用户名: 密码: 验证码:
木材与胶表界面润湿特性表征与影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材胶接主要是木材与胶粘剂表界面之间发生的物理化学变化,表明在木材和胶粘剂的表界面上存在某种基本能量,决定胶接现象的本质。木材及胶粘剂本身的表界面特性对木材的物理化学性能有很大影响,因此,研究木材和胶粘剂的表界面特性对于探索木材胶接理论具有十分重要的意义。本文以常用速生杨木和酚醛树脂(PF树脂)为主要原材料,以接触角测量仪为主要仪器,采用座滴法测定了液体在木材表面的相对平衡接触角,计算了表面自由能,分析了四种计算方程在木质材料表面自由能计算上产生的差异;研究了不同加工工艺对木材表面自由能及PF树脂在木材表面的润湿性的影响;利用接触角测量仪、X射线光电子能谱(XPS)、傅里叶红外光谱(FTIR)、核磁共振(13CCP/MAS NMR)等测试方法研究了PF树脂在液体、固体状态下的各项表面物理化学性质及结构;探讨了表面自由能、润湿性和胶合强度之间的关系,研究了不同热压温度条件下,PF树脂在木材中的固化性能。得出主要结论如下:
     (1)采用4种不同的方法测定并获得相对平衡接触角,计算出6种不同木质材料的表面自由能。结果表明,速生杨渗透性最好,木材的表面自由能大于木质复合材料(纤维板和木塑复合材料);木材表面自由能的非极性分量大于极性分量,碱性分量大于酸性分量。
     (2)4种不同方程计算得到的木塑复合材料表面自由能存在较大差异。木塑复合材料表面自由能不仅依赖于材料本身的化学组成、物理结构等,还受到不同计算方法和接触角测量过程中使用液体的种类和数量的影响。
     (3)不同加工工艺木材表面的润湿性不同。旋切木材试样的接触角大于刨切和锯切试样,旋切木材的表面自由能小于刨切和锯切表面自由能;与表面结构形态相比,木材表面粗糙度对润湿的影响不明显,旋切松面的润湿性要好于紧面。
     (4)新加工木材与陈放木材表面润湿性不同。水在新加工木材接触角随砂光目数的增加而减小,新加工木材表面比陈放木材表面更易被水润湿。陈放木材接触角随表面粗糙度的降低而增大。新加工木材非极性分量和极性分量随砂光目数的增大而增加,陈放木材表面自由能随砂光目数的增大而降低,但非极性分量却增加。选用的四种润湿模型可用来准确描述胶粘剂的润湿过程,相关系数的R2值均高于0.90,其中M-D模型为0.99。单板松紧面表面的润湿性和渗透性随温度的升高变化差异不大,可以在生产中忽略。在20℃时,芯材表面润湿性和渗透性要好于单板松紧面,但是随着温度的增加,差异减小。
     (5)摩尔比对PF树脂的表面特性影响较大。摩尔比为1.75以上时,PF树脂液体表面张力变化很小,非极性分量占主导地位,当摩尔比为2.5时,表面张力和非极性分量最大,而极性分量最小,PF树脂表面张力越小,润湿性越好。PF树脂表面总表面自由能和极性分量随着摩尔比的降低,呈现先增大后减小的趋势,与树脂表面的-OH关系密切。不同摩尔比固化后,峰值差距不大,只有苯环骨架-CH振动吸收峰,随着摩尔比的降低,峰值强度逐渐增加,这主要是苯酚含量逐渐增加的原因。
     (6)表面粗糙度对新加工木材和陈放木材的胶合强度影响不同。木材的胶合强度随着由Zisman方程计算得出的表面自由能与胶合强度之间的增加而不断降低。对于新加工木材,胶合强度随着表面自由能增大而减小,当极性分量增加时胶合强度也降低,这种规律非线性相关。陈放木材的胶合强度随着表面能增加而降低。对于S-D方程,新加工木材随着渗透性的增加,胶合强度增加,但对于陈放木材而言,相关性不明显,利用M-D模型得到的关系和S-D方程基本一致,利用Santoni模型计算出的渗透速率(K值)和胶合强度之间的关系也不明显。
     (7)热压过程中,芯层温度随着时间的增加而不断增加,在热压温度(上下压板的温度)增加时,胶合板芯层的升温速率逐渐增加,平均胶合强度随着时间的增加而不断增加,最终到达一个相对平衡值。FTIR说明树脂结构中羟甲基发生了聚合反应,相对数量减少。13CCP/MAS NMR分析表明亚甲基桥键碳原子与未反应的羟甲基碳原子的比值随着加热固化时间的增长而增加,说明固化程度的增加,胶合强度也增加。
Wood bonding is physical and chemical interacttion between the wood and adhesive, which indicate that energy was exsited in the surface or interface that determined the intrinsic quality of adhesive phenomenol. The effect of property of wood and adhesive on the bonding strength were remarkable, so it was important to investigate the surface and interface properties of wood and adhesive. The fast growing wood and phenonlic formaldhyde adhesive as the mainly materials to investigated:(1) measured the relative equilibrium contact angle by the sessile drop method using the contact angle intsructment (OCA20), and the surface free energy were calculated; the differences of four calculated methods used to calculated the surface free energy were compared.(2) The influence of different machined process on the wettability of wood were determined.(3) The surface properties of liquid and solid PF adhesives were investigated by using the OCA20, X-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), nuclear magnetic resonance (13CCP/MAS NMR).(4) The relationships betweeen the surface free energy, wettability and bonding strength were studied, and the curing properties were also investigated during the hot process. And the conclusions were followed
     (1) Four different methods were used to obtain the relative equilibriun contact angle, and also the obtained contact angles were used to calculated the surface free energy, the result indicated that the penetration of fast-growing poplar wood was better than that of the other wood materials, and also the surface free energy of wood samples were higher than that of the wood material, the disperse compent of wood surface was higher than the polar component and base component was higher than that of acid component.
