用户名: 密码: 验证码:
光催化—催化湿式氧化处理有机染料废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的不断发展,同时产生大量有机废水,成分较为复杂,许多难降解有机污染物存在于水体中,它们毒性大,很难用常规的物化和生化方法进行处理达标排放,造成极严重的环境污染,治理水污染已成为当前我国城镇社会经济发展中迫切需要解决的重要问题,因此,寻求高效的水污染处理技术已成为当前国内外研究工作者的研究热点,高级氧化技术是当前难降解有机废水治理方向重要技术手段。本论文分别以甲基橙、酸性大红GR为模拟污染物,考察了光催化氧化技术和催化湿式氧化技术的处理效果,在此基础上构建了光催化-催化湿式氧化技术体系,以活性艳红X-3B为模拟污染物,考察了各因素的影响,得出动力学方程,同时探讨该技术协同机理,并对工业有机废水处理进行了研究。
     本文首先研究了光催化氧化技术处理甲基橙溶液的效果。采用水热法制备出了不同形貌的ZnO纳米阵列,以甲基橙溶液为模拟有机废水考察了它们各自在紫外光下的催化性能。并对不同形貌的ZnO形貌的生长机理进行了分析,结果发现通过控制pH、添加不同活性剂等反应条件可以调控纳米ZnO样品的形貌,得到比表面积大、催化活性高的催化剂。为了提高单一半导体在催化过程中对污染物的降解效率,分别将TiO2、CuO等与ZnO复合,可控制备纳米TiO2/ZnO,CuO/ZnO等复合催化剂,结果表明两种半导体在降解过程中发挥了协同作用,共同促进了催化剂的降解效率,其中纳米CuO/ZnO复合催化剂的催化活性最高,有效地提高了光催化氧化技术处理有机废水效果。
     其次,研究了催化湿式氧化技术对模拟酸性大红GR有机废水的处理效果。通过对各过渡金属催化性能的比较、复合及稀土Ce改性催化活性和催化剂稳定性研究,制备工艺的改进,采用浸渍法以γ-Al2O3为载体制备了高催化性能CuO-ZnO-CeO2/γ-Al2O3催化剂,并在常压下以该催化剂处理酸性大红GR模拟染料难降解有机废水,通过单因素及正交优化实验研究,得出处理模拟该废水最佳处理工艺条件:处理600mg/L的酸性大红GR模拟难降解有机废水(其CODCr值为396.85mg/L),反应温度70℃、反应时间2.5h、催化剂加入量为2.5g、30%H2O2加入量为0.5mL、进水pH值为4,废水CODCr去除率和脱色率分别达到86.13%和99.91%,降解效果显著。
     在集合光催化氧化技术和催化湿式氧化技术研究基础上,构建了光催化-催化湿式氧化新工艺体系。考察了以CuO-ZnO-CeO2/γ-Al_2O_3为催化剂对活性艳红X-3B模拟有机染料废水处理工艺条件,并通过响应曲面法优化工艺,得出最佳工艺条件为:反应温度54℃,反应时间2.7h,催化剂投加量2.6g,H_2O_2投加量0.62mL,pH值3.4。此时脱色率可达99.33%。
     采用ELKM动力学模型进行分析,结合实验分析结果,对光催化-催化湿式氧化降解活性艳红X-3B进行了动力学研究,发现符合伪一级动力学模型;反应动力学表观速率常数随温度升高有所增加,且与反应温度关系符合Arrhenius方程,表观活化能为32.79kJ/mol,表观动力学方程为:
     利用UV-Vis、IR和GC-MS等检测手段分析光催化-催化湿式氧化工艺处理染料活性艳红X-3B中间产物进行分析,推测其降解路径,并由此推断光催化-催化湿式氧化工艺处理有机染料废水降解机理和协同效应,符合自由基机理,羟基自由基起主要作用。
     最后,比较光催化-催化湿式氧化工艺和催化湿式氧化工艺处理实际工业有机废水处理效果,结果表明,光催化-催化湿式氧化工艺所要求温度更低和双氧水投加量更少,处理效率更佳,降低了能耗、物耗,为环境友好的处理工艺。
With development of modern industry, a large number of organic wastewaterwas produced, the compositions of wastewater were complicated and existed as thedifficult degradable organic pollutants in water. As we all known, the wastewater wastoxic and difficult to reach to standard emission using conventional physicochemicaland biochemical methods, which caused very serious environmental pollution, andthe control of water pollution had become the current urgent problems. Therefore,many domestic and foreign research workers focused on seeking effective waterpollution treatment methods. Advanced oxidation technology was an importanttechnical method to the current direction of refractory organic wastewater treatment.This paper respectively used methyl orange and acid red GR as simulate pollutants, toexamine the treatment effect of the photocatalytic oxidation technology and catalyticwet oxidation technology. The photocatalytic-catalytic wet oxidation technologysystem was built, and active brilliant red X-3B as simulate pollutants was used, theeffect of various factors, finally fabricating kinetics equation was studied, and thenthe technology synergy mechanism and the industrial organic wastewater werestudied.
