用户名: 密码: 验证码:
外加微量联氨影响全自养脱氮的机制:功能微生物群落与N_2O产生
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统的硝化-反硝化工艺相比,完全自养脱氮工艺(completely autotrophicnitrogen removal over nitrite, CANON)在理论上可节省62.5%的硝化所需氧量和100%的反硝化需氧有机COD量,是符合当前废水处理节能减排发展要求的可持续废水脱氮处理新技术。课题组前期对CANON过程的影响因素、脱氮贡献和外加联氨(N2H4)强化全自养脱氮能力等进行了研究。本论文从外加微量N2H4对好氧氨氧化及亚硝酸盐氧化动力学特性、CANON系统的N2O的产生特性和功能微生物群落的影响三方面进行研究。目的是通过优化CANON系统的外加N2H4水平,在强化厌氧氨氧化和抑制亚硝酸盐氧化菌(nitrite oxidation bacteria, NOB)活性的同时,降低对氨氧化菌(ammonia oxidation bacteria, AOB)活性的负面影响,综合提高系统脱氮性能、减少N2O产生,为CANON工艺的工程应用提供重要科学依据与基础数据。本论文取得的主要研究结果如下:
     ①建立与羟胺(NH2OH)关联的好氧氨氧化两步动力学表达,将硝化过程分为三步,应用氧利用速率(oxygen uptake rate, OUR)的呼吸测量法估计了好氧氨氧化两步过程及亚硝酸盐氧化过程的动力学参数,深化了对生物硝化过程的理解和认识。
     ②N2H4对好氧氨氧化及对亚硝酸盐氧化动力学抑制类型分别为竞争性和非竞争性抑制,N2H4对亚硝酸盐氧化的抑制大于其对好氧氨氧化的抑制;建立了N2H4抑制硝化过程三步动力学模型,通过模拟外加微量N2H4条件下硝化反应各过程外源性呼吸剖面线,首次得到N2H4好氧氨氧化过程基质半饱和常数和最大比基质利用速率(分别为7.96±0.811mgN2H4-N/L,0.0916±0.0188mgN2H4-N/mgCOD/h)、N2H4抑制NH2OH氧化和亚硝酸盐氧化的动力学参数估计值(分别为7.88±0.783mgN2H4-N/L和1.223±0.555mgN2H4-N/L)。
     ③硝化污泥中的AOB氨单加氧酶α亚基(amoA)克隆序列主要聚于亚硝化球菌(Nitrosococcu)属和亚硝化单胞菌(Nitrosomonas)属,另有少部分属于亚硝化螺旋菌(Nitrosospira)属;NOB亚硝酸盐氧化还原酶β亚基(nxrB)克隆序列聚于硝化细菌(Nitrobacter)属,大部分属于硝化细菌属中的Nitrobacterwinogradskyi,仅有少部分属于Nitrobacter vulgaris和Nitrobacter hamburgensis;长期外加微量N2H4对硝化污泥中AOB与NOB的生长均具有明显抑制作用。
     ④CANON污泥中的AOB amoA基因克隆序列主要聚于Nitrosomonas属和Nitrosococcus属;NOB nxrB基因克隆序列聚于Nitrobacter属;厌氧氨氧化(anaerobic ammonia oxidation, ANAMMOX)菌群落组成较为丰富,部分ANAMMOX菌联氨合酶α亚基(hzsA)克隆序列聚于Candidatus Scalindua属;长期外加微量N2H4促进ANAMMOX菌生长,对AOB生长产生部分抑制作用。
     ⑤长期添加微量N2H4强化CANON富集得到的CANON污泥颗粒主要呈球状和椭球状,外表层有着较紧密的微生物结构及少量细小的孔隙,导致DO不易被穿透形成内部缺/厌氧区域;好氧的AOB主要位于颗粒外层,厌氧的ANAMMOX菌主要位于颗粒污泥内部。
     ⑥限氧-厌氧交替运行的CANON系统中,N2O产生的途径包括NH2OH生物氧化与AOB反硝化;限氧条件下,NH2OH生物氧化的贡献大于AOB反硝化;厌氧条件下,N2O主要由AOB反硝化产生。
     ⑦CANON污泥的间歇试验结果表明,限氧条件下外加微量N2H4减少N2O产生;厌氧条件下外加微量N2H4促进N2O产生;在交替限氧-厌氧的CANON反应器中,外加微量N2H4在限氧阶段被完全降解,消除了其在厌氧阶段可能的负面影响;因此,在交替限氧-厌氧CANON反应器中,外加微量N2H4在提高脱氮性能的同时降低了N2O的产生;在长期外加微量N2H4的交替限氧-厌氧的CANON反应器中,N2O平均产生速率为0.066±0.047mgN/L/d,仅占总氮去除的0.018±0.013%,低于相关文献报道结果。
Comparing to traditional nitrification-denitrification process, completelyautotrophic nitrogen removal over nitrite (CANON) process, which is consistent withthe current requirements for energy saving and emission reduction and sustainabledevelopment of wastewater treatment technologies, can decrease O2consuming as muchas60%and hardly consumed COD theoretically. The previous research has beenfocused on influence factors, contributions of nitrogen removal and the capability oftrace hydrazine (N2H4) addtion enhancing for CANON process. Therefore, further studyfor the effect of trace N2H4addtion on characterization of kinetics for ammonium andnitrite oxidation, characteristics of N2O production and functional microbial communityof CANON process were investigated in this thesis. By optimizing the additive N2H4concentration in a CANON system to enhance anammox and inhibite NOB activity inmaximum extent while minimizing the inhibitory influence on AOB activity, and furtherincreasing the denitrification efficiency with N2O production decreasing, whichprovided important data and scientific foundation for engineering application ofCANON. The results in this thesis are given as follows:
     ①The two-step kinetics expression of aerobic ammonium oxidation associatedwith hydroxylamine (NH2OH) was set up; the nitrifying process was dividied intothree-step and kinetic parameters of aerobic ammonium oxidation and nitrite oxidationwere estimated using the respirometry with oxygen uptake rate (OUR); this deepens thecomprehending and understanding of biological nitrification
     ②The kinetics for ammonium oxidation and nitrite oxidation under the inhibitionof hydrazine was competitive and noncompetitive, respectively, the inhibitive effect ofN2H4on nitrite oxidation was stronger than that on ammonia oxidation; the three-stepkinetics model of nitrification inhibited by N2H4was established, and the maximumspecific rate and half-saturation coefficient of N2H4oxidation (7.96±0.811mgN2H4-N/L,0.0916±0.0188mgN2H4-N/mgCOD/h, respectively) with the nitrifying sludge, and theinhibition coefficients of N2H4for hydroxylamine oxidation and nitrite oxidation(7.88±0.783mgN2H4-N/L,1.223±0.555mgN2H4-N/L, respectively) was estimated forthe first time by simulating exogenous OUR profiles of nitrifying reaction with traceN2H4addtion, respectively.
     ③In nitrifying sludge, cloning sequences of ammonia monooxygenase α subunit (amoA) of AOB were mainly related to Nitrosococcu and Nitrosomonas genuses, whilethe rest were clustering in the Nitrosospira genus; cloning sequences of nitriteoxidordeuctase β subunit (nxrB) of NOB were related to Nitrobacter genus, the majoritywere Nitrobacter winogradskyi specie, only a small part was clustering to Nitrobactervulgaris and Nitrobacter hamburgensis; long-time trace N2H4addtion couldsiginificantly restrained the growth of both AOB and NOB.