     (2) The surface free energy of wood plastic composites (WPCs) calculated by four methods were significant different. The surface free energy of WPCs were not only depends on the chemical components or physical structure but also on the different calculated methods, species of reference liquids and the amount of reference liquids.
     (3) The wettability of different processing the wood surface is different. The contact of water on the rotary wood samples were higher than that of planed and sawn wood samples, and the surface free energy of the rotary wood samples was lower. The effect of surface roughness on contact angle was insignificant compared with surface structure morphology.
     (4) The fresh wood surface was more easily wetted by water than was the aged wood sample. The contact angles increased as the surface roughness decreased. The disperse and polar components of fresh wood both increased as the grit number increased. For aged wood, the surface free energy decreased as the grit number increased, but the disperse component increased. The effect of roughness on the acid-base components, acid component, and base component (calculated using the vOCG method) were unremarkable. The surface free energy of wood samples (obtained using the liquid parameters given by Volpe and Siboni) can effectively balance the relationship between the acid and base components. All coefficient of determination R-squared values were over90%, and the value of the Modified model was99%. The models can be used to accurately describe the adhesive wetting process.
     (5) The molar ratio had a great impact on the surface properties of phenolic resin. When the molar ratio was above1.75, the change of PF liquid surface tension were small, the dispersion component took hold; when the molar ratio was2.5, the surface tension and the dispersive component maximized, polar component minimized, the smaller the surface tension of a phenolic resin, the better the wettability. Total surface free energy and polar component of PF resin showed a decreasing trend after the first increase with the decrease of the molar ratio, closely related to-OH in resin surface. The cured resin with the different molar ratio, the change of FTIR peak was not obvious, only a benzene ring skeleton-CH vibration absorption peak. With the lower molar ratio, the peak intensity increased gradually, mainly due to the increasing phenol content.
     (6) The effects of surface roughness on bonding strength of fresh wood and aged wood were different. According to the S-D equation, the bonding strength of fresh wood enhanced with increasing permeability; but for aged wood, the correlation was not obvious, the relationship when using the M-D model were basically the same as using S-D equation. The relationship between K value and the bonding strength with Santoni model to calculate was also not distinct.
     (7) Core temperature increased over time and when the hot pressing temperature(i.e, temperatures of upper and down pressing plates) rised, plywood core heating rate was gradually increased, the average bond strength enhanced over time, and eventually reached a relative equilibrium value. FTIR suggested that polymerization reaction hydroxymethyl in resin structure, reducing the relative quantity.13CCP/MAS NMR analysis showed that the ratio of methylene bridge bond carbon atoms and unreacted hydroxyl methyl carbon atoms increased with heating curing time, indicated the increase of cure degree, but also enhancement the bonding strength.
引文
1. Acda M.N., Devera E.E., Cabangon R.J.,Ramos H.J. Effects of plasma modification on adhesion properties of wood[J]. International Journal of Adhesion and Adhesives. 2012,32(0):70-75.
    2. Ahadian S., Moradian S.,Amani Tehran M. Assessing the equation of state and comparing it with other relationships used for determining the surface tension of solids[J]. Applied Surface Science.2010,256(7):1983-1991.
    3. Akgul M., Korkut S., Camlibel O., Candan Z.,Akbulut T. Wettability and surface roughness characteristics of medium density fiberboard panels from rhododendron (rhododendron ponticum) biomass[J]. Maderas-Ciencia Y Tecnologia.2012,14(2): 185-193.
    4. Amorim M.R.S., Ribeiro P.G., Martins S.A., Menezzi C.H.S.d.,Souza M.R. Surface wettability and roughness of 11 Amazonian tropical hardwoods [J]. Floresta e Ambiente.2013,20(1):99-109.
    5. Amornsakchai T.,Doaddara O. Grafting of acrylamide and acrylic acid onto polyethylene fiber for improved adhesion to epoxy resin[J]. Journal of Reinforced Plastics and Composites.2008,27(7):671-682.
    6. Arnold M. Effects of planning and sanding on wood surface properties and coating performance [J]. Surface Coatings International.2011,94(5):170-176.
    7. Awaja F., Gilbert M., Kelly G, Fox B.,Pigram P.J. Adhesion of polymers [J]. Progress in Polymer Science.2009,34(9):948-968.
    8. Aydin I. Activation of wood surfaces for glue bonds by mechanical pre-treatment and its effects on some properties of veneer surfaces and plywood panels[J]. Applied Surface Science.2004,233(1-4):268-274.
    9. Baldan A. Adhesion phenomena in bonded joints [J]. International Journal of Adhesion and Adhesives.2012,38:95-116.
    10. Banik I., Kim K.S., Yun Y.I., Kim D.H., Ryu C.M., Park C.S., Sur G.S.,Park C.E. A closer look into the behavior of oxygen plasma-treated high-density polyethylene [J]. Polymer.2003,44(4):1163-1170.
    11. Boehme C.,Hora G. Water absorption and contact angle measurement of native European, North American and tropical wood species to predict gluing properties [J]. Holzforschung.1996,50(3):269-276.