     Firstly,This paper studied the effect of the methyl orange solution’s degradationwhich used the technique of photocatalytic oxidation. Different morphology ZnOnanoparticle arrays was prepared by using hydrothermal method and their catalyticproperties were investigated under UV light with methyl orange solution as simulateorganic wastewater. And the growth mechanism of different morphology of ZnO wasanalyzed. These results showed that controlling the pH and adding different surfactantcould control the size of nanometer ZnO, and could get the nanometer ZnO of largespecific surface area and high catalytic activity of the catalyst. In order to overcomedefect of the single semiconductor of catalytic degradation efficiency of pollutants inthe process, TiO2, CuO were respectively composited with ZnO, the preparation ofnanometer TiO2/ZnO and CuO/ZnO composite catalyst, the results showed that thetwo kinds of semiconductor played a synergy in the degradation process, promoted the efficiency of the degradation of catalyst, the composite of nanometer CuO/ZnOcatalyst had the highest catalytic activity, effectively improved the effect of thetreatment of photocatalytic oxidation to deal with organic wastewater.
     Secondly,The treatment effect of acid red GR and industrial refractory organicwastewater were studied by catalytic wet air oxidation technology. The high catalyticperformanceCuO-ZnO-CeO2/γ-Al2O3was prepared with impregnation methodon the carrier of γ-Al2O3. And the catalyst was used to deal with simulated acid redGR dye biodegradable organic wastewater at atmospheric pressure. On the basic ofexperimental studies by single factor and orthogonal optimization, the optimaltreatment conditions of the wastewater treatment process were:600mg/L ofsimulated acid red GR refractory organic wastewater (COD value was396.85mg/L),reaction temperature was70℃, reaction time was2.5h, catalyst dosage was2.5g,30%H2O2dosage was0.5mL, pH was4.COD removal and decolonization ratereached86.13%and99.91%, respectively. The degradation effect was remarkable.
     Based on study of photocatalytic oxidation technology and catalytic wetoxidation technology research, the photocatalytic-wet catalytic oxidation process wasconstructed. Treatment process conditions of red X-3B dye analog refractory organicwastewater were studied by using the catalystCuO-ZnO-CeO2/γ-Al2O3and thisprocess. And optimization conditions by response surface methodology: the reactiontemperature was54℃, reaction time was2.7h, catalyst dosage was2.6g, dosagewas0.62mL, pH was3.4. At this point, the decolonization rate reached to99.33%.
     Kinetic studies of degradation of reactive brilliant red X-3B by thephotocatalytic-catalytic wet oxidation were carried out by applying ELKM kineticmodels and combining with experimental results. The results showed that the processcompliance with the pseudo-first-order kinetic model. And apparent reaction kineticrate constants increased with temperature increasing, and fitted the Arrheniusequation relationship with the reaction temperature, and the apparent activationenergy was32.79kJ/mol. The apparent kinetic equation was:
     The degradation path of simulation dye reactive brilliant red X-3B by the photocatalytic-wet catalytic oxidation process was analyzed by using UV-Vis, IR andGC-MS detection means. And the degradation mechanism of organic wastewatertreated by the process was inferred.
     Finally, the effect of refractory industrial organic wastewater treatment wascomprised the photocatalytic-wet catalytic oxidation process and wet catalyticoxidation process. And the results showed that the photocatalytic-wet catalyticoxidation process required lower temperature and less hydrogen peroxide dosingwhile it attained better processing efficiency, and reduced the energy consumption. Itwas an environmental friendly process.
引文
[1]叶文旗,赵翠,潘一,等.高级氧化技术处理煤化工废水研究进展[J].当代化工,2013,42(2):172-174.
    [2]叶林静,关卫省,李宇亮.高级氧化技术降解双酚A的研究进展[J].化工进展,2013,32(4):909-918.
    [3] Hunsberger J.F.Standard reduction Potentials,in:R.C.Weast(Ed.),Handbook of Chemistry andPhysics[M].58th ed.CRC Press,Ohio,1977.
    [4]焦庆周,柴多里,鲍远志.高级氧化技术与含酚废水处理[J].现代化工.2013,33(1):40-44.
    [5]王倩.电—催化湿式氧化处理苯酚废水的协同作用研究[D].同济大学,2008.
    [6]孙勇.微波辅助低温低压湿式催化氧化处理高浓度有机废水的研究[D].大连理工大学,2008.
    [7] Yoshaiih H,Kenichi Y. Treatment of wastewater and sludge by a catalytic wet oxidationprocess[J].Desalination,1994,98:27-39.
    [8]韩玉英.催化湿式氧化处理高浓度毗虫琳农药废水的研究[D].西北大学,2005.
    [9]杨琦,单立志,钱易.国外对污水催化湿式氧化处理的研究进展[J].环境科学研究,1998,11(4):62-64.
    [10] Li L.,Chen P.,Gloyna E.F.Generalized klnetic model for wet oxidation of organiccompounds[J].AIChEJ.1991,37(11):1687-1697
    [11] Zhang,Q.;Chuang K.T.Lump ed kinetic model for catalytic wet oxidation of organiccompounds in industrial wastewater[J].AIChE J.1999,45(l):145-149.