     ④In CANON sludge, AOB amoA cloning sequences were closely related toNitrosomonas and Nitrosococcus genuses; NOB nxrB cloning sequences were related toNitrobacter genus; the community composition of anaerobic ammonia oxidation(ANAMMOX) bacteria was abundant, and some cloning sequences of hydrazinesynthase α subunit (hzsA) of ANAMMOX bacteria were clustering in CandidatusScalindua genus; long-time trace N2H4addtion partially inhibit the growth of AOB butobviously promote the growth of ANAMMOX bacteria.
     ⑤The enrichment CANON granular sludge in CANON reactor with long-timeN2H4addtion are mainly spherical and ellipsoidal, and there was a more compactstructure and a few tiny microbes gap in outer layer, which made DO could not easilypenetrated the granule surface and caused anoxic/anaerobic region formed; aerobicAOB mainly located at the surface layer of granular sludge; anaerobic ANAMMOXbacteria are mainly located inside the granular sludge.
     ⑥In CANON system with alternant oxygen limited and anaerobic operationmode, pathways of N2O production include NH2OH biological oxidation and nitrifierdenitrification by AOB; under oxygen limited conditions, N2O produced by NH2OHbiological oxidation was more than that by nitrifier denitrification via AOB; underanaerobic conditions, N2O was mainly produced by nitrifier denitrification via AOB.
     ⑦The batch tests with CANON sludge indicated that under oxygen limitedconditions, trace N2H4addition decrease N2O production; under anaerobic conditions,trace N2H4addition accelerate N2O production; in CANON reactor with alternantoxygen limited-anaerobic operation mode, trace N2H4added in oxygen limited stagewas completely degraded to eliminate the possible negative influence of N2H4onanaerobic stage; therefore, in CANON reactor with alternant oxygen limited andanaerobic operation mode, trace N2H4addtion could enhance the denitrificationefficiency while effectively reducing N2O production; in the enhanced CANON processby long-time trace N2H4addition under alternant oxygen limited and anaerobicoperation mode, N2O average production rate lower at0.066±0.047mgN/L/d was only 0.018±0.013%of the total nitrogen removal,which was below the results reported byreferences.
引文
[1]中华人民共和国环境保护部.2012年中国环境状况公报[EB/OL]http://jcs.mep.gov.cn/hjzl/zkgb/2012zkgb
    [2] Dijkman H, Strous M. Process for ammonia removal from wastewater. PCT/NL99/00446(1999).
    [3] Ahn Y H. Sustainable nitrogen elimination biotechnologies: a review[J]. Process Biochemistry,2006,41(8):1709-1721.
    [4] Joss A, Derlon N, Cyprien C, et al. Combined nitritation–anammox: advances inunderstanding process stability[J]. Environmental Science and Technology,2011,45(22):9735-9742.
    [5] Siegrist H, Salzgeber D, Eugster J, et al. Anammox brings WWTP closer to energy autarkydue to increased biogas production and reduced aeration energy for N-removal[J]. WaterScience and Technology,2008,57(3).383-388.
    [6] Wett B. Solved upscaling problems for implementing deammonification of rejection water[J].Water Science and Technology,2006,53(12):121-128.
    [7] Vlaeminck S E, Cloetens L F F, Carballa M, et al. Granular biomass capable of partialnitritation and anammox[J]. Water Science and Technology,2009,59(3):609-617.
    [8]任宏洋,张代钧,丛丽影. EGSB反应器中实现完全自营养脱氮与运行优化[J].环境科学,2009,30(05):1454-1460.
    [9] Nielsen M, Bollmann A, Sliekers O, et al. Kinetics, diffusional limitation and microscaledistribution of chemistry and organisms in a CANON reactor[J]. FEMS Microbiology Ecology,2005,51(2):247-256.
    [10]丛丽影,张代钧,任宏洋.好氧与厌氧氨氧化复合颗粒污泥完全自营养脱氮影响因素[J].环境工程学报,2009,3(06):990-994.
    [11]蔡庆,张代钧,肖芃颖,等.完全自营养脱氮过程中的影响因素[J].环境工程学报,2013,7(10),3895-3900.
    [12] Xiao P Y, Cai Q, Zhang D J, et al. Characteristics of nitrogen removal and nitrous oxideproduction in CANON process[J]. Journal of Chemical Technology and Biotechnology,2013,89(4):552-558.
    [13] Kartal B, Maalcke W J, de Almeida N M, et al. Molecular mechanism of anaerobicammonium oxidation[J]. Nature,2011,479(7371):127-130.
    [14] Strous M, Kuenen J G., Jetten M S M. Key physiology of anaerobic ammonium oxidation[J].Applied and Environmental Microbiology,1999,65(7):3248-3250.
    [15] Hu A, Zheng P, Mahmood Q, et al. Characteristics of nitrogenous substrate conversion byanammox enrichment[J]. Bioresource Technology,2011,102(2):536-542.
    [16] Zakker I, Kroon K, Rikmann E, et al. Accelerating effect of hydroxylamine and hydrazine onnitrogen removal rate in moving bed biofilm reactor[J]. Biodegradation,2012,23(5):739-749.
    [17] Tomlinson, T.G., Boon, A.G., Trotman, C.N.A.,1966. Inhibition of nitrification in theactivated sludge process of sewage disposal[J]. J. Appl. Bacteriol.29(2),266–291.
    [18] Yao Z B, Cai Q, Zhang D J,et al. The enhancement of completely autotrophic nitrogenremoval over nitrite (CANON) by N2H4addition[J]. Bioresource Technology.2013,146:591-596.
    [19] Anderson J. Studies on the oxidation of ammonia by Nitrosomonas[J]. Biochemical. Journal,1965,95(3):688–698.
    [20] IPCC,2007. In: Solomon, S., Qin, D., Manning, M., Chen, Z.,Marquis, M., Averyt, K.B.,Tignor, M., Miller, H.L.(Eds.), ClimateChange2007: The Physical Science Basis,Contribution ofWorking Group I to the Fourth Assessment Report of theIntergovernmentalPanel on Climate Change. CambridgeUniversity Press, Cambridge, United Kingdom and NewYork,NY, USA, p.996
    [21] Kampschreur M J, Temmink H, Kleerebezem R, et al. Nitrous oxide emission duringwastewater treatment[J]. Water Research,2009,43(17):4093-4103.
    [22] Kampschreur M J, Picioreanu C, Tan N C G, et al. Unraveling the source of nitric oxideemission during nitrification[J]. Water Environment Research,2007,2007(2):843-860.
    [23] Kampschreur M J, Tan N C G, Kleerebezem R, et al. Effect of dynamic process conditions onnitrogen oxides emission from a nitrifying culture[J]. Environmental Science and Technology,2008a,42(2):429-435.
    [24] Kampschreur M J, van der Star W R L, Wielders H A, et al. Dynamics of nitric oxide andnitrous oxide emission during full-scale reject water treatment[J]. Water Research,2008b,42(3):812-826.
    [25] Kampschreur M J, Poldermans R, Kleerebezem R, et al. Emission of nitrous oxide and nitricoxide from a full-scale single-stage nitritation-anammox reactor[J]. Water Science andTechnology,2009,60(12):3211-3217.
    [26] Daelman M R J, De Baets B, van Loosdrecht M, et al. Influence of sampling strategies on theestimated nitrous oxide emission from wastewater treatment plants[J]. Water research,2013,47(9):3120-3130.