    12. Bryne L.E., Lausmaa J., Ernstsson M., Englund F.,Walinder M.E.P. Ageing of modified wood. Part 2:Determination of surface composition of acetylated, furfurylated, and thermally modified wood by XPS and ToF-SIMS[J]. Holzforschung. 2010,64(3):305-313.
    13. Bryne L.E.,Walinder M.E.P. Ageing of modified wood. Part 1:Wetting properties of acetylated, furfurylated, and thermally modified wood[J]. Holzforschung.2010,64(3): 295-304.
    14. Buyuksari U., Akbulut T., Guler C.,As N. Wettability and surface roughness of natural and plantation-grown narrow-leaved ash (Fraxinus angustifolia Vahl.) wood[J]. Bioresources.2011,6(4):4721-4730.
    15. Candan Z., Buyuksari U., Korkut S., Unsal O.,Cakicier N. Wettability and surface roughness of thermally modified plywood panels[J]. Industrial Crops and Products. 2012,36(1):434-436.
    16. Cao J.-Z., Li L.-D.,Liu Z. Effect of ACQ-D treatment on the surface free energy of Chinese fir (Cunninghamia lanceolata)[J]. Forestry Studies in China.2005,7(4): 29-34.
    17. Cao J.,Kamdem P.D. Surface energy of preservative-treated southern yellow pine (Pinus spp.) by contact angle measurement[J]. Frontiers of Forestry in China.2007, 2(1):99-103.
    18. Carotenuto G.,Nicolais L. Kinetic study of phenolic resin cure by IR spectroscopy[J]. Journal of Applied Polymer Science.1999,74(11):2703-2715.
    19. Chang W.V.,Chen F. A new approach to quantify acid-base interactions in adhesion[J]. Abstracts of Papers of the American Chemical Society.1989,198:132-PMSE.
    20. Cheng C., Zhang L.,Zhan R.-J. Surface modification of polymer fibre by the new atmospheric pressure cold plasma jet[J]. Surface & Coatings Technology.2006, 200(24):6659-6665.
    21. Cheng E.,Sun X. Effects of wood-surface roughness, adhesive viscosity and processing pressure on adhesion strength of protein adhesive[J]. Journal of Adhesion Science and Technology.2006,20(9):997-1017.
    22. Cheng S., D'Cruz I., Yuan Z., Wang M, Anderson M., Leitch M.,Xu C.C. Use of biocrude derived from woody biomass to substitute phenol at a high-substitution level for the production of biobased phenolic resol resins[J]. Journal of Applied Polymer Science.2011,121(5):2743-2751.
    23. Chibowski E.,Terpilowski K. Surface free energy of polypropylene and polycarbonate solidifying at different solid surfaces[J]. Applied Surface Science.2009,256(5): 1573-1581.
    24. Crespo J.E., Balart R., Sanchez L.,Lopez J. Mechanical behaviour of vinyl plastisols with cellulosic fillers. Analysis of the interface between particles and matrices[J]. International Journal of Adhesion and Adhesives.2007,27(5):422-428.
    25. Croitoru C., Patachia S., Cretu N., Boer A.,Friedrich C. Influence of ionic liquids on the surface properties of poplar veneers[J]. Applied Surface Science.2011,257(14): 6220-6225
    26. Dai C.A., Liao C.C., Tsui T.A., Chien H.C.,Liu M.W. Adhesion measurement of interfaces between gelatin and poly(ethylene terephthalate) using microscratch technique[J]. Journal of Applied Polymer Science.2006,99(4):1960-1974.
    27. de Meijer M., Haemers S., Cobben W.,Militz H. Surface energy determinations of wood:comparison of methods and wood species[J]. Langmuir.2000,16(24): 9352-9359.
    28. de Moura L.F.,Hernandez R.E. Evaluation of varnish coating performance for three surfacing methods on sugar maple wood[J]. Forest Products Journal.2006,56(11-12): 130-136.
    29. de Moura L.F.,Hernandez R.E. Evaluation of varnish coating performance for two surfacing methods on sugar maple wood[J]. Wood and Fiber Science.2005,37(2): 355-366.
    30. Debnath S., Ranade R., Wunder S.L., Baran G.R., Zhang J.M.,Fisher E.R. Chemical surface treatment of ultrahigh molecular weight polyethylene for improved adhesion to methacrylate resins[J]. Journal of Applied Polymer Science.2005,96(5):1564-1572.
    31. Della Volpe C., Maniglio D., Brugnara M., Siboni S.,Morra M. The solid surface free energy calculation. I. In defense of the multicomponent approach[J]. J Colloid Interface Sci.2004,271(2):434-453.
    32. Dominkovics Z., Danyadi L.,Pukanszky B. Surface modification of wood flour and its effect on the properties of PP/wood composites[J]. Composites Part a-Applied Science and Manufacturing.2007,38(8):1893-1901.
    33. El Abed S., Hamadi F., Latrache H., Mohamed Iraqui H.,Saad Ibnsouda K. Adhesion of Aspergillus niger and Penicillium expansum spores on Fez cedar wood substrata[J]. Annals of Microbiology.2010,60(3):377-382.
    34. El Abed S., Ibnsouda K.S., Latrache H.,Boutahari S. Theoretical effect of cedar wood surface roughness on the adhesion of conidia from Penicillium expansum[J]. Annals of Microbiology.2012,62(4):1361-1366.
    35. Eon D., Raballand V., Cartry G., Cardinaud C., Vourdas N., Argitis P.,Gogolides E. Plasma oxidation of polyhedral oligomeric silsesquioxane polymers [J]. Journal of Vacuum Science & Technology B.2006,24(6):2678-2688.
