用户名: 密码: 验证码:
黄酒发酵过程的建模与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄酒是我国特有的传统酒种,其发酵过程目前仍主要靠人工控制来实现,造成批次质量的稳定性较差。随着产能及质量需求的提升,迫切需要具有高鲁棒性的控制系统来实现其过程自动化,而构建准确描述发酵过程特性的数学模型是建立自动控制系统的基础,黄酒发酵过程是典型半固半液发酵,其发酵系统极其复杂,且缺乏足够的发酵动力学数据,目前鲜有研究涉及黄酒发酵过程的建模。本文以黄酒酿造过程为研究对象,首先通过生物实验确定关键阶段,并进一步采集了关键阶段的详细过程数据,然后以实验数据为基础分别对糖化过程、发酵过程以及同时糖化和发酵的双边过程进行了建模与参数辨识,具体研究内容如下:
     (1)针对决定黄酒品质的关键阶段不确定尤其是缺少过程数据的问题,本文通过实验模拟黄酒发酵过程,基于高效液相色谱技术(HPLC)测定了不同酶和曲在不同温度梯度下前、后酵结束两个关键点酒醪中主体成分含量,利用SAS分析了产物浓度的差异性,结果表明黄酒主体成分主要在前酵阶段生成。另外通过实验获得了不同温度下黄酒前酵过程数据,确定了主要状态变量,为建模及模型简化提供了理论及数据支持。
     (2)针对曲中酶的种类及比例不确定,提出模型结构来解决该问题。利用高效薄层层析技术(HPTLC)确定糖化过程中主要寡糖分布,并利用HPLC技术研究糖化过程中寡糖的浓度变化,基于所得的数据以低阶为目的建立了适合单酶、双酶和黄酒前酵糖化过程的模型结构。并基于四阶龙格库塔法和加权最小二乘算法利用模拟实验测得的数据对该模型进行了验证,结果表明所建模型能准确跟踪寡糖的变化。
     (3)针对黄酒醪液中酵母难以分析的问题,以葡萄糖为底物,系统研究了不同温度和不同起始底物浓度下酵母Su-25的动力学变化。并分别利用典型的Hinshelwood模型和Monod模型对该过程进行了仿真验证,结果表明Monod模型更适合描述Su-25发酵的动力学过程。
     (4)基于前期建立的糖化模型和发酵模型,构建了以寡糖、乙醇和溶氧等为状态变量的黄酒前酵双边发酵过程(SSF)模型,并分别利用所采集的实验室水平和工厂实际生产过程数据进行了模型辨识与验证。结果表明模型在实验室水平和工厂实际生产水平均能很好描述黄酒酿制中同时糖化和发酵的双边过程,模型能实现对实验数据的预测。
     (5)针对传统反馈控制或在线控制技术难以直接应用于包括黄酒在内的间歇发酵过程,本文提出基于广义预测控制的思想,通过优化黄酒发酵初始条件来实现优化的策略,该优化可以看作是系统控制时域为1而预测时域为整批反应时间的预测控制。通过设定预期目标轨迹,加入实际过程中变量浓度限制条件,利用最小二乘法来进行酿造条件的优化。仿真结果表明该策略可以实现黄酒发酵酿造条件的优化。
     本文所获得的实验数据对黄酒工业生产具有实际的指导意义和参考价值,所构建的模型对实现黄酒发酵过程自动化、提高批次稳定性具有重要的理论意义和应用价值。
Rice wine is one of the oldest alcoholic beverages in the world. The primary phase ofrice wine fermentation is a typical simultaneous saccharification and fermentation (SSF)process and is also referred to as a semi-solid state and semi-liquid state fermentation process.This process is critical to rice wine quality control, but there has been little published work onkinetic modeling and control of glutinous rice saccharification and rice wine fermentation. Inthis research, glutinous rice saccharification and fermentation were studied experimentallyand theoretically to develop process models and control strategies. To gain insights into theinfluential system variables, a sequence of experimental studies were carried out to determinethe influence of fermentation temperature and source of enzymes on the ecologicalcharacteristics of rice wine, and the effect of temperature on Chinese rice wine brewing withhigh-concentration pre-steamed whole sticky rice. After kinetic models were developedseparately for glutinous rice saccharification and fermentation, a SSF process model wasdeveloped for the rice wine production process.
     Rice wine samples were produced with four sources of enzymes at three fermentationtemperatures. Enological variables, including ethanol, main sugars, glycerol, and organicacids, were measured by HPLC at the end of primary fermentation (4days) and at the end ofpost fermentation (40days). The data showed that both source of enzymes and temperaturehad significant effects on the concentrations of the measured variables. The results provideinsights into the rice wine fermentation process as affected by different enzymes andfermentation temperatures.