    [27] Foley J, De Haas D, Yuan Z, et al. Nitrous oxide generation in full-scale biological nutrientremoval wastewater treatment plants[J]. Water Research,2010,44(3):831-844.
    [28] Tallec G., Garnier J, Billen G., et al. Nitrous oxide emissions from secondary activated sludgein nitrifying conditions of urban wastewater treatment plants: effect of oxygenation level[J].Water Research,2006,40(15):2972-2980.
    [29] Boon N, Windt W, Verstraete W, et al. Evaluation of nested PCR-DGGE (denaturing gradientgel electrophoresis) with group-specific16S primers for the analysis of bacterial communitiesfrom different wastewater treatment plants[J]. FEMS Microbiology Ecology,2002,39(2):101-112.
    [30] Kindaichi T, Kawano Y, Ito T, et al. Population dynamics and in situ kinetics of nitrifyingbacteria in autotrophic nitrifying biofilms as determined by real-time quantitative PCR[J].Biotechnology and Bioengineering,2006,94(6):1111-1121.
    [31] Kindaichi T, Tsushima I, Ogasawara Y, et al. In Situ Activity and Spatial Organization ofAnaerobic Ammonium-Oxidizing (Anammox) Bacteria in Biofilms[J]. Applied andEnvironmental Microbiology,2007,73(15):4931-4939.
    [32] Penton C R, Devol A H, Tiedje J M. Molecular Evidence for the Broad Distribution ofAnaerobic Ammonium-Oxidizing Bacteria in Freshwater and Marine Sediments[J]. Appliedand Environmental Microbiology,2006,72(10):6829-6832.
    [33] Schmid M, Risgaard-Petersen N, van de Vossenberg J, et al. Anaerobic ammonium-oxidizingbacteria in marine environments: widespread occurrence but low diversity[J]. EnvironmentalMicrobiology,2007,9(6):1476-1484.
    [34] Tsushima I, Kindaichi T, Okabe S. Quantification of anaerobic ammonium-oxidizing bacteriain enrichment cultures by real-time PCR[J]. Water Research,200741(4):785-794.
    [35] Bae H, Park K S, Chung Y C, et al. Distribution of anammox bacteria in domestic WWTPsand their enrichments evaluated by real-time quantitative PCR[J]. Process Biochemistry,2010,45(3):323-334.
    [36] Xiao Y, Zeng G M, Yang Z H, et al. Coexistence of nitrifiers, denitrifiers and Anammoxbacteria in a sequencing batch biofilm reactor as revealed by PCR‐DGGE[J]. Journal ofApplied Microbiology,2009,106(2):496-505.
    [37] Vlaeminck S E, Terada A, Smets B F, et al. Aggregate Size and Architecture DetermineMicrobial Activity Balance for One-Stage Partial Nitritation and Anammox[J]. Applied andEnvironmental Microbiology,2010,76(3):900-909.
    [38] Van der Star W R, Abma W R, Blommers D, et al. Startup of reactors for anoxic ammoniumoxidation: experiences from the first full-scale anammox reactor in Rotterdam[J]. WaterResearch,2007,41(128):4149-4163.
    [39] Quan Z X, Rhee S K, Zuo J E, et al. Diversity of ammonium-oxidizing bacteria in a granularsludge anaerobic ammonium-oxidizing (anammox) reactor[J]. Environtalal Microbiology,2008,10(11):3130-3139.
    [40] Richards F A. Anoxic basins and fjords, pp.611–643. In:Ripley JP and Skirrow G, eds.Chemical Oceanography[M]. London and New York: Academic Press,1965.
    [41] Broda E. Two kinds of lithotrophs missing in nature[J]. Zeitschrift für allgemeineMikrobiologie,1977,17(6):491-493.
    [42] Mulder A, Graaf A A, Robertson L A, et al. Anaerobic ammonium oxidation discovered in adenitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology,1995,16(3):177-184.
    [43] Jetten M S M, Strous M, Pas‐Schoonen K T, et al. The anaerobic oxidation of ammonium[J].FEMS Microbiology Reviews,1998,22(5):421-437.
    [44] Strous M, Fuerst J A, Kramer E H M, et al. Missing lithotroph identified as newplanctomycete[J]. Nature,1999,400(6743):446–449.
    [45] Schmid M C, Maas B, Dapena A, et al. Biomarkers for in situ detection of anaerobicammonium-oxidizing (anammox) bacteria[J]. Applied and Environmental Microbiology,2005,71(4):1677-1684.
    [46] Schmid M C, Risgaard-Petersen N, Van De Vossenberg J, et al. Anaerobic ammonium‐oxidizing bacteria in marine environments: widespread occurrence but low diversity[J].Environmental Microbiology,2007,9(6):1476-1484.
    [47] Kartal B, Ratt ray J, van Niftrik L A., et al. Candidatus “Anammoxoglobus propionicus " anew propionate oxidizing species of anaerobic ammonium oxidizing bacteria [J]. Systematicand Applied Microbiology,2007,30(1):39-49.
    [48] Kartal B, van Niftrik L, Sliekers O, et al. Application, eco-physiology and biodiversity ofanaerobic ammonium-oxidizing bacteria[J]. Reviews in Environmental Science andBiotechnology,2004,3(3):255-264.
    [49] Schmid M, Twachtmann U, Klein M, et al. Molecular evidence for genus level diversity ofbacteria capable of catalyzing anaerobic ammonium oxidation[J].Systematic and AppliedMicrobiology,2000,23(1):93-106.
    [50] Schmid M, Walsh K, Webb R, et al. Two new species of anaerobic ammonium oxidizingbacteria [J]. Systematic and Applied Microbiology,2003,26(4):529-538.
    [51] TsushimaI, Ogasawara Y, Kindaichi T, et al. Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors [J]. Water Research,2007,41(8):1623-1634.
    [52] Liu S, Yang F, Gong Z, et al. Application of anaerobic ammonium-oxidizing consortium toachieve completely autot rophic ammonium and sulfate removal[J]. Bioresource Technology,2008,99(15):6817-6825.
    [53] van der Star W R L, van de Graaf M J, Kartal B, et al. Response of anaerobic ammonium-oxidizing bacteria to hydroxylamine[J]. Applied and Environmental Microbiology,2008,74(14):4417-4426.
    [54] van der Star W R L, Miclea A I, van Dongen U G J M, et al. The membrane bioreactor: anovel tool to grow anammox bacteria as free cells[J]. Biotechnology and Bioengineering,2008,101(2):286-294.
    [55] Jetten M S M, Niftrik L, Strous M, et al. Biochemistry and molecular biology of anammoxbacteria[J]. Critical Reviews in Biochemistry and Molecular Biology,2009,44(2-3):65-84.
    [56] Boumann H A, Hopmans E C, Van De Leemput I, et al. Ladderane phospholipids in anammoxbacteria comprise phosphocholine and phosphoethanolamine headgroups[J]. FEMSMicrobiology Letters,2006,258(2):297-304.
    [57] Rattray J E, van de Vossenberg J, Hopmans E C, et al. Ladderane lipid distribution in fourgenera of anammox bacteria[J]. Archives of Microbiology,2008,190(1):51-66.
    [58] Sinninghe Damsté J S, St rous M, Rijpst ra W I C, et al. Linearly concatenated cyclobutanelipids form a dense bacterial membrane [J]. Nature,2002,419(6908):708-712.