    [12] Belkacemi K,Larachi F,Sayari A.Lumped kinetics for solid-catalyzed wet oxidation:a versati-le model[J].J.Catal,2000,193:224-231.
    [13] Lopez Bemal J.,Portela Miguelez J.R.,Sanz E.N.,Martinez E.Wet air oxidation of oily wastesgenerated aboard ships:kinetic modeling[J].J.Hazard Mater.1999,B67:61-73.
    [14]村上幸夫.合成有机化合物废水的湿式酸化处理的研究[J].水处理技术,1978,19(10):901-909
    [15] Olivier L, Barbler J, Duprez D,etal. Catalytic wet oxidation of phone and vacrylic acid overRu/C and Ru-CeO2/Ccatalyst[J]. Appl Catal A: Gen,2000,25:267-275.
    [16] Luck F. Wet air oxidation: past, present and future[J].Catalysis Today,1999,53:81-91.
    [17]张秋波,李忠,胡克源.酚水及煤气废水的湿式氧化处理[J].环境科学学报,1987,7(3):305-312
    [18] Lin S H,Hou S J.Catalytic wet-air oxidation of high strength industrial wastewater[J].Applied Catalysis B:Environmental,1996,9:133-147.
    [19]毕道毅.湿式氧化催化剂的研究[J].工业催化,1999,5:24-30.
    [20]刘钧,周力.湿式氧化工艺在永处理中的应用分析[J].净水技术,1998,65(3):6-10.
    [21]王怡中,李忠,尹玲,等.有机磷农药永湿式空气氧化预处理的研究[J].环境科学,1993,12(5):408-413
    [22] L.Lei,H.P.Hu.G.Chu.etal.catalytic wet oxidation of dying and printing wastewater.wet.Sci.Tech,1997,35:311-319.
    [23] Pintar Albin, Levec Janez.Catalytic Liquid Phase Oxidation of Refractory Organics in WasteWater. Chemical Engineering Science,1992,47(9~11):2395~2400.
    [24]杜鸿章,房廉清,江义.难降解高浓度有机废水催化湿式氧化技术[J]Ⅰ高活性、高稳定性的湿式氧化催化剂的研制.水处理技术,1997,23(2):82~87
    [25]谭亚军,蒋展鹏,祝万鹏,等.有机污染物湿式氧化降解中Cu系列催化剂的稳定性[J].环境科学,2000,21(4):82-85
    [26] D.Leitenbugr.A.Prinavera.G Dolcetti.Wet Oxi dation of A cetic Acid Catalyzed by DoPedCeria[J].Applied Catalysis B:Environmental.1996,11(3):29-35.
    [27]赵彬侠,刘林学,张耀中,等.CeO2添加量对催化剂Cu-Ni-Ce/SiO2性能的影响[J].分子催化,2008,22(6):507-512
    [28]庞建峰,费学宁,王连生,等.印染废水处理中混凝剂的研究与进展[J].天津城市建设学院学报,2003,9(1):96-101.
    [29] Fujishima A,Honda K.Electrochemical Photolysis of Water at a Semiconductor Electrode[J].Nature.1972,238:37-38.
    [30]吕华,姜聚慧,刘玉民,等.纳米ZnO光催化剂的制备及性能研究[J].环境科学与技术,2010.33(6):42-43.
    [31]李长全,罗来涛,熊光伟. ZnO纳米管的光学性质及其对甲基橙降解的光催化活性[J].催化学报,2009,30(10):1060-1062.
    [32] Spnhel L.Anderson M A.Semiconductor clusters in the sol-gel process:quantizedaggregation,gelation,and crystal growth in concetrated ZnO colloids[J].J.Am. Chem.Soc..1991,113:2826-2833.
    [33] Guo Lin,Yang Shihe.Synthesis and chracterization of poly(vinypyrrolidone)-modified zincoxidenanoparticles[J].Chem. Mater..2000,12:2268-2274.
    [34] Sun Yinglan,Bian Jiming,Sun Jingchanget al.Electronic Structure and Optical Properties ofVertically Aligned ZnO Nanorod Arrays Grown by Low-temperature HydrothermalMethod[J].Journal of Inorganic Materials,2011,26(3):333-335.
    [35]刘超峰,胡行方,祖庸,等.以尿素为沉淀剂制备纳米氧化锌粉体[J].无机材料学报,1999,15(3):391-396.
    [36]晋传贵,朱伟长,方道来,等.氧化锌纳米粒子的制备[J].精细化工,1999,16(2):26.
    [37]勒建华,白烦贤,白涛,等.氨水沉淀法制备纳米粉氢氧化锌和氧化锌[J].无机盐工业,2000,32(6):7-8.
    [38] Wong E M,Bonevich J E,Searson P C.Growth kinetics of nanocrystalline ZnO particles fromcolloidal suspensions[J].J.Phys.Chem.B,1998,102:7770-7775.
    [39] Seung Hwan Ko,Daeho Lee,Hyun Wook Kang,et al.Nanoforest of Hydrothermally GrownHierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell[J].NanoLett.2011,11:666-671.