    36. Fan D., Li J., Chang J., Gou J.Jiang J. Chemical Structure and Curing Behavior of Phenol-Urea-Formaldehyde Cocondensed Resins of High Urea Content[J]. Journal of Adhesion Science and Technology.2009,23(13-14):1787-1797.
    37. Feinerman A.E.,Lipatov Y.S. The Rule of Interfacial Equilibrium [J]. The Journal of Adhesion.1997,60(1-4):99-112.
    38. Ferreira L., Evangelista M.B., Martins M.C.L., Granja P.L., Esteves J.L.,Barbosa M.A. Improving the adhesion of poly(ethylene terephthalate) fibers to poly(hydroxyethyl methacrylate) hydrogels by ozone treatment:Surface characterization and pull-out tests[J]. Polymer.2005,46(23):9840-9850.
    39. Fowkes F.M.,Mostafa M.A. Acid-base interactions in polymer adsorption[J]. Industrial & Engineering Chemistry Product Research and Development.1978,17(1):3-7.
    40. Fujiwara Y., Fujii Y.,Okumura S. Relationship between roughness parameters based on material ratio curve and tactile roughness for sanded surfaces of two hardwoods[J]. Journal of Wood Science.2005,51(3):274-277.
    41. Gerardin P., Petric M., Petrissans M., Lambert J.,Ehrhrardt J.J. Evolution of wood surface free energy after heat treatment[J]. Polymer Degradation and Stability.2007, 92(4):653-657.
    42. Gao W. C-13 CP/MAS NMR analysis of cure characteristics of phenol formaldehyde resin in the presence of wood composite preservatives and wood:effect of ammonium pentaborate and copper compounds[J]. Iranian Polymer Journal.2012,21(5):283-288.
    43. Gardner D.J. Application of the Lifshitz-van der Waals acid-base approach to determine wood surface tension components [J]. Wood and Fiber Science.1996,28(4): 422-428.
    44. Gardner D.J., Generalla N.C., Gunnells D.W.,Wolcott M.P. Dynamic wettability of wood[J]. Langmuir.1991,7(11):2498-2502.
    45. Gavrilovic-Grmusa I., Dunky M., Miljkovic J.,Djiporovic-Momcilovic M. Influence of the viscosity of U F resins on the radial and tangential penetration into poplar wood and on the shear strength of adhesive joints [J]. Holzforschung.2012,66(7):849-856.
    46. Ge J., Turunen M.P.K.,Kivilahti J.K. Surface modification and characterization of photodefinable epoxy/copper systems[J]. Thin Solid Films.2003,440(1-2):198-207.
    47. Gindl M., Reiterer A., Sinn G.,Stanzl-Tschegg S.E. Effects of surface ageing on wettability, surface chemistry, and adhesion of wood[J]. Holz Als Roh-Und Werkstoff. 2004,62(4):273-280.
    48. Gindl M., Sinn G, Gindl W., Reiterer A.,Tschegg S. A comparison of different methods to calculate the surface free energy of wood using contact angle measurements[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 2001,181(1-3):279-287.
    49. Gindl M., Sinn G, Rieterer A.,Tschegg S. Wood surface energy and time dependence of wettability:A comparison of different wood surfaces using an acid-base approach[J]. Holzforschung.2001,55(4):433-440.
    50. Gindl M.,Tschegg S. Significance of the acidity of wood to the surface free energy components of different wood species[J]. Langmuir.2002,18(8):3209-3212.
    51. Gray V.R. The wettability of wood[J]. Forest Prod. J.1962,12(9):452-461.
    52. Gu J.Y., Principles and foundation of adhesion[M]. Beijing:Science Press,2003.
    53. Gunnells D.W., Gardner D.J.,Wolcott M.P. Temperature-dependence of wood surface-energy [J]. Wood and Fiber Science.1994,26(4):447-455.
    54. Hakkou M., Petrissans M., Zoulalian A.,Gerardin P. Investigation of wood wettability changes during heat treatment on the basis of chemical analysis[J]. Polymer Degradation and Stability.2005,89(1):1-5.
    55. Hakkou M., Petrissans M., El Bakali I., Gerardin P..Zoulalian A. Wettability changes and mass loss during heat treatment of wood[J]. Holzforschung.2005,59(1):35-37.
    56. Halliday D.R., Resnick, R., Walker, J, Fundamental of Physics[M]. New York:John Wiley & Sons,Inc,1997.
    57. Han G, Deng J., Zhang S., Bicho P.,Wu Q. Effect of steam explosion treatment on characteristics of wheat straw[J]. Industrial Crops and Products.2010,31(1):28-33.
    58. Han S.-G, Huang R.-Z., Zhou Z.-B.,Zhang Y. Dynamic wettability of pre-compressed poplar[J]. Journal of Nanjing Forestry University.2009,33(6):11-14.
    59. He G,Riedl B. Curing kinetics of phenol formaldehyde resin and wood-resin interactions in the presence of wood substrates[J]. Wood Science and Technology. 2004,38(1):69-81.
    60. He G.,Yan N. Effect of wood on the curing behavior of commercial phenolic resin systems[J]. Journal of Applied Polymer Science.2005,95(2):185-192.
    61. He L.J., Han R.,Zhang Y.F. Cure Characteristics of Phenol-Formaldehyde Resin Catalyzed with Ba(OH)2[J]. Journal of Adhesion Science and Technology.2009, 23(12):1639-1645.