     The effects of fermentation temperatures on Chinese rice wine quality were investigated.The compositions and concentrations of ethanol, sugars, glycerol, and organic acids in themash of Chinese rice wine samples were determined by HPLC. The experimental resultsindicated that temperature contributed significantly to ethanol production, acid flavor contents,and sugar contents in the fermentation broth of the Chinese rice wines.
     Glutinous rice saccharification was performed by using α-amylase, glucoamylase, two-enzyme combination, or wheat qu. Experiments were carried out at two different locations,with rice from different sources, and in varied fermentation temperatures. The main productswere identified and measured by HPLC. Low-order kinetic model structures (forms orconstructs of model with adjustable parameters) were proposed based on the major chemicalreactions brought about by different enzymes. The model structures were then tested for theirabilities to capture the main kinetic variations after parameter optimization by a least-squaresalgorithm. The proposed model structures were found useful in representing measured kineticvariations except those in maltotriose produced with wheat qu. The estimated reactions ratescorrectly reflected the variations observed from the experiments and provided insights into thereaction processes in terms of reaction speeds, dominant variations, and primary products. Theactions of α-amylase and wheat qu differed from findings in prior research. The proposedmodel structures show promise for describing the saccharification process of glutinous rice.
     A kinetic model structure was developed for the fermentation process by Su-25based on the biochemical reactions involved. Experiments with the Chinese rice wine yeast underdifferent conditions were performed and used to validate the model structure. It was foundthat the model structure could decribe the ferementation process. The developed modelstructure can be used to control or optimize rice wine production.
     Rice wine fermentation was performed by using pre-steamed rice, Chinese wheat qu andrice wine yeast strains Saccharomyces cerevisiae Su-25. Experiments were carried out withdifferent conditions, and the main products were identified and measured by HPLC. A low-order kinetic model structure was proposed based on the major chemical reactions in the ricewine fermentation process. The model structure was then tested for its abilities to capture themain kinetic variations after parameter optimization by a least-squares algorithm. Theproposed model structure showed promise for describing the fermentation process of ricewine.
     Another kinetic model structure was developed for the fermentation process of Su-25according to the involved biochemical reactions. The model structure can be used for differenttemperatures and different initial substrate concentrations. Experiments with Chinese ricewine yeast under different conditions were performed and used to validate the model structure.The model structure was verified with experiments in both the lab scale and the plant scale.
     Wine fermentation is a batch processes, for which conventional feedback controltechniques are either ineffective or inapplicable. Based on the framework of GeneralizedPredictive Control (GPC), a predictive control strategy was formulated to control the batchfermentation process by varying the initial process conditions. The formulation is equivalentto GPC with a unit control horizon but a long predictive horizon and its implemented boilsdown to least-squares optimization of an initial process condition vector for a given processoutput target under variaous constraints. Simulations were performed to demonstrate that thetechnique could drive the process towards desired output targets.
引文
[1]汪建国,沈玉根,陆伟杰,钱玉林.我国黄酒研究现状与发展趋势[J].中国酿造,2012,31(11):15-20.
    [2]王延才.坚持科学发展创新服务理念促进酒业健康发展——中国酿酒工业协会第三届理事会工作报告[J].酿酒科技,2010,(5):104-108.
    [3]胡普信.中国黄酒的科研现状及发展[J].中国酿造,2008,(2):4-6,13.
    [4]马王杰,张艺.绍兴黄酒产业的现状及发展研究[J].中国商贸,2012,(7):240-241.
    [5]何晓刚.对绍兴黄酒业发展的思考[J].绍兴文理学院学报,2011,31(4):100-106.
    [6]2010-2011年中国黄酒市场发展研究报告[E],中国市场调查研究中心. Accessedhttp://www.cmir.com.cn/html/hot_report/201207230930289.shtm,2012.
    [7]梁庆华,李宗博.我国黄酒业呈现四大发展趋势[N].中国食品报,1/20/201220121-2.
    [8] Xu Y, Wang D, Fan W, Mu X, Chen J. Tranditional Chinese biotechnology[M]. In: Tsao GT,Ouyang P, Chen J (eds) Biotechnology in China II: Chemicals, energy and environment, vol122.Springer, Berlin,189-233,2010.
    [9]周家祺.黄酒生产工艺[M].第二版.北京:中国轻工业出版社,1996.
    [10]邵建伟,黄重君,俞灵燕,占予沸.浙江黄酒制造业现状调查与发展研究[J].浙江统计,2009,(8):12-14.