    [40]马宏文,矫立男,杨雪,等.固相法合成纳米ZnO及其光催化性能研究[J].化学与生物工程,2006,23(4):17-18.
    [41] Liu Yanxia,Zhang Hongliang,An Xiuyun,et al.Effect of Al doping on the visiblephotoluminescence of ZnO nanofibers[J].Journal of Alloys and Compou nds,2012,506(2):772-776.
    [42] Sun Jianhui,Dong Shuying,Feng Jinglan,et al.Journal of Molecular Catalysis A:Chemical,2011,335(1-2):145-150.
    [43]李平,路海霞,曾志军,等. ZnO/TiO2纳米管复合材料的制备及光电化学性能研究[J].北京师范大学学报(自然科学版),2012,48(1):33-36.
    [44]赵丽,范佳杰,李静,等. ZnO/TiO2纳米管晶膜电极的制备及光电性能[J].无机材料学报,2012,27(6):585-590.
    [45] Wang Nuanxia,Sun Chenghua,Zhao Yong,et al. Fabrication of three-dimensional ZnO/TiO2heteroarchitectures via a solution process[J].Journal of Materials Chemistry,2008,18:3909-3911.
    [46]蔡乃才,黄行九,刘娟,等.新型复合电极与偶氮染料分子的氧化降解反应的研究[J].化学学报,2002,60(4):574-579.
    [47] Xu H.. Zhang. L. Z. Selective nonaqueous synthesis of C-Cl co-doped TiO2with visible-lightphotocatalytic activity [J].J.Phys.Chem.C.2010,114(26):11534-11541.
    [48]邢朋飞,王金淑,金建新,等. S-N共掺杂纳米TiO2可见光光催化剂的制备及其性能研究[J].纳米科技,2007,2(2):29-33.
    [49]彭银,陈家伟,吕同杰,等.纳米ZnO的制备及其对甲基红的光催化降解[J].科技资讯,2008,22,10-11.
    [50] H.Zollinger (Ed.),Color Chemistry:Synthesis,Properties and Applieations of Organie Dyesand Pigmenis,second reviseded.,VCH,1991.
    [51] P.Bautista,A.F.Mohedano,M.A.Gilarranz et al. applition of Fenton oxidation to cosmeticwastewaters treatment. Journal of Hazardous Materials,2007,143(1-2):128-143.
    [52] Nina P, Doan P M,, Pierre G. Platinum and ruthenium catalysts on mesoporous titanium andzirconium oxides for the catalytic wet air oxidation of model compounds[J]. AppliedCatalysis B:Environmental,2005,59(1-2):121-130
    [53] C.I.Pearce,J.R.Loyd,J.T.Guthrie.The Removal of colour Form Textile Wastewater Usingwhole Baeterial Cells:A Review[J].Dyes and Pigments,2003,58:179-196.
    [54] Zazo J A,Casas J A,Mohedano A F,et al. Catalytic wet peroxide oxidation of phenol with aFe/active carbon catalyst. Applied Catalysis B: Environmental,2006,65(3-4):261-268.
    [55] Seung Hwan Ko,Daeho Lee,Hyun Wook Kang, Koo Hyun Nam, Joon Yeob Yeo,Suk JoonHong,Costas P. Grigoropoulos, Hyung Jin Sung. Nanoforest of Hydrothermally GrownHierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell[J].NanoLetters.2011,11:666-667.
    [56] Cheng Chuanwei, Yan Bin,Wong She Mein,et al.Fabrication and SERS Performance ofSilver-Nanoparticle-Decorated Si/ZnO Nanotrees in Ordered Arrays.J.ACS[J].Applied.Materials&interfaces,2010,2(7):18-24.
    [57] Kondru A K,Kumar P,Chand S.Catalytic wet peroxide oxidation of azo dye (Congo red)using modified Y zeolite as catalyst[J].Hazardous Materials,2009,166(1):342-347.
    [58]谭亚军,蒋展鹏,祝万鹏,等.有机污染物湿式氧化降解中Cu系列催化剂的稳定性[J].环境科学,2000,21(4):82-85.
    [59]焦庆周,柴多里,鲍远志.高级氧化技术与含酚废水处理[J].现代化工,2013,33(1):40-44.
    [60]宾月景,祝万鹏,蒋展鹏,等.催化湿式氧化催化剂及处理技术研究[J].环境科学,1999,20(2):42-44.
    [61]董振海,胥维昌.光催化降解染料废水的研究现状及展望[J].染料与染色,2003.3:16-18
    [62]王芳.纳米TiO2光催化降解染料废水反应机理与动力学的研究[D].兰州大学,2008.
    [63]雷绍民,曲艺,白春华. TiO2/矿物复合光催化剂降解工业废水中偶氮染料的应用研究[J],中国矿业,2006(6):54-57
    [64]王怡中,符雁.不同类型染料化合物的太阳光催化降解研究[J].太阳能学报,1998,19(2):117-126
    [65]江立文,周岳溪,李耀中,等.偶氮染料4BS光催化降解的特性研究[J].环境工程,2001,19(1):59-61.