    [59] Strous M, Van Gerven E, Kuenen J G, et al. Effects of aerobic and microaerobic conditions onanaerobic ammonium-oxidizing (anammox) sludge[J]. Applied and EnvironmentalMicrobiology,1997,63(6):2446-2448.
    [60] Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool forthe study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. AppliedMicrobiology and Biotechnology,1998,50(5):589-596.
    [61] Van De Vossenberg J, Rattray J E, Geerts W, et al. Enrichment and characterization of marineanammox bacteria associated with global nitrogen gas production[J]. EnvironmentalMicrobiology,2008,10(11):3120-3129.
    [62] Van de Graaf A A, de Bruijn P, Robertson L A, et al. Metabolic pathway of anaerobicammonium oxidation on the basis of15N studies in a fluidized bed reactor[J]. Microbiology,1997,143(7):2415-2421.
    [63] Strous M, Pelletier E, Mangenot S, et al. Deciphering the evolution and metabolism of ananammox bacterium from a community genome[J]. Nature,2006,440(7085):790-794.
    [64] Kartal B, Almeida N M, Maalcke W J, et al. How to make a living from anaerobic ammoniumoxidation[J]. FEMS microbiology reviews,2013,37(3):428-461.
    [65] Koops H P, Pommerening-R ser A. Distribution and ecophysiology of the nitrifying bacteriaemphasizing cultured species[J]. FEMS Microbiology Ecology,2006,37(1):1-9.
    [66] Purkhold U, Pommerening-R ser A, Juretschko S, et al. Phylogeny of all recognized speciesof ammonia oxidizers based on comparative16S rRNA and amoA sequence analysis:implications for molecular diversity surveys[J]. Applied and Environmental Microbiology,2000,66(12):5368-5382.
    [67] Purkhold U, Wagner M, Timmermann G, et al.16S rRNA and amoA-based phylogeny of12novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal ofa new lineage within the nitrosomonads[J]. International Journal of Systematic andEvolutionary Microbiology,2003,53(5):1485-1494.
    [68] Wagner M, Rath G, Amann R, et al. In-situ Identification of Ammonia-oxidizing Bacteria[J].Systematic and Applied Microbiology,1995,18(2):251-264.
    [69] Hollocher T C, Tate M E, Nicholas DJ. Oxidation of ammonia by Nitrosomonas europaea.Definite18O-tracer evidence that hydroxylamine formation involves a monooxygenase[J].Journal of Biological Chemistry,1981,256(21):10834-10836.
    [70] Whittaker M, Bergmann D, Arciero D, et al. Electron transfer during the oxidation ofammonia by the chemolithotrophic bacterium Nitrosomonas europaea[J]. BiochimicaBiophysica Acta (BBA)-Bioenergetics,2000,1459(2):346-355.
    [71] Arp D J, Sayavedra-Soto L A, Hommes N G. Molecular biology and biochemistry of ammoniaoxidation by Nitrosomonas europaea[J]. Archives of Microbiology,2002,178(4):250-255.
    [72] Anderson K K, Hooper A B. O2and H2O are each the source of one O in NO2produced fromNH3by Nitrosomonas:15N-NMR evidence[J]. FEBS Letters,1983,164(2):236-240.
    [73] Ye R W, Thomas S M. Microbial nitrogen cycles: physiology, genomics and applications[J].Current Opinion in Microbiology,2001,4(3):307-312.
    [74]彭永臻,孙洪伟,杨庆.短程硝化的生化机理及其动力学[J].环境科学学报,2008,28(5):817-824.
    [75] Chandran K, Smets B F. Biokinetic characterization of the acceleration phase in autotrophicammonia oxidation[J]. Water environment research: a research publication of the WaterEnvironment Federation,2008,80(8):732-739.
    [76] Holt J G, Krieg N R, Sneathp H A, et al. Bergey's manual of determinative bacteriology(9-hedition)[J]. Williams&Wilkins,1994:427-455.
    [77] Starkenburg S R, Chain P S, Sayavedra-Soto L A. Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255[J]. Applied andEnvironmental Microbiology,2006,72(3):2050-2063.
    [78] Starkenburg S R, Larimer F W, Stein L Y, et al. Complete genome sequence of Nitrobacterhamburgensis X14and comparative genomic analysis of species within the genusNitrobacter[J]. Applied and Environmental Microbiology,2008,74(9):2852-2863.
    [79] Ehrich S, Behrens D, Lebedeva E, et al. A new obligately chemolithoautotrophic, nitrite-oxodizing bacterium, Nitrospira moscoviensis sp.nov and its phylogenetic relationship[J].Archives of Microbiology,1995,164(1):16-23.
    [80] Watson S W, Waterbury J B. Characteristics of two marine nitrite oxidizing bacteria,Nitrospina-gracilis nov-gen-nov-sp and Nitrococcus-mobilis nov-gen-nov-sp[J]. Archives ofMicrobiology,1971,77(3):203-230.
    [81] Lücker S, Wagner M, Maixner F, et al. A Nitrospira metagenome illuminates the physiologyand evolution of globally important nitrite-oxidizing bacteria[J]. Proceedings of the NationalAcademy of Sciences,2010,107(30):13479-13484.
    [82] Yamanaka T, Fukumori Y. The nitrite oxidizing system of Nitrobacter winogradskyi[J]. FEMSMicrobiology Letters,1988,54(4):259-270.
    [83] Meincke M, Bock E, Kastrau D, et al. Nitrite oxidoreductase from Nitrobacter hamburgensis:redox centers and their catalytic role[J]. Archives of Microbiology,1992,158(2):127-131.
    [84] Aleem M I, Hoch G E, Varner J E. Water as the source of oxidant and reductant in bacterialchemosynthesis[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica,1965,54(3):869-873.
    [85] Sliekers A O, Third K A, Abma W, et al. CANON and Anammox in a gas-lift reactor[J].FEMS Microbiology Letters,2003,218(2):339-344.
    [86] Okabe S, Oshiki M, Takahashi Y, et al. N2O emission from a partial nitrification-anammoxprocess and identification of a key biological process of N2O emission from anammoxgranules[J]. Water Research,2011,45(19):6461-6470.
    [87] Fux C, Boehler M, Huber P, et al. Biological treatment of ammonium-rich wastewater bypartial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilotplant[J]. Journal of Biotechnology,2002,99(3):295-306.
    [88] Isaka K, Kimura Y, Yamamoto T, et al. Complete autotrophic denitrification in a single reactorusing nitritation and anammox gel carriers[J]. Bioresource technology,2013,147:96-101.
    [89] Qiao S, Tian T, Duan X., et al. Novel single-stage autotrophic nitrogen removal viaco-immobilizing partial nitrifying and anammox biomass[J]. Chemical Engineering Journal,2013,230:19-26.
    [90]杨虹,李道棠,朱章玉.全程自养脱氮新技术处理污泥脱水液的研究[J].环境科学,2001,22(5):105-107.
    [91]廖德祥,吴永明,李小明,等.亚硝化-厌氧氨氧化联合工艺处理高含氮废水的研究[J].环境科学,2006,27(9):1776-1780.
    [92]孙红芳,吕永涛,白平,等.短程硝化/厌氧氨氧化联合工艺处理含氨废水的研究[J].中国给水排水,2009,25(3):37-41.
    [93]付昆明,张杰,曹相生,等.好氧条件下CANON工艺的启动研究[J].环境科学,2009,30(6):1690-1694.
    [94] Cho S J, Fujii N K, Lee T H. Development of a simultaneous partial nitrification andanaerobic ammonia oxidation process in a single reactor[J]. Bioresource Technology,2011,102(2):652-659.