    [11] Wiechert W.13C metabolic flux analysis [J]. Metabolic Engineering,2001,3(3):195-206.
    [12] Kauffman K J, Prakash P, Edwards J S. Advances in flux balance analysis [J]. Current Opinion inBiotechnology,2003,14(5):491-496.
    [13] Curto R, Sorribas A, Cascante M. Comparative characterization of the fermentation pathway ofSaccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: Modeldefinition and nomenclature [J]. Mathematical Biosciences,1995,130(1):25-50.
    [14] Jeyamkondan S, Jayas D S, Holley R A. Microbial growth modelling with artificial neural networks[J]. International Journal of Food Microbiology,2001,64(3):343-354.
    [15] Pugh G A. Synthetic neural networks for process control [J]. Computers&Industrial Engineering,1989,17(1–4):24-26.
    [16] Kroumov A D, Módenes A N, Tait M C D A. Development of new unstructured model forsimultaneous saccharification and fermentation of starch to ethanol by recombinant strain [J].Biochemical Engineering Journal,2006,28(3):243-255.
    [17] Jones K D, Kompala D S. Cybernetic model of the growth dynamics of Saccharomyces cerevisiae inbatch and continuous cultures [J]. Journal of Biotechnology,1999,71(1–3):105-131.
    [18] Ramakrishna R, Ramkrishna D, Konopka A E. Cybernetic modeling of growth in mixed,substitutable substrate environments: Preferential and simultaneous utilization [J]. Biotechnologyand Bioengineering,1996,52(1):141-151.
    [19] Shen J, Agblevor F. The operable modeling of simultaneous saccharification and fermentation ofethanol production from cellulose [J]. Applied Biochemistry and Biotechnology,2010,160(3):665-681.
    [20] Ko J, Su W-J, Chien I L, Chang D-M, Chou S-H, Zhan R-Y. Dynamic modeling and analyses ofsimultaneous saccharification and fermentation process to produce bio-ethanol from rice straw [J].Bioprocess and Biosystems Engineering,2010,33(2):195-205.
    [21] Mishima K, Mimura A, Takahara Y, Asami K, Hanai T. On-line monitoring of cell concentrationsby dielectric measurements [J]. Journal of Fermentation and Bioengineering,1991,72(4):291-295.
    [22]史仲平,潘丰.发酵过程解析、控制与检测技术[M].北京:北京化工出版社,2005.
    [23] Sainz J, Pizarro F, Pérez-Correa J R, Agosin E. Modeling of yeast metabolism and process dynamicsin batch fermentation [J]. Biotechnology and Bioengineering,2003,81(7):818-828.
    [24] Willis M J, Montague G A, Di Massimo C, Tham M T, Morris A J. Artificial neural networks inprocess estimation and control [J]. Automatica,1992,28(6):1181-1187.
    [25] Manikandan K, Viruthagiri T. Kinetic and optimization studies on ethanol production from cornflour [J]. International Journal of Chemical and Biological Engineering,2010,3(2):65-69.
    [26] Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins [J]. Journal ofMolecular Biology,1961,3(3):318-356.
    [27] Gadhe A, Sonawane S S, Varma M N. Kinetic analysis of biohydrogen production from complexdairy wastewater under optimized condition [J]. International Journal of Hydrogen Energy,2014,39(3):1306-1314.
    [28] Zeng A P, Deckwer W D. Mathematical modeling and analysis of glucose and glutamine utilizationand regulation in cultures of continuous mammalian cells [J]. Biotechnology and Bioengineering,1995,47(3):334-346.
    [29] Acosta M, Sánchez A, García F, Contreras A, Molina E. Analysis of kinetic, stoichiometry andregulation of glucose and glutamine metabolism in hybridoma batch cultures using logistic equations[J]. Cytotechnology,2007,54(3):189-200.
    [30] Davis R A. Parameter estimation for simultaneous saccharification and fermentation of food wasteinto ethanol using Matlab Simulink [J]. Applied Biochemistry and Biotechnology,2008,147:11-21.
    [31] Birol G, Doruker P, Kirdar B, lsen nsan Z, lgen K. Mathematical description of ethanolfermentation by immobilised Saccharomyces cerevisiae [J]. Process Biochemistry,1998,33(7):763-771.
    [32] Klinman J P. The power of integrating kinetic isotope effects into the formalism of the Michaelis–Menten equation [J]. FEBS Journal,2014,281(2):489-497.
    [33] Liao J C. Modelling and analysis of metabolic pathways [J]. Current Opinion in Biotechnology,1993,4(2):211-216.