    [66] Nishio,Junpei,Tokumura,et al.Photocatalytic decolorization of azodye with zinc oxidepowder in an external UV light irradiationslurry photoreactor[J].J Hazard Mater,2006,138(1):106-110.
    [67] P.Bautista,A.F.Mohedano,M.A.Gilarranz et al.Applition of Fenton oxidation to cosmeticwastewaters treatment[J].Journal of Hazardous Materials,2007,143(1-2):128-143
    [68]陈志鸿,方晓明,张正国.暴露高能晶面锐钛矿型TiO2研究进展[J].化工进展,2013,32(6):1320-1330.
    [69] Bandala E R,Gelover S,Leal M T,et al.Solar photocatalytic degradation of Aldrin[J].CatalysisToday,2002,76(2-4):189-199.
    [70]郑巍,刘维屏.负载TiO2光催化降解咪蚜胺农药[J].环境科学,1999,20(1):73-76.
    [71]袁胜利,张宗权.负载型TiO2光催化剂对有机磷农药废水降解的研究[J].西北农林科技大学学报(自然科学版),2005,33(8):122-123.
    [72] Hanaa S.El-Desoky,Mohamed M.Ghoneim,Naglaa M.Zidan.Decolorization and degradationof Ponceau S azo-dye in aqueous solutions by the electrochemical advanced Fentonoxidation[J].Desalination,2010,264:143-150.
    [73]赵进才,张丰雷, H.Hidaka.二氧化钛微粒存在下表面活化剂光催化分解机理的研究[J].感光科学与光化学,1996,14(8):269-273.
    [74] Ewa M.Siedlecka,Stefan Stolte,Marek Go e biowski,et al.Advanced oxidation process for theremoval of ionic liquids from water:The influence of functionalized side chains on theelectrochemical degradability of imidazolium cations[J].Separation and PurificationTechnology,2012,101:26-33.
    [75]肖邦定,胡凯.非离子表面活性剂在人工光源辐照下的光催化降解[J].中国环境科学,1999,19(1):13-15.
    [76]王君,郭东宝,张朝红.纳米锐钛型TiO2催化超声降解SDBS溶液[J].水处理技术,2005,31(9):21-24.
    [77]方佑玲,赵文宽,尹少华,等.用浸涂法制备漂浮负载型TiO2薄膜光催化降解辛烷[J].应用化学,1997,14(10):81-83.
    [78]张萱,郭幸丽,凌晞.高级氧化技术在水处理中的研究进展[J].天津化工,2013,27(3):11-13.
    [79] A.Heller,Abstracts of the First International Conference on TiO2Photocatalytic Purifieationand Treatment of Water and Air.London,Oniario,Canad1992:17.
    [80]张海燕,王宝辉,陈颖.光催化氧化处理含油污水的研究[J].化工进展,2003,22(1):67-70.
    [81]方佑龄,赵文宽,赵国华.用浸涂法制备漂浮附载型TiO2薄膜光催化降解辛烷[J].环境化学,1997,16(5):413-417.
    [82] W. Gernjak,M. I.Maldonado, et al.Pilot-plant treatment of olive mill wastewater (OMW)by solar TiO2,photocatalysis and solar photo-Fenton. Solar Energy,2004,77:567-572.
    [83] O.B.Ayodelea,b,J.K.Lima,B.H.Hameeda.Pillared montmorillonite supported ferric oxalate asheterogeneous photo-Fenton catalyst for degradation of amoxicillin[J].Applied CatalysisA:General,2012,413:301-309.
    [84] M.B.Kasiri,A.R.Khataee. Photooxidative decolorization of two organic dyes with differentchemical structures by UV/H2O2process:Experimental design[J]. Desalination,2011,270:151-159.
    [85] By Te-Fu Yeh, Jhih-Ming Syu, Ching Cheng,et,al. Graphite Oxide as a Photocatalyst forHydrogen Production from Water[J]. Advanced. Functional. Materials.2010,20:2255-2262.
    [86] Tiangui You, Junfeng Yan, Zhiyong Zhang, et al. Fabrication and optical properties ofneedle-like ZnO array by a simple hydrothermal process[J]. Mat erials Letters,2012,66:246-252.
    [87] Junsheng Yu,Zhaolin Yuan,Shijiao Han,et al.Size-selected growth of transparentwell-alignedZnO nanowire arrays[J].Nanoscale Research Letters,2012,7:5-17
    [88] Yang Yong-qiang,DUGao-hui,XUBing-she.Optical Properties of Flower-like ZnO NanorodsSynthesized by A Simple Solution Route[J]. Chin. J. Lumin,2010,31(2):249-246.
    [89] Fang Lu,Weiping Cai,Yuguang Zhang. ZnO Hierarchical Micro/Nanoarchitectures:Solvothermal Synthesis and Structurally Enhanced Photocatalytic Performance[J] Adv.Funct. Mater,2008,18:1047-1052.
    [90] Satoshi Yamabi,Junko Yahiro,Satoko Iwai,et al.Formation of cellular films consisting ofwurtzite-type zinc oxide nanosheets by mediation of phosphate anions[J]. AppliedChemistry,2005:489-496.