    [95] Zhang D J, Cai Q, Zu B, et al. The influence of trace NO2on the kinetics of ammoniaoxidation and the characteristics of nitrogen removal from wastewater[J]. Water Science andTechnology,2010,62(5):1037-1044.
    [96] Kartal B, Wessels H, van der Biezen E, et al, Effects of Nitrogen Dioxide and Anoxia onGlobal Gene and Protein Expression in Long-Term Continuous Cultures of Nitrosomonaseutropha C91[J]. Applied and Environmental Microbiology,2012,78(14):4788-4794.
    [97] Rosenwinkel K H, Cornelius A. Deammonification in the Moving‐Bed Process for theTreatment of Wastewater with High Ammonia Content[J]. Chemical engineering andtechnology,2005,28(1):49-52.
    [98] Abma W R, Driessen W, Haarhuis R, et al. Upgrading of sewage treatment plant bysustainable and cost-effective separate treatment of industrial wastewater[J]. Water Scienceand Technology,2010,61(7):1715-1722.
    [99] Desloover J, De Clippeleir H, Boeckx P, et al. Floc-based sequential partial nitritation andanammox at full scale with contrasting N2O emissions[J]. Water research,2011,45(9):2811-2821.
    [100]梅荣武,方建敏.全程自养脱氮技术处理高浓度含氮淀粉废水的工程实例[J].环境工程2007,25(1):26-28.
    [101]王凯,王淑莹,朱如龙,等.短程硝化联合厌氧氨氧化处理垃圾渗滤液的启动[J].中南大学学报(自然科学版),2013,44(5):2137-2143.
    [102] United States Environmental Protection Agency.2006Global anthropogenic non-CO2greenhouse gas emissions:1990to2020. Washington, DC: US-EPA.
    [103] Zheng H, Hanaki K, Matsuo T. Production of nitrous oxide gas during nitrification ofwasterwater[J]. Water Science and Technology.1994,30(6):133–141.
    [104] Tsuneda S, Mikami M, Kimochi Y, et al. Effect of salinity on nitrous oxide emission in thebiological nitrogen removal process for industrial wastewater[J]. Journal of HazardousMaterials.2005,119(1-3):93–98.
    [105] Hanaki K, Hong Z, Matsuo T. Production of nitrous oxide gas during denitrification ofwastewater[J]. Water Science and Technology.1992,26(5-6):1027–1036.
    [106] Chung Y C, Chung M S. BNP test to evaluate the influence of C/N ratio on N2O production inbiological denitrification[J]. Water Science and Technology.2000,42(3-4):23–27.
    [107] Lemaire R, Meyer R, Taske A, et al. Identifying causes for N2O accumulation in a lab.-scalesequencing batch reactor performing simultaneous nitrification, denitrification and phosphorusremoval[J]. Journal of Biotechnology.2006,122(1):62–72.
    [108] Schulthess R V, Wild D, Gujer W. Nitric and nitrous oxides from denitrifying activated sludgeat low oxygen concentration[J]. Water Science and Technology.1994,30(6):123–132.
    [109] Liu X H, Peng Y, Wu C Y, et al. Nitrous oxide production during nitrogen removal fromdomestic wastewater in lab-scale sequencing batch reactor[J]. Journal of EnvironmentalScience,2008,20(6):641–645.
    [110] Yang Q, Liu X, Peng C, et al. N2O production during nitrogen removal via nitrite fromdomestic wastewater: main sources and control method[J]. Environmental Science andTechnology,2009,43(24):9400-9406.
    [111]高素华,潘亚茹.温室效应对气候和农业的影响[J].环境科学,1991,12(2):73-76.
    [112]曹美秋,庄亚辉.生物质燃烧释放N20的测定及其分布[J].环境化学,1994,13(5):395-396.
    [113]冯欲华.气候变暖的风险与对策[J].上海环境科学,2000,19(6):272-275.
    [114]王少彬.大气中氧化亚氮的源、汇和环境效应[J].环境保护,1994,4:23-27.
    [115] Inamori Y, Hasemi M, Sudo R. Greenhouse effect gas control producing from waste watertreatment process[J].Water Waste,l991,33(2):28-34.
    [116]联合国环境规划署著.世界环境数据手册[M].北京中国科学技术出版社,1990,19-20.
    [117]杜睿,王庚辰,吕达仁.内蒙古典型草原土壤N2O产生的机理探讨[J].中国环境科学,2000,20(5):387-391.
    [118] Chandran K, Stein L Y, Klotz M G, et al. Nitrous oxide production by lithotrophicammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems[J].Biochem Soc Trans,2011,39(6):1832-1837.
    [119] Kim S W, Miyahara M, Fushinobu S, et al. Nitrous oxide emission from nitrifying activatedsludge dependent on denitrification by ammonia-oxidizing bacteria[J]. BioresourceTechnology,2010,101(11):3958–3963.
    [120] Ritchie G A F, Nicholas D J. Identification of sources of nitrous-oxide produced by oxidativeand reductive processes in nitrosomonas-europaea[J]. Biochemical Journal,1972,126(5):1181-1191.
    [121] Law Y Y, Ye L, Pan Y T, et al. Nitrous oxide emissions from wastewater treatmentprocesses[J]. Philosophical Transactions of the Royal Society B-Biological Sciences,2012,367(1593):1265-1277.
    [122] Rathnayake R, Song Y, Tumendelger A, et al. Source identification of nitrous oxide onautotrophic partial nitrification in a granular sludge reactor[J]. Water research,2013,47(19):7078-7086.
    [123] Lu H, Chandran K. Factorspromoting emissions of nitrous oxide and nitric oxide fromdenitrifying sequencing batch reactors operated with methanol and ethanol as electrondonors[J]. Biotechnology and Bioengineering,2010,106:390–398.
    [124] Wunderlin P, Mohn J, Joss A, et al.Mechanisms of N2O production in biological wastewatertreatment under nitrifying and denitrifying conditions[J]. Water Research,2012.46(4):1027-1037.
    [125] Law Y Y, Lant P, Yuan Z G, et al.The effect of pH on N2O production under aerobic conditionsin a partial nitritation system[J]. Water Research,2011.45(18):5934-5977.
    [126] Ishii S, Song Y, Rathnayake L, et al. Identification of key N2O production pathways in aerobicpartial nitrifying granules[J]. Environmental Microbiology,2014. doi:10.1111/1462-2920.12458
    [127] Ni B J, Yuan Z, Chandran K, et al. Evaluating four mathematical models for nitrous oxideproduction by autotrophic ammonia-oxidizing bacteria[J]. Biotechnology and Bioengineering,2013,110(1):153-163.
    [128] Poughon L, Dussap C G, Gros J B. Energy model and metabolic flux analysis for autotrophicnitrifiers[J]. Biotechnology and Bioengineering,2001,72(4):416-433.
    [129] Wunderlin P, Siegrist H., Joss A. Online N2O Measurement: The Next Standard forControlling Biological Ammonia Oxidation[J]. Environmental Science and Technology,2013,47(17):9567-9568.
    [130] Poth M, Focht D D.15N kinetic analysis of N2O production by Nitrosomonas europaea:anexamination of nitrifier denitrification[J]. Applied and Environmental Microbiology,1985,49(5):1134-1141.
    [131] Kim D J. Effect of Ammonium Concentration on the Emission of N2O Under Oxygen-LimitedAutotrophic Wastewater Nitrification[J]. Journal of microbiology and biotechnology,2011,21(9):988-994.