    [34] Heylighen F, Joslyn C. Cybernetics and second order cybernetics [J]. Encyclopedia of physicalscience&technology,2001,4:155-170.
    [35]宫召华,冯恩民,修志龙.微生物间歇发酵比生长速率辨识及优化算法[J].大连理工大学学报,2009,(4):611-616.
    [36]吕欣,董明盛,张晓娟,史仲平,毛忠贵.酒精发酵非结构动力学模型及其参数估计[J].西北农林科技大学学报:自然科学版,2006,33(11):78-82.
    [37]杜润龙,须文波,孙俊.基于量子微粒群算法的发酵过程模型参数估计[J].计算机工程与设计,2007,28(10):2419-2421.
    [38]薛尧予,王建林,于涛,赵利强.基于改进PSO算法的发酵过程模型参数估计[J].仪器仪表学报,2010,31(1):178-182.
    [39]王东阳,王健,陈宁.基于遗传算法的谷氨酸发酵动力学参数估计[J].生物技术通讯,2005,16(4):407-408.
    [40] Guo Y, Tan J. A kinetic model structure for delayed fluorescence from plants [J]. BioSystems,2009,95(2):98-103.
    [41] Guo Y, Tan J. Modeling and simulation of the initial phases of chlorophyll fluorescence fromPhotosystem II [J]. BioSystems,2011,103(2):152-157.
    [42] Dai W, Word D P, Hahn J. Modeling and dynamic optimization of fuel-grade ethanol fermentationusing fed-batch process [J]. Control Engineering Practice,2014,22(0):231-241.
    [43] Zwietering M H, Jongenburger I, Rombouts F M, Van't Riet K. Modeling of the bacterial growthcurve [J]. Applied and Environmental Microbiology,1990,56(6):1875-1881.
    [44] Ding F, Chen T. Hierarchical gradient-based identification of multivariable discrete-time systems [J].Automatica,2005,41(2):315-325.
    [45] Ding F, Chen T. Performance analysis of multi-innovation gradient type identification methods [J].Automatica,2007,43(1):1-14.
    [46]顾国贤.酿造酒工艺学[M].第二版.北京:中国轻工业出版社,1996.
    [47]李家寿,陈靖显.黄酒酿造工艺[M].杭州:中国酿酒工业协会黄酒分会,2004.
    [48]胡志明,谢广发.黄酒[M].杭州:浙江科学技术出版社,2008.
    [49] Russell I. Understanding yeast fundamentals[M]. In: Jacques KA, Lyons TP, Kelsall DR (eds) TheAlcohol Textbook.4th edn. Nottingham University Press, Nottingham, United Kingdom,85-119,2003.
    [50] Thatipamala R, Rohani S, Hill G A. Effects of high product and substrate inhibitions on the kineticsand biomass and product yields during ethanol batch fermentation [J]. Biotechnology andBioengineering,1992,40(2):289-297.
    [51] Kelsall D R a L, T.P. The alcohol textbook: A reference for the beverage, fuel and industrial alcohol.
    [M].4th edn. Nottingkam, UK: Nottingkam University press,2003.
    [52] Narendranath N V, Hynes S H, Thomas K C, Ingledew W M. Effects of lactobacilli on yeast-catalyzed ethanol fermentations [J]. Applied and Environmental Microbiology,1997,63(11):4158-4163.
    [53] Graves T, Narendranath N, Dawson K, Power R. Effect of pH and lactic or acetic acid on ethanolproductivity by Saccharomyces cerevisiae in corn mash [J]. Journal of Industrial Microbiology andBiotechnology,2006,33(6):469-474.
    [54] Narendranath N V, Thomas K C, Ingledew W M. Effects of acetic acid and lactic acid on the growthof Saccharomyces cerevisiae in a minimal medium [J]. Journal of Industrial Microbiology andBiotechnology,2001,26(3):171-177.
    [55] Loureiro V, Uden N V. Effects of ethanol on the maximum temperature for growth ofSaccharomyces cerevisiae: A model [J]. Biotechnology and Bioengineering,1982,24(8):1881-1884.
    [56]陈治纲,许超,邵惠鹤.间歇过程优化与先进控制综述[J].化工自动化及仪表,2003,30(3):1-6.
    [57]赵梅,冷云伟,李鹏.黄酒发酵过程分析及关键点的控制[J].江苏调味副食品,2009,26(5):30-34.
    [58]魏桃英.关于黄酒发酵过程中pH的探讨[J].酿酒科技,2005,(3):78-79.
    [59]赵梅,冷云伟,叶辉,赵玉斌,王法超.黄酒大罐发酵及其过程的糖代谢研究[J].酿酒,2010,37(2):58-61.