    [90] Jia Hong Pan,Xiwang Zhang,Alan J.Du,et al.A hierarchically assembled mesoporous ZnOhemisphere array and hollow microspheres for photocatalytic membrane water filtration[J].Phys. Chem. Chem. Phys,2012,14:74-81.
    [91] Wang Z,Qian X F,Yin J,et al.Large-scale fabrication of tower-like,flower-like, and tube-likeZnO arrays by a simplechemical solution route [J].Langmuir,2004,20(8):3441-3448.
    [92] Lori E. Greene, Matt Law, Dawud H. Tan, Max Montano,Josh Goldberger,Gabor Somorjai,and Peidong Yang. General Route to Vertical ZnO Nanowire Arrays Using Textured ZnOSeeds[J]. nano letters,2005,7,1231-1236.
    [93] M. Muruganandham,I.S. Chen,J.J.Wu.Effect of temperature on the formation of macroporousZnO bundles and its application in photocatalysis[J]. Journal of Hazardous Materials,2009,172:700-706.
    [94]唐斌,张强,罗强,等.纳米ZnO光学性质研究进展[J].微纳电子技术,2012,2:84-86.
    [95]朱振峰,蔺华妮,陈之战,等.低温水浴法制备不同花状结构ZnO粉体及其发光性能研究[J].功能材料,2012,1(43):2-4.
    [96] Jong-Yeob Kim,Hyeok Jeong,Du-Jeon Jang.Hydrothermal fabrication of well-ordered ZnOnanowire arrays on Zn foil: room temperature ultraviolet nanolasers[J] NanopartRes,2011,13:6699-6706.
    [97] Meidan Ye, Hsiang Yu, Liu,Changjian Lin, et al. Hierarchical Rutile TiO2Flower ClusterBased High Effi ciency Dye-Sensitized Solar Cells via Direct Hydrothermal Growth onConducting Substrates [J]. Small,2012,10(1):312-320.
    [98] Chen Da,Zhang Hao,Hu Song,et al.Preparation and Enhanced PhotoelectrochemicalPerformance of Coupled Bicomponent ZnO TiO2Nanocomposites [J]. The Journal ofChemical Physics C,2008,112:117-122.
    [99]朱磊,段学臣,蒋波,等. ZnO/TiO2纳米管光催化剂的制备与表征[J].中国有色金属学报,2010,20(7):1382-1389.
    [100] Zhang Zhonghai,Yuan Yuan,Fang Yanju,et al. Preparation of photocatalytic nano-ZnO/TiO2film and application for determination of chemical oxygen demand[J]. Talanta,2007(73):523-528.
    [101]张荷美,宋秀芹.微/纳米结构ZnO/TiO2复合光催化剂的制备及其光催化性能研究[J].化学通报,2010,75(11):1012-1017.
    [102] Song Limin,Chen Chao,Zhang Shujuan. Preparation and photocatalytic activity of visiblelight-sensitive selenium-doped bismuth sulfide[J]. Powder Technology,2011(27):170-174.
    [103] Fenghua Zhao,Jian-Guo Zheng,Xianfeng Yang,et al.Complex ZnO nanotree arrays withtunable top,stem and branch structures [J].Nanoscale,2010,2:1674-1683.
    [104] Shalaka C. Navale,S.W. Gosavi,I.S. Mulla.Controlled synthesis of ZnO from nanospheres tomicro-rods and its gas sensing studies[J]. S.C. Navale et al. Talanta,2008,75:1315-1319.
    [105] J.Y.Lao,J.Y.Huang,D.Z.Wang,et al.ZnO Nanobridges and Nanonails [J]. Nano Lett,2003,3(2):235-238.
    [106]洪小松.催化湿式氧化法催化剂制备及处理染料废水的研究[D].南昌大学,2012.
    [107]曾经,彭青林.催化湿式氧化技术处理高浓度有机废水催化剂研究[J].环境污染与防治,2009,31(8):37-45.
    [108]王雪源. CWAO法处理噻螨酮生产废水的催化剂研究[J].工业水处理.2008,28(10):44-47.
    [109] Centeno M A,Paulis M. Catalytic combustion of volatile organic compounds onAu/CeO2/Al2O3and Au/Al2O3catalysts. Applied Catalysis A:General,2002,234:65-78
    [110] Rui Zhou,Yong Cao. Rare earth(Y,La,Ce)-promoted V-HMS mesoporous catalysts foroxidative dehydrogenation of propane.Applied Catalysis A:General,2002,236:103-111
    [111] Wang Yu-juan,Jie Xue-Fei.Function of ceria in oxidation catalysis. Chinese Journal OfPower Sourees,2001,26(1):43-46
    [112] Jiang Xiao-yuan,Zhou Ren-xian. Effects of CeO2on dispersion state and catalytic propertyof CuO/Al2O3. Journal of Molecular Catalysis,1999,13(3):176-180.
    [113] Centeno M A,Paulis M.Catalytic combustion of volatile organic compounds onAu/CeO2/Al2O3and Au/Al2O3catalysts. Applied Catalysis A:General,2002,234:65-78.