    [132] Ni B J, Yuan Z, Chandran K, et al. Evaluating mathematical models for N2O production byammonia-oxidizing bacteria: Towards a unified model[C].Proceedings of3rd IWA/WEFWastewater Treatment Modelling Seminar, Mont-Sainte-Anne, Québec, Canada.2012:63-76.
    [133] Law Y Y, Lant P, Yuan Z G. The Confounding Effect of Nitrite on N2O Production by anEnriched Ammonia-Oxidizing Culture[J]. Environmental Science and Technology,2013,47(13):7186-7194.
    [134] Rassamee V, Sattayatewa C, Pagilla K., et al. Effect of oxic and anoxic conditions on nitrousoxide emissions from nitrification and denitrification processes[J]. Biotechnology andBioengineering,2011,108(9):2036-2045.
    [135]孔强.与厌氧氨氧化相匹配的亚硝化过程N2O释放研究[D].山东大学,2013.
    [136]马斌.城市污水连续流短程硝化厌氧氨氧化脱氮工艺与技术[D].哈尔滨工业大学,2012.
    [137] Zheng H, Hanaki K, Matsuo T. Production of nitrous oxide gas during nitrification ofwastewater[J]. Water Science and Technology,1994,30(6):133–141.
    [138] Yang Q, Liu X, Peng C, et al. N2O production during nitrogen removal via nitrite fromdomestic wastewater: main sources and control method[J]. Environmental Science andTechnology,2009,43(24):9400–9406.
    [139] Park K Y, Inamori Y, Mizuochi M, et al. Emission and control of nitrous oxide from abiological wastewater treatment system with intermittent aeration[J]. Journal of Bioscienceand Bioengineering,2000,90(3):247–252.
    [140] Pellicer-Na`cher C, Sun S, Lackner S, et al. Sequential aeration of membrane-aerated biofilmreactors for high-rate autotrophic nitrogen removal experimental demonstration[J].Environmental Science and Technology,2010,44(19):7628–7634.
    [141] Rodriguez-Caballero A, Pijuan M. N2O and NO emissions from a partial nitrificationsequencing batch reactor: Exploring dynamics, sources and minimization mechanisms[J].Water research,2013,47(9):3131-3140.
    [142] Lu Q, Liao N C, Chu CH, et al. Dioxygen in combination with hydrazine: A practical systemfor degradation of a broad spectrum of toxic organics in water[J]. Joural of HazardousMaterials,2011,192(3):1186–1191.
    [143] Harper W F, Terada A, Poly F, et al. The effect of hydroxylamine on the activity and aggregatestructure of autotrophic nitrifying bioreactor cultures[J]. Biotechnology and Bioengineering,2009,102(3):714-724.
    [144] Shimamura M, Nishiyama T, Shinya K, et al. Another multiheme protein, hydroxylamineoxidoreductase, abundantly produced in an anammox bacterium besides thehydrazine-oxidizing enzyme[J]. Journal of Bioscience and Bioengineering,2008,105(3):243–248.
    [145]屈伸,刘国志.分子生物学实验技术[M].北京:化学工业出版社,2008.
    [146] Woese C R, Fox G.E, Zablen L, et al. Conservation of primary structure in16S ribosomalRNA[J]. Nature,1975,254:83–86.
    [147] Woese C R. Bacterial evolution[J]. Microbiological reviews,1987,51(2):221.
    [148] Coenye T, Vandamme P. Intragenomic heterogeneity between multiple16S ribosomal RNAoperons in sequenced bacterial genomes[J]. FEMS Microbiology Letters,2003,228(1):45-49.
    [149] Pester M, Maixner F, Berry D, et al. NxrB encoding the beta subunit of nitrite oxidoreductaseas functional and phylogenetic marker for nitrite‐oxidizing Nitrospira[J]. EnvironmentalMicrobiology,2013. doi:10.1111/1462-2920.12300.
    [150] Bothe H, Jost G, Schloter M, et al. Molecular analysis of ammonia oxidation anddenitrification in natural environments[J]. FEMS Microbiology Reviews,2000,24(5):673-690.
    [151] Dionisi H M, Layton A C, Harms G, et al. Quantification of Nitrosomonas oligotropha-likeammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plantsby competitive PCR[J]. Applied and Environmental Microbiology,2002,68(1):245-253.
    [152] Hoefel D, Monis P T, Grooby W L, et al. Culture-independent techniques for rapid detectionof bacteria associated with loss of chloramine residual in a drinking water system[J]. Appliedand Environmental Microbiology,2005,71(11):6479-6488.
    [153] Norton J M, Alzerreca J J, Suwa Y, et al. Diversity of ammonia monooxygenase operon inautotrophic ammonia-oxidizing bacteria[J]. Archives of Microbiology,2002,177(2):139-149.
    [154] Rotthauwe J H, Witzel K. P, Liesack W. The ammonia monooxygenase structural gene amoAas a functional marker: molecular fine-scale analysis of natural ammonia-oxidizingpopulations[J]. Applied and Environmental Microbiology,1997,63(12):4704-4712.
    [155] Hermansson A, Lindgren P E. Quantification of ammonia-oxidizing bacteria in arable soil byreal-time PCR[J]. Applied and Environmental Microbiology,2001,67(2):972-976.
    [156] Spieck E, Ehrich S, Aamand J, et al. Isolation and immunocytochemical location of thenitrite-oxidizing system in Nitrospira moscoviensis[J]. Archives of Microbiology,1998,169(3):225-230.
    [157] Spieck E, Müller S, Engel A, et al. Two-Dimensional Structure of Membrane-Bound NitriteOxidoreductase from Nitrobacter hamburgensis[J]. Journal of Structural Biology,1996,117(2):117-123.
    [158] Poly F, Wertz S, Brothier E, et al. First exploration of Nitrobacter diversity in soils by a PCRcloning-sequencing approach targeting functional gene nxrA[J]. FEMS Microbiology Ecology,2008,63(1):132-140.
    [159] Wertz S, Poly F, Le Roux X, et al. Development and application of a PCR-denaturing gradientgel electrophoresis tool to study the diversity of Nitrobacter-like nxrA sequences in soil[J].FEMS Microbiology Ecology,2008,63(2):261-271.
    [160] Freitag A, Rudert M, Bock E. Growth of Nitrobacter by dissimilatoric nitrate reduction[J].FEMS Microbiology Letters,1987,48(1):105-109.
    [161] Cantera J J L, Stein L Y. Molecular diversity of nitrite reductase genes (nirK) in nitrifyingbacteria[J]. Environmental Microbiology,2007,9(3):765-776.
    [162] Harhangi H R, Le Roy M, van Alen T, et al. Hydrazine synthase, a unique phylomarker withwhich to study the presence and biodiversity of anammox bacteria[J]. Applied andEnvironmental Microbiology,2012,78(3):752-758.
    [163] Schmid M C, Hooper A B, Klotz M G, et al. Environmental detection of octahaem cytochromec hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium‐oxidizing bacteria[J]. Environmental Microbiology,2008,10(11):3140-3149.
    [164] Wang Y, Zhu G, Harhangi H R, et al. Co-occurrence and distribution of nitrite‐dependentanaerobic ammonium and methane-oxidizing bacteria in a paddy soil[J]. FEMS MicrobiologyLetters,2012,336(2):79-88.
    [165]王爱杰,任南琪.环境中的分子生物学诊断技术[M].北京:化学工业出版社,2004.