    62. Hendarto B., Shayan E., Ozarska B.,Carr R. Analysis of roughness of a sanded wood surface[J]. The International Journal of Advanced Manufacturing Technology.2005, 28(7-8):775-780.
    63. Hernandez R.E.,Cool J. Evaluation of three surfacing methods on paper birch wood in relation to water-and solvent-borne coating performance [J]. Wood and Fiber Science. 2008,40(3):459-469.
    64. Hiziroglu S., Zhong Z.W.,Ong W.K. Evaluating of bonding strength of pine, oak and nyatoh wood species related to their surface roughness [J]. Measurement.2014,49: 397-400.
    65. Hiziroglu S., Zhong Z.W.,Tan H.L. Measurement of bonding strength of pine, kapur and meranti wood species as function of their surface quality [J]. Measurement.2013, 46(9):3198-3201.
    66. Hse C.Y. Wettability of southern pine veneer by phenol formaldehyde wood adhesives[J]. Forest Prod. J.1972,22(1):51-56.
    67. Huang X., Kocaefe D., Kocaefe Y, Boluk Y.,Krause C. Structural analysis of heat-treated birch (Betule papyrifera) surface during artificial weathering[J]. Applied Surface Science.2012,258(14):5360-5369..
    68. Huang X., Kocaefe D., Kocaefe Y, Boluk Y,Pichette A. Changes in wettability of heat-treated wood due to artificial weathering [J]. Wood Science and Technology.2012, 46(6):1215-1237.
    69. Hwang J., Li R.C.,Maynard H.D. Well-defined polymers with activated ester and protected aldehyde side chains for bio-functionalization[J]. Journal of Controlled Release.2007,122(3):279-286.
    70. Jennings J.D., Zink-Sharp A., Frazier C.E.,Kamke F.A. Properties of compression-densified wood, Part Ⅱ:surface energy[J]. Journal of Adhesion Science and Technology.2006,20(4):335-344.
    71. Jiang H.,Kamdem D.P. Characterization of the surface and the interphase of PVC-copper amine-treated wood composites[J]. Applied Surface Science.2010, 256(14):4559-4563.
    72. Kamdem D.P., Bose S.K.,Luner P. Inverse gas chromatography characterization of birch wood meal [J]. Langmuir.1993,9(11):3039-3044.
    73. Kinloch A.J., Tan K.T.,Watts J.F. Novel self-assembling silane for abhesive and adhesive applications [J]. Journal of Adhesion.2006,82(12):1117-1132.
    74. Komvopoulos K. Adhesion and friction forces in microelectromechanical systems: mechanisms, measurement, surface modification techniques, and adhesion theory [J]. Journal of Adhesion Science and Technology.2003,17(4):477-517.
    75. Kutnar A., Kamke F.A., Petric M.,Sernek M. The influence of viscoelastic thermal compression on the chemistry and surface energetics of wood[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects.2008,329(1-2):82-86.
    76. Kutnar A., Kricej B., Pavlic M.,Petric M. Influence of treatment temperature on wettability of Norway spruce thermally modified in vacuum[J]. Journal of Adhesion Science and Technology.2013,27(9):963-972.
    77. Kutnar A., Rautkari L., Laine K.,Hughes M. Thermodynamic characteristics of surface densified solid Scots pine wood[J]. European Journal of Wood and Wood Products. 2012,70(5):727-734.
    78. Kwok D.Y.,Neumann A.W. Contact angle interpretation in terms of solid surface tension[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2000a, 161(1):31-48.
    79. Kwok D.Y.,Neumann A.W. Contact angle measurements and interpretation:wetting behavior and solid surface tensions for poly(alkyl methacrylate) polymers[J]. Journal of Adhesion Science and Technology.2000b,14(5):719-743.
    80. Lee Y.-K., Kim H.-J., Rafailovich M.,Sokolov J. Curing monitoring of phenolic resol resins via atomic force microscope and contact angle [J]. International Journal of Adhesion and Adhesives.2002,22(5):375-384.
    81. Liptakova E.,Kudela J. Analysis of the wood-wetting process[J]. Holzforschung.1994, 48(2):139-144.
    82. Liptakova E., Kudela J., Bastl Z.,Spirovova I. Influence of mechanical surface-treatment of wood on the wetting process[J]. Holzforschung.1995,49(4): 369-375.
    83. Little N.S., McConnell T.E., Irby N.E., Shi S.Q.,Riggins J.J. Surface free energy of blue-stained southern pine sapwood from bark beetle-attacked trees[J]. Wood and Fiber Science.2013,45(2):206-214.
    84. Liu F.P., Rials T.G.,Simonsen J. Relationship of Wood Surface Energy to Surface Composition[J]. Langmuir.1998,14(2):536-541.
    85. Liu Z.M., Wang F.H..,Wang X.M. Surface structure and dynamic adhesive wettability of wheat straw[J]. Wood and Fiber Science.2004,36(2):239-249.
    86. Lo C.T., Laabs F.C.,Narasimhan B. Interfacial adhesion mechanisms in incompatible semicrystalline polymer systems[J]. Journal of Polymer Science Part B-Polymer Physics.2004,42(14):2667-2679.
    87. Maldas D.C.,Kamdem D.P. Surface tension and wettability of CCA-treated red maple[J]. Wood and Fiber Science.1998,30(4):368-373.