    [114]邵荣,戴勇.催化湿式氧化高浓度对氯苯基异氰酸酯生产废水催化剂的研究[J].化工新型材料,2008,36(11):108-111.
    [115]黄学敏,乔南利,曹利,等. CuxCe1-xO2/γ-Al2O3催化剂催化燃烧甲苯性能的研究[J].环境科学学报,2012,32(5):1177-1182.
    [116] Zazo J A,Casas J A,Mohedano A F,et al. Catalytic wet peroxide oxidation of phenol with aFe/active carbon catalyst[J]. Applied Catalysis B: Environmental,2006,65(3-4):261-268
    [117] Kasiri M B,Aleboyeh H,Aleboyeh A. Degradation of Acid Blue74using Fe-ZSM5zeoliteas a heterogeneous photo-Fenton catalyst[J].Applied Catalysis B: Environmental,2008,84(1-2):9-15
    [118] Kondru A K,Kumar P,Chand S. Catalytic wet peroxide oxidation of azo dye (Congo red)using modified Y zeolite as catalyst[J].Hazardous Materials,2009,166(1):342-347
    [119] Zhou Rui,Cao Yong.Rare earth(Y,La,Ce)-promoted V-HMS mesoporous catalysts foroxidative dehydrogenation of propane[J].Applied Catalysis A:General,2002,236:103-111.
    [120] Orlando M Alfano, Rodolfo J Brandi,Alberto E Cassano.Degradation kinetics of2,4-Din water employing hydrogen peroxide and UV radiation[J]. Chemical EngineeringJournal,2001,82:209-218.
    [121] K.Dash,G.Venkateswarlu,S.Thangavel,et al. Ultraviolet photolysis assisted mineralizationand determination of trace levels of Cr, Cd, Cu, Sn and Pb in isosulfan blue byICP-MS[J].Microchemical Journal,2011,98:312-316.
    [122] O.B.Ayodelea,J.K.Lima,B.H.Hameeda,et al.Pillared montmorillonite supported ferricoxalate as heterogeneous photo-Fenton catalyst for degradation of amoxicillin[J].AppliedCatalysis A:General,2012,413-414:301-309.
    [123] Gao Yuanyuan,Gan Huihui,Zhang Gaoke,et al.Visible light assisted Fenton-like degradationof rhodamine B and4-nitrophenol solutions with a stable polyhydroxyl-iron/sepioliteCatalyst[J]. Chemical Engineering Journal.2013,217:221-230.
    [124] Rau′l Molina,Fernando Mart′nez,Juan Antonio Melero,et al.Mineralization of phenol bya heterogeneous ultrasound/Fe-SBA-15/H2O2process:Multivariate study by factorial designof experiments[J].Applied Catalysis B: Environmental.2006,66:198-207.
    [125] O.B. Ayodele,B.H. Hameed. Synthesis of copper pillared bentonite ferrioxalate catalyst fordegradationof4-nitrophenol in visible light assisted Fenton process[J]. Journal of Industrialand Engineering Chemistry.2013,19:966-974
    [126] M.B.Kasiri,H.Aleboyeh,A.Aleboyeh,et al.Degradation of Acid Blue74using Fe-ZSM5zeolite as a heterogeneous photo-Fenton catalyst[J].Applied Catalysis B: Environmental.2008,84:9-15.
    [127] Ahmed Khan Leghari Sajjada,Sajjad Shamailaa,Baozhu Tiana,et al.Comparative studiesof operational parameters of degradation of azo dyes in visible light by highly efficientWOx/TiO2photocatalyst[J].Journal of Hazardous Materials.2010,177:781-791.
    [128] Ji Fei,Li Chaolin,Zhang Jiahuan,et al.Heterogeneous photo-Fenton decolorization ofmethylene blue over LiFe(WO4)2catalyst[J].Journal of Hazardous Materials.2011,186:1979-1984.
    [129] Hanaa S.El-Desoky,Mohamed M.Ghoneim,Naglaa M.Zidan.Decolorization and degradationof Ponceau S azo-dye in aqueous solutions by the electrochemical advanced Fentonoxidation[J]. Desalination.2010,264:143-150.
    [130] J. Guo,M.Al-Dahhan.Catalytic wet oxidation of phenol by hydrogen peroxide over pillaredclay catalyst[J].Ind.Eng.Chem. Res.2003,42:2450-2460.
    [131] Belkacemi K,Larachi F,Sayari A.Lumped kinetics for solid-catalyzed wet oxidationAversatile model[J].Journal of Catalysis,2000,193(2):224-237.
    [132] Wu F,Deng N S,Hua H L,et al.Degradation mechanism of azo dye C.I. reactive red2by ironpowder reduction and photooxidation in aqueous solutions[J]. Chemosphere,2000,41(8):1233-1238.
    [133] Wang XiKui,Wei YueChang,Wang Chen,et al.Ultrasonic degradation of reactive brilliantred K-2BP in water with CCl4enhancement:Performance optimization and degradationmechanism[J].Separation and Purification Technology,2011,81:69-76.