    [166] Liu Z, Huang S, Sun G, et al. Diversity and abundance of ammonia-oxidizing archaea in theDongjiang River, China[J]. Microbiological Research,2011,166(5):337-345.
    [167] Zhang X, Li D, Liang Y, et al. Performance and microbial community of completelyautotrophic nitrogen removal over nitrite (CANON) process in two membrane bioreactors(MBR) fed with different substrate levels[J]. BioresourceTechnology,2014,152:185-191.
    [168] Bollmann A, French E, Laanbroek H J. Isolation, cultivation, and characterization ofammonia-oxidizing bacteria and archaea adapted to low ammonium concentrations[J].Methods in Enzymology: Research on Nitrification and Related Processes, Vol486, Part A. M.G. Klotz,2011,486:55–88.
    [169]蔡庆.完全自养脱氮SBR反应器的运行、强化及模拟优化[D].重庆大学,2012.
    [170] Kimura Y, Isaka K, Kazama F. Effects of inorganic carbon limitation on anaerobic ammoniumoxidation (anammox) activity[J]. Bioresource Technology,2011,102(6):4390-4394.
    [171] Kuai L, Verstraete W. Ammonium removal by the oxygen-limited autotrophicnitrification-denitrification system[J]. Applied and Environmental Microbiology,1998,64(11):4500-4506.
    [172]国家环境保护总局.水和废水监测分析方法(第4版)[M].北京:中国环境科学出版社,2002.
    [173] Frear D S, Burrell R C. Spectrophotometric method for determining hydroxylamine reductaseactivity in higher plants[J]. Analytical Chemistry,1955,27(10):1664-1665.
    [174] Watt G W, Chrisp J D. Spectrophotometric method for determination of hydrazine[J].Analytical Chemistry,1952,24(12):2006-2008.
    [175]卢培利.混合呼吸测量仪研制与活性污泥模型进水COD组分表征研究[D].重庆大学,2006.
    [176] Gong Y, Wang S, Wang S, et al. Nitrous oxide production from sequencing batch reactorsludge under nitrifying conditions: effect of nitrite concentrations[J]. EnvironmentalTechnology,2012,33(4):401-408.
    [177] Noda N, Kaneko N, Mikami M, et al. Effects of SRT and DO on N2O reductase activity in ananoxic-oxic activated sludge system[J]. Water Science&Technology,2004,48(11):363-370.
    [178] Zhou J, Bruns M A., Tiedje J M. DNA recovery from soils of diverse composition[J]. Appliedand Environmental Microbiology,1996,62(2):316-322.
    [179] Li J, Elliott D, Nielsen M, et al. Long-term partial nitrification in an intermittently aeratedsequencing batch reactor (SBR) treating ammonium-rich wastewater under controlledoxygen-limited conditions[J]. Biochemical Engineering Journal,2011,55(3):215-222.
    [180] Muyzer G, De Waal E. C, Uitterlinden A G. Profiling of complex microbial populations bydenaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genescoding for16S rRNA[J]. Applied and Environmental Microbiology,1993,59(3):695-700.
    [181] Harms G, Layton A C, Dionisi H. M, et al. Real-time PCR quantification of nitrifying bacteriain a municipal wastewater treatment plant[J]. Environmental Science and Technology,2003,37(2):343-351.
    [182] Shi X Y, Sheng G P, Li X Y, et al. Operation of a sequencing batch reactor for cultivatingautotrophic nitrifying granules[J]. Bioresource Technology,2010,101(9):2960-2964.
    [183] Shi X. Y, Yu H Q, Sun Y J, et al. Characteristics of aerobic granules rich in autotrophicammonium-oxidizing bacteria in a sequencing batch reactor[J]. Chemical Engineering Journal,2009,147(2):102-109.
    [184] Wang C C, Lee P H, Kumar M, et al. Simultaneous partial nitrification, anaerobic ammoniumoxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant[J].Journal of Hazardous Materials,2010,175(1):622-628.
    [185] Mobarry B K, Wagner M, Urbain V, et al. Phylogenetic probes for analyzing abundance andspatial organization of nitrifying bacteria[J]. Applied and Environmental Microbiology,1996,62(6):2156-2162.
    [186] Pommerening-R ser A, Rath G, Koops H P. Phylogenetic Diversity within the GenusNitrosomonas [J]. Systematic and Applied Microbiology,1996,19(3):344-351.
    [187] Okabe S, Satoh H, Watanabe Y. In situ analysis of nitrifying biofilms as determined by in situhybridization and the use of microelectrodes[J]. Applied and Environmental Microbiology,1999,65(7):3182-3191.
    [188] Contreras E M, Ruiz F, Bertola N C. Kinetic modeling of inhibition of ammonia oxidation bynitrite under low dissolved oxygen conditions[J]. Journal of Environmental Engineering,2008,134(3):184-190.
    [189] Van Hulle S W H, Volcke E I P, Teruel J L, et al. Influence of temperature and pH on thekinetics of the Sharon nitritation process[J]. Journal of Chemical Technology andBiotechnology,2007,82(5):471-480.
    [190] Torà J A, Lafuente J, Baeza J A, et al. Combined effect of inorganic carbon limitation andinhibition by free ammonia and free nitrous acid on ammonia oxidizing bacteria[J].Bioresource technology,2010,101(15):6051-6058.
    [191] Park S, Bae W. Modeling kinetics of ammonium oxidation and nitrite oxidation undersimultaneous inhibition by free ammonia and free nitrous acid[J]. Process Biochemistry,2009,44(6):631–640.
    [192]金仁村,阳广凤,马春,等.逆流湍动床短程硝化反应器的运行性能及基质抑制动力学模型[J].环境科学,2011,32(1):217–224.
    [193] Ben-Youssef C, Zepeda A., Texier A.C, et al. A two-step nitrification model of ammonia andnitrite oxidation under benzene inhibitory and toxic effects in nitrifying batch cultures[J].Chemical Engineering Journal,2009,152(1):264–270.
    [194] Nicholas D J D, Jones O T G. Oxidation of hydroxylamine in cell-free extracts ofNitrosomonas europaea[J]. Nature,1960,185(4712):512–514.
    [195]张子健,吴伟伟,王建龙. SBR反应器中全自养硝化颗粒污泥的特性研究[J].环境科学,2010,31(5):1257-1262.
    [196] Moussa M S, Lubberding H. J, Hooijmans C M, et al. Improved method for determination ofammonia and nitrite oxidation activities in mixed bacterial cultures[J]. Applied Microbiologyand Biotechnology,2003,63(2):217-221.
    [197] Crosby N T. Determination of ammonia by the Nessler method in waters containinghydrazine[J]. Analyst,1968,93(1107):406–408.
    [198] George M, Nagaraja K S, Balasubramanian N. Spectrophotometric determination ofhydrazine[J]. Talanta,2008,75(1),27–31.
    [199] Troyan J E. Properties, production, and uses of hydrazine[J]. Industrial Engineering Chemistry,1953,45(12):2608–2612.
    [200] Eisenthal R, Cornish-Bowden A. Direct linear plot-new graphical procedure for estimatingenzyme kinetic-parameters[J]. Biochemical Journal,1974,139(3):715–720.
    [201] Rittmann B. E., Mccarty R. L (著),文湘华,王建龙(译).环境生物技术:原理与应用[M].北京:清华大学出版社,2004.