    [60]徐国强,陈树,熊伟丽,徐保国.黄酒前酵自控系统的研究与应用[J].自动化仪表,2011,32(2):31-33,37.
    [61]钟强,周芸,徐保国.基于SCL的黄酒发酵温度控制系统设计与应用[J].自动化与仪表,2012,27(10):34-37.
    [62]张志旭,吴国杰.黄酒酿造技术的发展[J].酿酒,1999,(2):35-37.
    [63] Que F, Mao L, Zhu C, Xie G. Antioxidant properties of Chinese yellow wine, its concentrate andvolatiles [J]. LWT-Food Science and Technology,2006,39(2):111-117.
    [64]谢广发,戴军,赵光鳌,帅桂兰,李莉.黄酒中的γ-氨基丁酸及其功能[J].中国酿造,2005,(3):49-50.
    [65]谢广发.日本清酒保健功能研究现状及其对我国黄酒的启示[J].中国酿造,2009,(7):10-11.
    [66] Mo X, Fan W, Xu Y. Changes in volatile compounds of Chinese rice wine wheat qu duringfermentation and storage [J]. Journal of the Institute of Brewing,2009,115(4):300-307.
    [67] Luo T, Fan W, Xu Y. Characterization of Volatile and Semi-Volatile Compounds in Chinese RiceWines by Headspace Solid Phase Microextraction Followed by Gas Chromatography-MassSpectrometry [J]. Journal of the Institute of Brewing,2012,114(2):172-179.
    [68]寿泉洪,杨国军,陈细丹,赵光鳌.黄酒生麦曲与熟麦曲的性能比较[J].酿酒科技,2008,4:92-95.
    [69]何进武,黄惠华.酶工程在酿酒工业中的应用[J].酿酒,2007,34(3):57-60.
    [70]罗涛,范文来,徐岩.中国黄酒中挥发性和不挥发性物质的研究现状与展望[J].酿酒,2007,34(1):44-48.
    [71]汪建国.黄酒中色、香、味、体的构成和来源浅析[J].中国酿造,2004,(4):6-10,18.
    [72]陈乃东,陈乃富,王庆红,杨辉.黄酒成分HPLC分析[J].安徽农学通报,2012,18(13):177-178,198.
    [73]寿虹志,凌志勇,杨旭,谢广发.浅析黄酒麦曲中的微生物与黄酒风味的关系[J].中国酿造,2007,(8):55-57,67.
    [74]李红蕾,冯涛.不同酒龄和类型黄酒中主要味觉物质的测定[J].中国酿造,2012,31(1):172-175.
    [75] Torija M J, Rozès N, Poblet M, Guillamón J M, Mas A. Effects of fermentation temperature on thestrain population of Saccharomyces cerevisiae [J]. International journal of food microbiology,2003,80(1):47-53.
    [76]毛青钟.黄酒发酵过程中乳酸杆菌的功与过[J].酿酒,2001,28(6):72-75.
    [77] Chen S, Xu Y. The influence of yeast strains on the volatile flavour compounds of Chinese rice wine[J]. Journal of the Institute of Brewing,2012,116(2):190-196.
    [78]毛青钟.关于黄酒发酵过程中成分变化的探讨[J].中国酿造,2004,(12):1-5.
    [79] Andorrà I, Landi S, Mas A, Esteve-Zarzoso B, Guillamón J M. Effect of fermentation temperatureon microbial population evolution using culture-independent and dependent techniques [J]. FoodResearch International,2010,43(3):773-779.
    [80] Charoenchai C, Fleet G H, Henschke P A. Effects of temperature, pH, and sugar concentration on thegrowth rates and cell biomass of wine yeasts [J]. American Journal of Enology and Viticulture,1998,49(3):283-288.
    [81] Tromp A. The effect of yeast strain, grape solids, nitrogen and temperature on fermentation rate andwine quality [J]. South African Journal for Enology and Viticulture,1984,5(1):1-6.
    [82] Redón M, Guillamón J M, Mas A, Rozès N. Effect of growth temperature on yeast lipid compositionand alcoholic fermentation at low temperature [J]. European Food Research and Technology,2011,232(3):517-527.
    [83] Reddy L V A, Reddy O V S. Effect of fermentation conditions on yeast growth and volatilecomposition of wine produced from mango (Mangifera indica L.) fruit juice [J]. Food andBioproducts Processing,2011,89(4):487-491.
    [84] Cao Y, Xie G, Wu C, Lu J. A study on characteristic flavor compounds in traditional Chinese ricewine—Guyue Longshan rice wine [J]. Journal of the Institute of Brewing,2010,116(2):182-189.