    [134] Mohamed M.Ghoneim,Hanaa S.El-Desoky,Naglaa M.Zidan,et al.Electro-Fenton oxidationof Sunset Yellow FCF azo-dye in aqueous solutions[J].Desalination,2011,274:22-30.
    [135] Keiichi Tanaka,Kanjana Padermpole,Teruaki Hisanaga,et al.Photocatalytic degradation ofcommercial azo dyes[J].Water Research,2000,34(1):327-333.
    [136] Catherine Galindo,Patrice Jacquesb,André Kalta.et al.Photodegradation of theaminoazobenzene acid orange52by three advanced oxidation processes: UV/H2O2,UV/TiO2and VIS/TiO2:Comparative mechanistic and kinetic investigations[J].Journal ofPhotochemistry and Photobiology A: Chemistry,2000,130(1):35-47.
    [137] Ioannis K.Konstantinou,Triantafyllos A.Albanis.et al.Photocatalytic transformation ofpesticides in aqueous titanium dioxide suspensions using artificial and solar light:intermediates and degradation pathways[J]. Applied Catalysis B:Environmental,2003,42(4):319-335.
    [138] Chantal Guillard,Hinda Lachheba,Ammar Houas,et al.Influence of chemical structure ofdyes,of pH and of inorganic salts on their photocatalytic degradation by TiO2comparison ofthe efficiency of powder and supported TiO2[J]. Journal of Photochemistry andPhotobiology A:Chemistry,2003,158(1):27-36.
    [139] Hu Chun,Jimmy C.Yu,Hao Zhengping,et al.Photocatalytic degradation of triazine-containingazo dyes in aqueous TiO2suspensions[J].Applied Catalysis B: Environmental,2003,42(1):47-55.
    [140]金晓英,陈征贤,郭飞鹏,等.超声波辅助壳聚糖/零价纳米铁降解酸性品红[J].环境科学学报,2013,33(4):1004-1009.
    [141] Esther Forgaes,Tibor Csethati,Gyulaoros.Removal of Synthetie Dyes form WastewaterArview[J].Environment Intentional,2004,30(7):953-971.
    [142] Catherine Galindo,Patrice Jacquesb,André Kalta,et al.Photodegradation of the aminoazobenzeneacid orange52by three advanced oxidation processes: UV/H2O2,UV/TiO2and VIS/TiO2:Comparative mechanistic and kinetic investigations[J].Journal of Photochemistry andPhotobiology A:Chemistry,2000,130(1):35-47.
    [143] Marta I Litter.Heterogeneous photocatalysis:Transition metal ions in photocatalyticsystems[J]. Applied Catalysis B-Environmental,1999,23:89-114.
    [144] Simona Caudo,Gabriele Centi,Chiara Genovese,et al.Homogeneous versus heterogeneouscatalytic reactions to eliminate organics from waste water using H2O2[J].Topics inCatalysis,2006,40(1-4):207-219.
    [145] Chen Qiuqiang,Wu Pingxiao,Dang Zhi,et al.Iron pillared vermiculite as a heterogeneousphoto-Fenton catalyst for photocatalytic degradation of azo dye reactive brilliant orangeX-GN[J]. Separation and Purification Technology,2010,71:315-323.
    [146] Mullins D R,Overbury S H,Huntley D R,et al.Electron Spectroscopy of Single Crystal andPolycrystalline Cerium Oxide Surfaces[J].Surf. Sci.,1998,409:307-319.
    [147] Ruan Xinchao,Zhong Heng,Cao Wenbiao,et al.Photocatalytic degradation of organicpollutants by simple cerium(III) salt[J].Catalysis Communications,2013(40):76-79.
    [148] Bhargava S.K.,Tardio J.,PrasadJ.,et al.Wet oxidation and catalytic wet oxidation[J].Ind.Eng.Chem.Res.,2006,45:1221-1258.
    [149] Lei LeCheng,Dai QiZhou,Zhou MingHua,Zhang XingWang.Decolorization of cationic redX-GRL by wet air oxidation:Performance optimization and degradation mechanism[J].ChemosPhere,2007(68):1135-1142.
    [150]周宁娟,薛罡,卜聃,等.羟基化锌催化臭氧氧化去除水中痕量磺胺嘧啶[J].中国环境科学,2011,31(2):233-238.
    [151] Langlais B,Reckhow D A,Brink D R.et al.Ozone in Water Treatment: Application andEngineering: Cooperative Research Report[M].Nichigan USA: Lewis Publisher,1991:18-19.
    [152]周康,霍明昕,汪小雄,等.催化臭氧氧化降解活性艳红MX-5B的效能研究[J].环境科学学报,2013,33(4):997-1003.
    [153] Dai Qizhou,Zhou Minghua,Lei Lecheng. Wet electrolytic oxidation of cationic redX-GRL[J].Journal of Hazardous Materials B.2006,137:1870-1874
    [154] Rau′l Molina,Fernando Mart′nez,Juan Antonio Melero,et al.Mineralization of phenol bya heterogeneous ultrasound/Fe-SBA-15/H2O2process: Multivariate study by factorialdesign of experiments[J].Applied Catalysis B: Environmental,2006,66:198–207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700