    [202] Baici A. Enzyme kinetics: the velocity of reactions[J]. Biochemistry Journal of Classic Paper2006. doi:10.1042/BJ2006c015
    [203] Keener W K, Arp D J. Kinetic studies of ammonia monooxygenase inhibition inNitrosomonas europaea by hydrocarbons and halogenated hydrocarbons in an optimizedwhole-cell assay[J]. Applied and Environmental Microbiology,1993,59(8):2501–2510.
    [204] Chandran K, Smets B F. Optimizing experimental design to estimate ammonia and nitriteoxidation biokinetic parameters from batch respirograms[J].Water Research,2005,39(20):4969–4978.
    [205] Chandran K, Smets B F. Single-step nitrification models erroneously describe batch ammoniaoxidation profiles when nitrite oxidation becomes rate limiting[J]. Biotechnology andBioengineering,2000,68(4):396-406.
    [206] Hooper A B, Vannelli T, Bergmann D J, et al. Enzymology of the oxidation of ammonia tonitrite by bacteria[J]. Antonie van Leeuwenhoek,1997,71(1-2):59-67.
    [207] Hooper A B. Biochemistry of the Nitrifying Lithoautotrophic Bacteria, in: H. G. Schlegel, B.Bowien (Eds.), In Autotrophic Bacteria, Springer-Verlag., Berlin, Germany,1989, pp.239-265.
    [208] Ni B J, Ruscalleda M, Pellicer-Nacher C, et al. Modeling nitrous oxide production duringbiological nitrogen removal via nitrification and denitrification: extensions to the generalASM models[J]. Environmental Science and Technology,2011,45(18):7768-7776.
    [209] Reichert P. Aquasim2.0-user manual, computer program for the identification and simulationof aquatic systems[J]. Swiss Federal Institute for Environmental Science and Technology(EAWAG),1998:219.
    [210]卢培利,张代钧,曹海彬,等.废水生物处理中的呼吸测量技术进展[J].重庆大学学报(自然科学版),2006,28(10):128-132.
    [211] Wiesmann U. Biological nitrogen removal from wastewater[M] Biotechnics/Wastewater.Springer Berlin Heidelberg,1994:113-154.
    [212] Grady C P L Jr, Daigger G. T, Lim H C. Biological Wastewater Treatment[M]. Marcel Dekker,New York,1999.
    [213] Arp D J, Stein L Y. Metabolism of inorganic N compounds by ammonia-oxidizing bacteria[J].Critical Reviews in Biochemistry and Molecular Biology,2003,38(6):471-495.
    [214] Chandran K, Smets B F. Estimating biomass yield coefficients for autotrophic ammonia andnitrite oxidation from batch respirograms[J]. Water Research,2001,35(13):3153-3156.
    [215] De Kreuk M K, Picioreanu C, Hosseini M, et al. Kinetic model of a granular sludge SBR:influences on nutrient removal[J]. Biotechnology and bioengineering,2007,97(4):801-815.
    [216]祖波,张代钧,张萍,等.好氧氨氧化菌混培物的氨氧化动力学研究[J].环境工程学报,2007,1(11):47—50.
    [217]单明军,张海灵,吕艳丽,等.焦化废水亚硝化过程的动力学研究[J].哈尔滨工业大学学报,2006,38(20):312—321.
    [218] Fang F, Ni B J, Li X Y, et al. Kinetic analysis on the two-step processes of AOB and NOB inaerobic nitrifying granules[J]. Applied Microbiology and Biotechnology,2009,83(6):1159-1169.
    [219] Sharma B, Ahlert R C. Nitirification and nitrogen removal[J]. Water Research1977,11(10):897–925.
    [220] Vadivelu V M, Yuan Z, Fux C, et al. Stoichiometric and kinetic characterisation of Nitrobacterin mixed culture by decoupling the growth and energy generation processes[J]. Biotechnologyand bioengineering,2006,94(6):1176-1188.
    [221] Lackner S, Smets B F. Effect of the kinetics of ammonium and nitrite oxidation on nitritationsuccess or failure for different biofilm reactor geometries[J]. Biochemical Engineering Journal,2012,69:123-129.
    [222] Manser R, Gujer W, Siegrist H. Consequences of mass transfer effects on the kinetics ofnitrifiers[J]. Water Research,2005,39(19):4633-4642.
    [223] Kaelin D, Manser R, Rieger L, et al. Extension of ASM3for two-step nitrification anddenitrification and its calibration and validation with batch tests and pilot scale data [J]. WaterResearch,2009,43(6):1680-1692.
    [224] Moussa M S, Hooijmans C M, Lubberding H J, et al. Modelling nitrification, heterotrophicgrowth and predation in activated sludge[J]. Water Research,2005,39(20):5080-5098.
    [225] Sorokin D Y, Muyzer G, Brinkhoff T, et al. Isolation and characterization of a novelfacultatively alkaliphilic Nitrobacter species, N. alkalicus sp. nov[J]. Archives ofMicrobiology,1998,170(5):345-352.
    [226] Lü F, Hao L, Guan D, et al. Synergetic stress of acids and ammonium on the shift in themethanogenic pathways during thermophilic anaerobic digestion of organics[J]. WaterResearch,2013,47(7):2297-2306.
    [227] Liang Z, Han Z, Yang S, et al. A control strategy of partial nitritation in a fixed bed bioflimreactor[J]. BioresourceTechnology,2011,102(2):710-715.
    [228] Liu T, Li D, Zeng H, et al. Biodiversity and quantification of functional bacteria in completelyautotrophic nitrogen-removal over nitrite (CANON) process[J]. Bioresource Technology,2012,118:399-406.
    [229] Winkler M K H., Kleerebezem R, Kuenen J G, et al. Segregation of biomass in cyclicanaerobic/aerobic granular sludge allows the enrichment of anaerobic ammonium oxidizingbacteria at low temperatures[J]. Environmental Science and Technology,2011,45(17):7330-7337.
    [230] Joss A, Salzgeber D, Eugster J, et al. Full-scale nitrogen removal from digester liquid withpartial nitritation and anammox in one SBR[J]. Environmental Science and Technology,2009,43(14):5301-5306.
    [231] Lim Y, Kim D J. Quantification method of N2O emission from full-scale biological nutrientremoval wastewater treatment plant by laboratory batch reactor analysis[J]. BioresourceTechnology,2014. doi: http://dx.doi.org/10.1016/j.biortech.2014.03.021.
    [232] Kim S W, Miyahara M, Fushinobu S, et al. Nitrous oxide emission from nitrifying activatedsludge dependent on denitrification by ammonia-oxidizing bacteria[J]. BioresourceTechnology,2010,101(11):3958-3963.
    [233] Poughon L, Dussap C G, Gros J B. Energy model and metabolic flux analysis for autotrophicnitrifiers[J]. Biotechnology and Bioengineering,2001,72(4):416-433.
    [234] Ahn J H, Kwan T, Chandran K. Comparison of partial and full nitrification processes appliedfor treating high-strength nitrogen wastewaters: microbial ecology through nitrous oxideproduction[J]. Environmental Science and Technology,2011,45(7):2734-2740.
    [235] Desloover J, Vlaeminck S E, Clauwaert P, et al. Strategies to mitigate N2O emissions frombiological nitrogen removal systems[J]. Current Opinion in Biotechnology,2012,23(3):474-482.
    [236] Yu R, Kampschreur M J, Loosdrecht M C M. et al. Mechanisms and specific directionality ofautotrophic nitrous oxide and nitric oxide generation during transient anoxia[J].Environmental Science and Technology,2010,44(4):1313-1319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700