    [85] Olaniran A O, Maharaj Y R, Pillay B. Effects of fermentation temperature on the composition ofbeer volatile compounds, organoleptic quality and spent yeast density [J]. Electronic Journal ofBiotechnology,2011,14(2):5-5.
    [86] Molina A M, Swiegers J H, Varela C, Pretorius I S, Agosin E. Influence of wine fermentationtemperature on the synthesis of yeast-derived volatile aroma compounds [J]. Applied Microbiologyand Biotechnology,2007,77(3):675-687.
    [87] Hiralal L, Pillay B, Olaniran A O. Stability profile of flavour-active ester compounds in ale and lagerbeer during storage [J]. African Journal of Biotechnology,2013,12(5):491-498.
    [88] Du G, Zhan J, Li J, You Y, Zhao Y, Huang W. Effect of fermentation temperature and culturemedium on glycerol and ethanol during wine fermentation [J]. American Journal of Enology andViticulture,2012,63(1):132-138.
    [89] Gamero A, Tronchoni J, Querol A, Belloch C. Production of aroma compounds by cryotolerantSaccharomyces species and hybrids at low and moderate fermentation temperatures [J]. Journal ofApplied Microbiology,2013,114(5):1405-1414.
    [90] Toko K. Taste sensor with global selectivity [J]. Materials Science and Engineering: C,1996,4(2):69-82.
    [91] Hesseltine C W, Wang H L. Traditional fermented foods [J]. Biotechnology and Bioengineering,1967,9(3):275-288.
    [92] Yu H, Ding Y S, Mou S F. Direct and simultaneous determination of amino acids and sugars in ricewine by high-performance anion-exchange chromatography with integrated pulsed amperometricdetection [J]. Chromatographia,2003,57(11-12):721-728.
    [93]冯德明,孙诗清,马红霞,孙国昌,孙培龙.黄酒酸败时主要有机酸种类及含量分析[J].中国酿造,2010,(1):125-128.
    [94]卫功元,李寅,堵国成,陈坚.温度对谷胱甘肽分批发酵的影响及动力学模型[J].生物工程学报,2003,19(3):358-363.
    [95] Shen F, Ying Y, Li B, Zheng Y, Hu J. Prediction of sugars and acids in Chinese rice wine by mid-infrared spectroscopy [J]. Food Research International,2011,44(5):1521-1527.
    [96] Niu X, Shen F, Yu Y, Yan Z, Xu K, Yu H, Ying Y. Analysis of sugars in Chinese rice wine byFourier transform near-infrared spectroscopy with partial least-squares regression [J]. Journal ofAgricultural and Food Chemistry,2008,56(16):7271-7278.
    [97]毛青钟.黄酒浸米浆水及其微生物变化和作用[J].酿酒科技,2004,(3):73-76.
    [98] kerberg C, Zacchi G, Torto N, Gorton L. A kinetic model for enzymatic wheat starchsaccharification [J]. Journal of Chemical Technology and Biotechnology,2000,75(4):306-314.
    [99] Liu D, Xiong W, Xu G, Xu B. An automated system for monitoring and controlling of rice winefermentation [C]. Paper presented at the2012ASABE Annual international Meeting, July29-August1,2012, Dallas, Texas, The American Society of Agricultural and Biological Engineers, St.Joseph, Michigan,3643-3651.
    [100]刘登峰,熊伟丽,徐玲,姜丽华,张洪涛,胡建华,徐保国.不同温度和底物浓度下黄酒酵母Saccharomyces cerevisiae苏-25发酵过程建模与优化[J].计算机与应用化学,2013,30(11):1254-1258.
    [101]刘登峰,熊伟丽,徐玲,姜丽华,张洪涛,胡建华,徐保国.黄酒双边发酵过程的建模[J].系统仿真学报,2014,26(3):626-630.
    [102]陆健,曹钰,方华,李旺军,谢广发,邹慧君,胡志明.绍兴黄酒麦曲中真菌的初步研究[J].食品与生物技术学报,2008,27(2):78-83.
    [103] Xie G, Li W, Lu J, Cao Y, Fang H, Zou H, Hu Z. Isolation and identification of representative fungifrom Shaoxing rice wine wheat qu using a polyphasic approach of culture-based and molecular-based methods [J]. Journal of the Institute of Brewing,2007,113(3):272-279.
    [104] Polakovi M, Bryjak J. Modelling of potato starch saccharification by an Aspergillus nigerglucoamylase [J]. Biochemical Engineering Journal,2004,18(1):57-63.