    88. Maldas D.C.,Kamdem D.P. Wettability of extracted southern pine[J]. Forest Products Journal.1999,49(11-12):91-93.
    89. Maminski M.L., Mierzejewska K., Borysiuk P., Parzuchowski P.,Boruszewski P. Surface properties of octadecanol-grafted pine veneers [J]. International Journal of Adhesion and Adhesives.2009,29(8):781-784.
    90. Matsushita Y., Wada S., Fukushima K.,Yasuda S. Surface characteristics of phenol-formaldehyde-lignin resin determined by contact angle measurement and inverse gas chromatography[J]. Industrial Crops and Products.2006,23(2):115-121.
    91. Michalski M.-C., Hardy J.,Saramago B.J.V. On the Surface Free Energy of PVC/EVA Polymer Blends:Comparison of Different Calculation Methods[J]. J Colloid Interface Sci.1998,208(1):319-328.
    92. Mirabedini S.M., Rahimi H., Hamedifar S.,Mohsen Mohseni S. Microwave irradiation of polypropylene surface:a study on wettability and adhesion[J]. International Journal of Adhesion and Adhesives.2004,24(2):163-170.
    93. Mohammed-Ziegler I., Oszlanczi A., Somfai B., Horvolgyi Z., Paszli I., Holmgren A.,Forsling W. Surface free energy of natural and surface-modified tropical and European wood species[J]. Journal of Adhesion Science and Technology.2004,18(6): 687-713.
    94. Monni J., Alvila L.,Pakkanen T.T. Structural and physical changes in phenol-formaldehyde resol resin, as a function of the degree of condensation of the resol solution[J]. Industrial & Engineering Chemistry Research.2007,46(21): 6916-6924.
    95. Nadir Ayrilmis Z.C., Turgay Akbulut, Ozgur D.Balkiz. Effect of sanding on surface properties of medium density fiberboard[J]. DRVNA INDUSTRIJA.2010,61(3): 175-181.
    96. Neumann A.W., Good R.J., Hope C.J.,Sejpal M. An equation-of-state approach to determine surface tensions of low-energy solids from contact angles[J]. J Colloid Interface Sci.1974,49(2):291-304.
    97. Nzokou P.,Kamdem D.P. Influence of wood extractives on moisture sorption and wettability of red oak (Quercus rubra), black cherry (Prunus serotina), and red pine (Pinus resinosa)[J]. Wood and Fiber Science.2004,36(4):483-492.
    98. Nussbaum R.M. Natural surface inactivation of Scots pine and Norway spruce evaluated by contact angle measurements [J]. Holz als Roh-und Werkstoff.1999,57(6): 419-424.
    99. Oporto G.S., Gardner D.J., Kiziltas A.,Neivandt D.J. Understanding the Affinity between Components of Wood-Plastic Composites from a Surface Energy Perspective [J]. Journal of Adhesion Science and Technology.2011,25(15): 1785-1801.
    100. Owens D.K.,Wendt R.C. Estimation of the surface free energy of polymers [J]. Journal of Applied Polymer Science.1969,13(8):1741-1747.
    101. Ozcifci A.,Yapici F. Effects of machining method and grain orientation on the bonding strength of some wood species[J]. Journal of Materials Processing Technology.2008, 202(1-3):353-358.
    102. Park B.D.,Riedl B. C-13-NMR study on cure-accelerated phenol-formaldehyde resins with carbonates[J]. Journal of Applied Polymer Science.2000,77(4):841-851.
    103. Petrissans M., Gerardin P., El Bakali I.,Serraj M. Wettability of heat-treated wood[J]. Holzforschung.2003,57(3):301-307.
    104. Qin X.,Chang W.V. Characterization of polystyrene surface by a modified two-liquid laser contact angle goniometry[J]. Journal of Adhesion Science and Technology.1995, 9(7):823-841.
    105. Ryntz R.A. Attaining durable painted plastic components [J]. Jct Research.2005,2(5): 351-360.
    106. Sancaktar E.,Gomatam R. A study on the effects of surface roughness on the strength of single lap joints[J]. Journal of Adhesion Science and Technology.2001,15(1): 97-117.
    07. Santoni I.,Pizzo B. Effect of surface conditions related to machining and air exposure on wettability of different Mediterranean wood species[J]. International Journal of Adhesion and Adhesives.2011,31(7):743-753.
    08. Sargent J.P. Durability studies for aerospace applications using peel and wedge tests[J]. International Journal of Adhesion and Adhesives.2005,25(3):247-256.
    09. Scheikl M.,Dunky M. Measurement of dynamic and static contact angles on wood for the determination of its surface tension and the penetration of liquids into the wood surface[J]. Holzforschung.1998,52(1):89-94.
    10. Schmidt R.G.,Frazier C.E. Network characterization of phenol-formaldehyde thermosetting wood adhesive[J]. International Journal of Adhesion and Adhesives. 1998,18(2):139-146.
    11. Sernek M.,Kamke F.A. Application of dielectric analysis for monitoring the cure process of phenol formaldehyde adhesive[J]. International Journal of Adhesion and Adhesives.2007,27(7):562-567.
    12. Sernek M., Kamke F.A.,Glasser W.G. Comparative analysis of inactivated wood surfaces [J]. Holzforschung.2004,58(1):22-31.
    13. Shen Q., Nylund J.,Rosenholm J.B. Estimation of the surface energy and acid-base properties of wood by means of wetting method[J]. Holzforschung.1998,52(5): 521-529.
    14. Shi S.Q.,Gardner D.J. Dynamic adhesive wettability of wood[J]. Wood and Fiber Science.2001,33(1):58-68.
    15. Shida S.,Hiziroglu S. Evaluation of shear strength of Japanese wood species as function of surface of Surface Roughness[J]. Forest Products Journal.2010,60(4): 400-404.
