota C, Head MA, Ridenoure JA, et al. Effects of Aeration Cycles on Nitrifying BacterialPopulations and Nitrogen Removal in Intermittently Aerated Reactors. Applied and EnvironmentalMicrobiology,2005, Vol.71(12),8565-8572.
    [116] XIA Siqing, LI Junying, WANG Rongchang. Nitrogen removal performance and microbialcommunity structure dynamics response to carbon nitrogen ratio in a com生物活性炭池suspendedcarrier biofilm reactor. Ecological engineering,2008,32:256-262
    [117] Lee W, Kang S, Shin H. Sludge characteristics and their contribution to microfiltration insubmerged membrane bioreactors. Journal of Membrane Science,2003, Vol.216(1-2):217-227.
    [118]Henderson N, Flores E, Sampaio M, et al. Supercritical fluid flow in porous media: modeling andsimulation. Chemical Engineering Science,2005, Vol.60(7):1797-1808.
    [119] Fr lund B, Palmgren R, Keiding K, et al. Extraction of extracellular polymers from activatedsludge using a cation exchange resin. Water Research,1996, Vol.30(8):1749-1758.
    [120] Bura R, Cheung M, Liao B, et al. Composition of extracellular polymeric substances in theactivated sludge floc matrix. Water Science and Technology,1998, Vol.37(4-5):325-333.
    [121] Liu H, Fang HHP. Extraction of extracellular polymeric substances (EPS) of sludges. Journal ofBiotechnology,2002, Vol.95(3):249-256.
    [122] Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent.Journal of Biological Chemistry.1951, Vol.193(1):265-275.
    [123] Mecozzi M. Estimation of total carbohydrate amount in environmental samples by thephenol-sulphuric acid method assisted by multivariate calibration. Chemometrics and IntelligentLaboratory Systems,2005, Vol.79(1-2):84-90.
    [124] Cho B D and Fane A G,2002. Fouling transients in nominally sub-critical flux operation of amembrane bioreactor. J. Membr. Sci.209,391-403.
    [125]Gao, M., Yang, M., Li, H., Yang, Q., Zhang, Y.,2004. Comparison between a submergedmembrane bioreactor and a conventional activated sludge system on treating ammonia-bearing inorganicwastewater. J. Biotechnol.108,265-269.
    [126]Lesjean, B., Rosenberger, S., Laabs, C., Jekel, M., Gnirss, R., Amy, G.,2005. Correlation betweenmembrane fouling and soluble/colloidal organic substances in membrane bioreactors for municipalwastewater treatment. Water Sci. Technol.51(6-7),1-8.
    [127]Ji L and Zhou J,2006. Influence of aeration on microbial polymers and membrane fouling insubmerged membrane bioreactors. J. Membr. Sci.276(1-2),168-177.
    [128]段海澎,黄健敏,程温莹.污泥与垃圾堆肥在高速公路边坡绿化中的应用研究[J].公路,2008,6(1):204-206.
    [129]黄得扬,陆文静,王洪涛.有机固体废物堆肥化处理的微生物学机理研究[J].环境污染治理技术与设备,2004,5(1):12-18.
    [130]赵伟,席北斗,魏自民,等.不同原料堆肥胡敏酸的荧光特性[J].环境科学研究,2011,24(9):1041-1046.
    [131]张静,於林中,何品晶,等.不同植物废物对垃圾堆肥过程VSCs释放的影响[J].中国环境科学,2011,31(1):68-72
    [132] Ogunwande Ga, Osunade Ja, Adekalu Ko, et al. Nitrogen loss in chicken litter compost as affectedby carbon to nitrogen ratio and turning frequency [J]. Bioresource Technology,2008,99(16),7495–7503.
    [133] Marta Fuentes, Roberto Baigorri, Gustavo Gonzalez Gaitano, et al. The complementary use of1H NMR,13C NMR, FTIR and size exclusion chromatography to investigate the principal structuralchanges associated with composting of organic materials with diverse origin[J].Organic Geochemistry,2007(38):2012–2023.
    [134] Senesi N, Plaza C. Role of humification processes in recycling organic wastes of various natureand sources as soil amendments [J].Clean,2007,35(1):26-41.
    [135]李卫东.浅论高速公路环境与绿化[J],城乡与环境,2010.
    [136]丁小玲,杨立中,王忠和.京沪高速铁路(徐沪段)建设对生态环境的影响及保护措施[J],安徽农业科学,2010,38(8):4156-4157,4168.
    [137]苏罗明.为减轻隧道废气污染献一策[J],中国电子科学期刊.
    [138]唐孝炎,李金龙,栗欣.大气环境化学[M].北京:高等教育出版社,1998.231~238.
    [139]邓顺熙,司宝忠.我国轻型汽车污染物排放因子的实验的研究[J].中国环境科学,1999,19(2):178~181.
    [140] Fraser M,Cass G,Simoneit B. Gas2phase and particle phase organic compounds emitted frommotor vehicle traffic in a Los Angeles roadway tunnel [J].Environ Sci Technol,1998,32:2051~2060.
    [141]丁焰,叶慧海,王玮,等.公路隧道机动车流量调查及其构成特点分析[J].环境科学研究,2001,14(4):43-47.
    [142]王玮,叶慧海,金大善,等.交通来源颗粒物及其无机成分污染特征的研究[J].环境科学研究,2001,14(4):27-31.
    [143]上海市市政工程管理局科学技术情报站.隧道废气治理简述.2008,3
    [144]公路隧道的废气处理[J].隧道译丛,1994,(2),21-24.
    [139]温学,孔国辉,彭长连,林桂珠等.植物监测大气污染及其抗性[A].热带亚热带植物学报,2003,11(4):348-357.
    [145]李寒娥,杨敏辉,周贱平.佛山市抗大气污染应用植物的选择[A].佛山科学技术学院学报(自然科学版),2003,9(3):50-53.
    [146]立本英机,安部郁夫.活性炭材料的应用技术[M].高尚愚译.南京:东南大学出版社,2002.6-7.
    [147]卢燕冰.有关固体吸附剂--活性炭材料的综述[J].2006:1-3.
    [148]姬丽琴,齐永新,周林成等.磁性微/纳米材料吸附环境污染物的研究进展[J].化工新型材料,2011,11(39):32-35.
    [149]吴聪萍,王瑞琼,祝梅等.绿色发展与环境净化材料[J].可持续发展,2012,2,55-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700