    [105] Ochoa S, Yoo A, Repke J-U, Wozny G, Yang D R. Modeling and parameter identification of thesimultaneous saccharification-fermentation process for ethanol production [J]. BiotechnologyProgress,2007,23(6):1454-1462.
    [106] He P, Lü F, Shao L, Pan X, Lee D-J. Kinetics of enzymatic hydrolysis of polysaccharide-richparticulates [J]. Journal of the Chinese Institute of Chemical Engineers,2007,38(1):21-27.
    [107] Anuradha R, Suresh A K, Venkatesh K V. Simultaneous saccharification and fermentation of starchto lactic acid [J]. Process Biochemistry,1999,35(3-4):367-375.
    [108] Lee C G, Kim C H, Rhee S K. A kinetic model and simulation of starch saccharification andsimultaneous ethanol fermentation by amyloglucosidase and Zymomonas mobilis [J]. BioprocessEngineering,1992,7(8):335-341.
    [109] Paolucci-Jeanjean D, Belleville M-P, Zakhia N, Rios G M. Kinetics of cassava starch hydrolysiswith Termamyl enzyme [J]. Biotechnology and Bioengineering,2000,68(1):71-77.
    [110] Wojciechowski P M, Koziol A, Noworyta A. Iteration model of starch hydrolysis by amylolyticenzymes [J]. Biotechnology and Bioengineering,2001,75(5):530-539.
    [111] Murthy G S, Johnston D B, Rausch K D, Tumbleson M E, Singh V. A simultaneous saccharificationand fermentation model for dynamic growth environments [J]. Bioprocess and BiosystemsEngineering,2012,35(4):519-534.
    [112] Murthy G S, Johnston D B, Rausch K D, Tumbleson M E, Singh V. Starch hydrolysis modeling:application to fuel ethanol production [J]. Bioprocess and Biosystems Engineering,2011,34(7):879-890.
    [113] Fujii M, Homma T, Taniguchi M. Synergism of α-amylase and glucoamylase on hydrolysis of nativestarch granules [J]. Biotechnology and Bioengineering,1988,32(7):910-915.
    [114] Tatsumi H, Katano H, Ikeda T. Kinetic analysis of glucoamylase-catalyzed hydrolysis of starchgranules from various botanical sources [J]. Bioscience, Biotechnology, and Biochemistry,2007,71(4):946-950.
    [115] Prese ki A, Bla evi Z, Vasi-Ra ki. Complete starch hydrolysis by the synergistic action ofamylase and glucoamylase: impact of calcium ions [J]. Bioprocess and Biosystems Engineering,2013,36(11):1555-1562.
    [116] Zhang B, Dhital S, Gidley M J. Synergistic and antagonistic effects of α-amylase andamyloglucosidase on starch digestion [J]. Biomacromolecules,2013,14(6):1945-1954.
    [117] K l Apar D, zbek B. α-Amylase inactivation by temperature during starch hydrolysis [J]. ProcessBiochemistry,2004,39(9):1137-1144.
    [118] kerberg C, Hofvendahl K, Zacchi G, Hahn-H gerdal B. Modelling the influence of pH,temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production byLactococcus lactis ssp. lactis ATCC19435in whole-wheat flour [J]. Applied Microbiology andBiotechnology,1998,49(6):682-690.
    [119] Feizi T, Chai W. Oligosaccharide microarrays to decipher the glyco code [J]. Nature ReviewsMolecular Cell Biology,2004,5(7):582-588.
    [120] Marquardt D W. An algorithm for least-squares estimation of nonlinear parameters [J]. Journal of theSociety for Industrial and Applied Mathematics,1963,11(2):431-441.
    [121] Constantinides A, Mostoufi N. Numerical methods for chemical engineers with MATLABapplications [M]. Upper Saddle River, New Jersy: Prentice Hall PTR,1999.
    [122]周国标,宋宝瑞,谢建利.数值计算[M].北京:高等教育出版社,2008.
    [123] Sousa Jr R, Lopes G P, Tardioli P W, Giordano R L C, Almeida P I F, Giordano R C. Kinetic modelfor whey protein hydrolysis by alcalase multipoint-immobilized on agarose gel particles [J].Brazilian Journal of Chemical Engineering,2004,21(2):147-153.
    [124] Guilherme A, Silveira M, Fontes C M L, Rodrigues S, Fernandes F N. Modeling and optimization oflactic acid production using cashew apple juice as substrate [J]. Food and Bioprocess Technology,2012,5(8):3151-3158.
    [125]张大鹏,王福利,何建勇,何大阔,林志玲,常玉清.基于诺西肽分批发酵的过程建模[J].系统仿真学报,2006,18(8):2311-2313,2330.