    16. Shupe T.F., Hse C.Y.,Wang W.H. An investigation of selected factors that influence hardwood[J]. Holzforschung.2001,55(5):541-548.
    17. Siboni S., Della Volpe C., Maniglio D.,Brugnara M. The solid surface free energy calculation; Ⅱ. The limits of the Zisman and of the "equation-of-state" approaches [J]. J Colloid Interface Sci.2004,271(2):454-472.
    18. Singh A.P., Anderson C.R., Warnes J.M.,Matsumura J. The effect of planing on the microscopic structure of Pinus radiata wood cells in relation to penetration of PVA glue[J]. Holz als Roh-und Werkstoff.2002,60(5):333-341.
    19. Sinn G, Gindl M., Reiterer A.,Stanzl-Tschegg S. Changes in the surface properties of wood due to sanding[J]. Holzforschung.2004,58(3):246-251.
    20. Stark W. Investigation of curing behaviour of melamine/phenolic (MP) thermosets[J]. Polymer Testing.2010,29(6):723-728.
    21. Stehr M., Gardner D.J.,Walinder M.E.P. Dynamic wettability of different machined wood surfaces[J]. The Journal of Adhesion.2001,76(3):185-200.
    22. Tag C.M., Jam M., Granqvist B., Jarnstrom J., Peltonen J.,Rosenholm J.B. Influence of surface structure on wetting of coated offset papers[J]. Holzforschung.2007,61(5): 516-522.
    23. Thio Y.S., Argon A.S.,Cohen R.E. Role of interfacial adhesion strength on toughening polypropylene with rigid particles[J]. Polymer.2004,45(10):3139-3147.
    24. Timmons C.O.,Zisman W.A. The relation of initial spreading pressure of polar compounds on water to interfacial tension, work of adhesion, and solubility [J]. J Colloid Interface Sci.1968,28(1):106-117.
    25. Topala I.,Dumitrascu N. Dynamics of the wetting process on dielectric barrier discharge (DBD)-treated wood surfaces[J]. Journal of Adhesion Science and Technology.2007,21(11):1089-1096.
    126. Toro P., Quijada R., Murillo O.,Yazdani-Pedram M. Study of the morphology and mechanical properties of polypropylene composites with silica or rice-husk[J]. Polymer International.2005,54(4):730-734.
    127. Tze W.T.Y., Gardner D.J., Tripp C.P.,O'Neill S.C. Cellulose fiber/polymer adhesion: effects of fiber/matrix interfacial chemistry on the micromechanics of the interphase[J]. Journal of Adhesion Science and Technology.2006,20(15):1649-1668.
    128. Vazquez G, Gonzalez-Alvarez J., Lopez-Suevos F.,Antorrena G. Effect of veneer side wettability on bonding quality of Eucalyptus globulus plywoods prepared using a tannin-phenol-formaldehyde adhesive[J]. Bioresource Technology.2003,87(3): 349-353.
    129. van Oss C.J. Interface Science and Technology. Carel, J.v.O. (ed), Elsevier.(2008)
    130. van Oss C.J., Chaudhury M.K.,Good R.J. Monopolar surfaces[J]. Advances in Colloid and Interface Science.1987,28(0):35-64.
    131. Van Oss C.J., Good R.J.,Chaudhury M.K. Additive and nonadditive surface tension components and the interpretation of contact angles[J]. Langmuir.1988,4(4): 884-891.
    132. Volpe C.D.,Siboni S. Some Reflections on Acid-Base Solid Surface Free Energy Theories[J]. J Colloid Interface Sci.1997,195(1):121-136.
    133. Walinder M.E.P. Study of Lewis Acid-Base Properties of Wood by Contact Angle Analysis[J]. Holzforschung.2002,56:363-371.
    134. Walinder M.E.P. Study of Lewis acid-base properties of wood by contact angle analysis[J]. Holzforschung.2002,56(4):363-371.
    135. Walinder M.E.P.,Gardner D.J. Acid-base characterization of wood and selected thermoplastics[J]. Journal of Adhesion Science and Technology.2002,16(12): 1625-1649.
    136. Walinder M.E.P.,Gardner D.J. Surface energy of extracted and non-extracted Norway spruce wood particles studied by inverse gas chromatography (IGC)[J]. Wood and Fiber Science.2000,32(4):478-488.
    137. Walinder M.E.P.,Strom G. Measurement of wood wettability by the Wilhelmy method-Part 2. Determination of apparent contact angles[J]. Holzforschung.2001, 55(1):33-41.
    138. Wang J., Laborie M.-P.G.,Wolcott M.P. Comparison of model-fitting kinetics for predicting the cure behavior of commercial phenol-formaldehyde resins[J]. Journal of Applied Polymer Science.2007,105(3):1289-1296.
    139. Wang S., Zhang Y.,Xing C. Effect of drying method on the surface wettability of wood strands[J]. Holz als Roh-und Werkstoff.2007,65(6):437-442.
    140. Wang Y, Yadama V., Laborie M.-P.,Bhattacharyya D. Cure kinetics of PF/PVAc hybrid adhesive for manufacturing profiled wood-strand composites [J]. Holzforschung.2010, 64(5).
    141. Wei S.Y., Shi J.Y, Gu J.Y., Wang D.,Zhang YH. Dynamic wettability of wood surface modified by acidic dyestuff and fixing agent[J]. Applied Surface Science.2012,258(6): 1995-1999.