    [126] Jomduang S, Mohamed S. Effect of amylose/amylopectin content, milling methods, particle size,sugar, salt and oil on the puffed product characteristics of a traditional Thai rice-based snack food(Khao Kriap Waue)[J]. Journal of the Science of Food and Agriculture,1994,65(1):85-93.
    [127] Briggs G E. A further note on the kinetics of enzyme action [J]. Biochemical Journal,1925,19(6):1037-1038.
    [128] Chen S, Xu Y. Effect of ‘wheat Qu’ on the fermentation processes and volatile flavour-activecompounds of Chinese rice wine (Huangjiu)[J]. Journal of the Institute of Brewing,2013,119:71-77.
    [129] Brownlee K A. Statistical theory and methodology in science and engineering [M].2nd edn. NewYork: Wiley,1965.
    [130] Guzmán-Maldonado H, Paredes-López O, Biliaderis C G. Amylolytic enzymes and products derivedfrom starch: A review [J]. Critical Reviews in Food Science and Nutrition,1995,35(5):373-403.
    [131] Wong D W S, Robertson G H, Lee C C, Wagschal K. Synergistic action of recombinant α-amylaseand glucoamylase on the hydrolysis of starch granules [J]. The Protein Journal,2007,26(3):159-164.
    [132]徐国强.基于Labview的黄酒发酵控制及优化[D].无锡:江南大学,2012.
    [133] Jin T, Chung H, Eun J. The effect of fermentation temperature on the quality of Jinyangju, a Koreantraditional rice wine [J]. Korean Journal of Food Science and Technology,2006,38:
    [134] Sipos A, Meyer X, Strehaiano P. Development of a non-linear dynamic mathematical model for thealcoholic fermentation [J]. Acta Alimentaria,2007,36(4):429-438.
    [135] Yuan J-P, Chen F. Simultaneous separation and determination of sugars, ascorbic acid and furaniccompounds by HPLC—dual detection [J]. Food Chemistry,1999,64(3):423-427.
    [136] Jin H, Liu R, He Y. Kinetics of batch fermentations for ethanol production with immobilizedSaccharomyces cerevisiae growing on sweet sorghum stalk juice [J]. Procedia EnvironmentalSciences,2012,12, Part A (0):137-145.
    [137] Blanco M, Peinado A C, Mas J. Monitoring alcoholic fermentation by joint use of soft and hardmodelling methods [J]. Analytica Chimica Acta,2006,556(2):364-373.
    [138] Murthy G S. Development of a controller for fermentation in the dry grind corn process [D]. Urbana,Illinois: University of Illinois at Urbana-Champaign,2006.
    [139] Murthy G S, Johnston D B, Rausch K D, Tumbleson M E, Singh V. Design and evaluation of anoptimal controller for simultaneous saccharification and fermentation process [J]. AppliedBiochemistry and Biotechnology,2012,166(1):87-111.
    [140]陈树,徐国强,熊伟丽,徐保国. LabVIEW平台下的黄酒发酵控制系统[J].计算机系统应用,2011,20(6):126-128.
    [141]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T13662-2008,中华人民共和国国家标准《GB/T13662-2008黄酒》[S].中国标准出版社,北京,2009.
    [142] Sinclair C G, Kristiansen B. Fermentation kinetics and modelling [M]. New York, USA: OpenUniversity Press,1987.
    [143] Zastrow C R, Mattos M A, Hollatz C, Stambuk B U. Maltotriose metabolism by Saccharomycescerevisiae [J]. Biotechnology Letters,2000,22(6):455-459.
    [144] Cutaia A J, Reid A-J, Speers R A. Examination of the relationships between original, real andapparent extracts, and alcohol in pilot plant and commercially produced beers [J]. Journal of theInstitute of Brewing,2009,115(4):318-327.
    [145]冯恩民,修志龙.非线性发酵动力系统:辨识、控制与并行优化[M].北京:科学出版社,2012.
    [146]王树青,戴连奎,于玲.过程控制工程[M].第二版.北京:化学工业出版社,2008.
    [147] Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control—Part I. The basic algorithm [J].Automatica,1987,23(2):137-148.
    [148] Clarke D W, Mohtadi C, Tuffs P S. Generalized Predictive Control—Part II Extensions andinterpretations [J]. Automatica,1987,23(2):149-160.
    [149]钱积新,赵均,徐祖华.预测控制[M].北京:化学工业出版社,2007.
    [150]丁宝苍.预测控制的理论与方法[M].北京:机械工业出版社,2008.
    [151] Sage A P. Optimum systems control [M]. New York: Prentice-Hall,1968.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700