    142. Wolkenhauer A., Avramidis G., Cai Y, Militz H.,Viol W. Investigation of Wood and Timber Surface Modification by Dielectric Barrier Discharge at Atmospheric Pressure[J]. Plasma Processes and Polymers.2007,4(S1):S470-S474.
    143. Wolkenhauer A., Avramidis G, Hauswald E., Militz H.,Viol W. Plasma Treatment of Wood-Plastic Composites to Enhance Their Adhesion Properties [J]. Journal of Adhesion Science and Technology.2008a,22(16):2025-2037.
    144. Wolkenhauer A., Avramidis G., Hauswald E., Militz H.,Viol W. Sanding vs. plasma treatment of aged wood:A comparison with respect to surface energy[J]. International Journal of Adhesion and Adhesives.2009,29(1):18-22.
    145. Wolkenhauer A., Avramidis G, Hauswald E., Militz H.,Viol W. Plasma Treatment of Wood-Plastic Composites to Enhance Their Adhesion Properties[J]. Journal of Adhesion Science and Technology.2008b,22(16):2025-2037.
    146. Wu S. Calculation of interfacial tension in polymer system[J]. Journal of Polymer Science Part B:Polymer Physics.1971,34:19-30.
    147. Xu H.-N., Shen Q.-Y., Ouyang X.-K.,Yang L.-Y. Wetting of soy protein adhesives modified by urea on wood surfaces[J]. European Journal of Wood and Wood Products. 2010,70(1-3):11-16.
    148. Yamamoto S., Tanaka M., Sunami H., Arai K., Takayama A., Yamashita S., Morita Y.,Shimomura M. Relationship between adsorbed fibronectin and cell adhesion on a honeycomb-patterned film[J]. Surface Science.2006,600(18):3785-3791.
    149. Zenkiewicz M. Comparative study on the surface free energy of a solid calculated by different methods[J]. Polymer Testing.2007,26(1):14-19.
    150. Zenkiewicz M. Methods for the calculation of surface free energy of solids[J]. Journal of Achievements in Materials and Manufacturing Engineering.2007,24(1):137-145.
    151. Zhang Z.,Hua Y. Urea-Modified Soy Globulin Proteins (7S and 11S):Effect of Wettability and Secondary Structure on Adhesion[J]. Journal of the American Oil Chemists'Society.2007,84(9):853-857.
    152. Zhao Q., Liu Y.,Abel E.W. Effect of temperature on the surface free energy of amorphous carbon films[J]. J Colloid Interface Sci.2004,280(1):174-183.
    153. Zhou Z.B., Zhang Y.,Jia C. Describing on dynamic wettability of wood and wood-based materials[J]. Journal of Nanjing Forestry University(Natural Sciences Edition).2007,31(5):71-74.
    154.曹金珍,Kamdem D.P.不同水基防腐剂处理木材的表面自由能[J].北京林业大学学报.2006,(04):1-5.
    155.高伟.防腐结构刨花板的制备及其组分反应机理研究[D].北京林业大学,2010北京.
    156.顾继友.胶接理论与胶接基础[M].北京:科技出版社,2003.
    157.顾继友.胶粘剂与涂料[M].北京:中国林业出版社,1999.
    158.胡福增.材料表面与界面[M].上海:华东理工大学出版社,2008.
    159.江泽慧,于文吉,余养伦.竹材表面润湿性研究[J].竹子研究汇刊.2005,(04):31-38.
    160.李东方.聚乙烯木塑复合材料性能影响因子与界面特性研究[D].北京林业大学,2013.
    161.李兰亭.胶粘剂与涂料[M].北京:中国林业出版社,1992.
    162.刘志明.麦秆表面特性及麦秆刨花板胶接机理的研究[D].东北林业大学,2002哈尔滨.
    163.马红霞,任海青,赵荣军.木材表面胶粘剂渗透性能研究进展[J].世界林业研究.2008,(06):57-60.
    164.潘慧铭,黄素娟.表面、界面的作用与粘接机理(二)[J].粘接.2003a,(03):41-46.
    165.潘慧铭,黄素娟.表面、界面的作用与粘接机理(三)[J].粘接.2003b,(04):37-42.
    166.潘慧铭,黄素娟.表面、界面的作用与粘接机理(一)[J].粘接.2003c,(02):40-45.
    167.阮重坚,李文定,张洋,钟小仙.不同生物质材料的表面自由能[J].福建农林大学 学报(自然科学版).2012,(02):213-218.
    168.滕新荣,表面物理化学[M].北京:化学工业出版社,2009.
    169.王戈,余养伦,于文吉.温度变化对酚醛胶在竹材表面动态润湿性的影响[J].北京林业大学学报.2007,(03):149-153.
    170.张洋,华毓坤.麦秸表面的润湿性研究[J].木材工业.2001,(02):6-8.
    171.赵明,黄河浪,苗爱梅,薛丽丹,董丽君.5种实木复合地板木材表面润湿性研究[J].林业科技开发.2009,(06):29-33.
    172.赵殊.异氰酸酯与纤维素反应产物结构及聚氨酯对木材胶接机理[D].东北林业大学,2010哈尔滨.
    173.周兆兵,张洋,贾栩.木质材料动态润湿性能的表征[J].南京林业大学学报(自然科学版).2007,(05):71-74.
    174.周兆兵,张洋,袁少飞,潘惠新.速生杨木材的动态润湿性能[J].东北林业大学学报.2008,(04):20-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700