用户名: 密码: 验证码:
钨渣中有价金属综合回收新清洁工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:我国现行钨冶炼工艺以湿法碱处理为主,几乎所有的钨碱浸渣(以下称钨渣)中都含有少量的W、Fe、Mn、Ta、Nb、Sc等有价金属,目前我国堆存的钨渣已近100万吨,具有较大的综合回收价值。然而,目前对钨渣的处理基本上还停留在简单回收钨、钪的阶段,而对钽、铌等均未进行回收。
     本论文针对目前钨渣的特点,以高钙高硅低钨含量的钨渣为原料,研究了钨渣湿法处理回收钨、富集钽铌、锰锌软磁铁氧体粉末制备,开发了从钨渣中综合回收钨、钽、铌、铁、锰等多种金属的新清洁工艺,分析了该工艺过程中的放射性污染和三废处理,得出以下主要结论:
     系统研究了钨渣中钨的回收工艺及提高钨回收率的新方法。详细考察了钨渣的工艺矿物学特征,比较了各工艺因素对钨回收率的影响。结果表明:酸法处理钨渣时钨分散在固液两相中,钨浸出率最高达到79.2%,但酸浸液成分复杂,回收效果不佳;碱法处理时采用预焙烧-水浸工艺,浸出液杂质含量低,含钨浸出液的循环利用有利于提高钨回收率,浸出液经三次循环后钨含量可达到16.6g·L-1,钨的总回收率达到88%以上
     对钨渣中钽、铌的富集行为进行了较系统的研究。比较了钨渣的盐酸直接处理工艺、硫酸溶液直接处理工艺、浓硫酸焙烧-络合浸出工艺、苏打烧结-水浸出工艺、酸碱混合处理工艺中钽、铌的富集行为和回收率。研究表明:钽、铌盐类在酸、碱溶液中的溶解度不同导致钽、铌的回收率和富集效果的差异;钨渣低温低酸度酸处理时钽、铌的回收率最高可分别达到80.1%、72.3%,而高温高酸度处理可以得到∑(Ta2O5+Nb2O5)含量达到5.34%的富集物;浓硫酸焙烧-络合浸出法则获得了∑(Ta2O5+Nb2O5)含量达到13.03%的钽铌富集物,可以直接作为钽铌冶炼原料;酸碱混合处理所得钽铌富集物∑(Ta2O5+Nb2O5)含量比钨渣直接酸或碱处理均有所提高,但总的金属回收率降低;酸碱混合处理过程中,酸碱处理顺序对钽铌的富集行为有一定的影响;碱处理过程中少量钽、铌进入溶液。
     首次以钨渣为原料制备了锰锌软磁铁氧体粉末,实现了铁锰资源的高值化利用。提出了钨渣“硫酸浸出-溶液净化-共沉淀-烧结”制备锰锌软磁铁氧体粉的工艺,结果表明:制备的锰锌软磁铁氧体粉末主金属配比接近理论配比,杂质元素的含量低,其中硅0.023%,钙0.021%,镁0.027%,满足软磁铁氧体粉末的要求;而且通过对共沉淀前液的成分调控,可获得各种不同配方的软磁铁氧体粉末。
     研究了从钨渣中回收制备四氧化三锰的新工艺。采用两段硫酸化焙烧法分离钨渣中的铁、锰,钨渣与质量分数为50%硫酸混合后在200℃温度下焙烧60min,然后升温至700℃温度下焙烧120min,焙烧产物经水浸出获得含锰溶液,溶液中锰铁质量比达到3000以上,铁浸出率仅为0.01%,分离效果良好。含锰溶液经净化、水解沉锰、H202氧化,获得粒度小于0.1μm的超细四氧化三锰粉末,产品质量的主要指标基本达到HG/T2835-1997标准。
     研究了钨渣中有价元素综合回收清洁工艺。研究表明:采用苏打烧结-水浸出-硫酸浸出-浸出液净化-共沉淀-烧结工艺可以有效综合回收钨渣中的钨、钽、铌、铁、锰,各金属的总回收率分别为88.1%、78%、56%、95.2%、68.5%。对工艺过程放射性及三废处理的研究表明:钨渣属于极低放射性固体废弃物,处理过程中放射性元素主要集中在富集钽铌的硫酸浸出渣中,富集渣总比放18556Bq/Kg,可直接用于钽铌冶炼。该工艺三废量少,易于处理,较好地实现了钨渣的清洁处理,不仅回收利用了工业废料,同时还提供了新的锰资源来源。图73幅,表67个,参考文献136篇。
Abstract:Wet processing are mainly used in tungsten metallurgy. Almost all of basic leached residue from tungsten concentrate (hereinafter referred to as the'tungsten residue') contains a small amount of valuable metals such as tungsten, iron, manganese, tantalum, niobium, scandium, and so on. For the present, piled tungsten residues with a total capacity of nearly one million tons may have greater value of comprehen-sive recovery. The present treatments of tungsten residue mainly focuse on the recovery of tungsten and scandium, while tantalum and niobium are neglected.
     According to the characteristics of tungsten residue, hydrometallurgi-cal recovery of tungsten, concentration of tantalum and niobium and preparation of manganese-zinc ferrite powder were investigated by using tungsten residues with high calcium and silicon and lower tungsten as the raw material. A new clean process involving comprehensively covery of tungsten, tantalum, niobium, iron and manganese from tungsten residue was developed. And radioactive contamination and "three wastes" treatment of the technology were analyzed. The main conclusions derived from this study are:
     The recovery process of tungsten from the residue and the way to increase its recovery were systematically investigated. The characteristics of the technological mineralogy of tungsten residue was in detail inspected. And the impacts of several technical factors on the tungsten recovery were compared. Tungsten scattered in both solid and liquid during acid processing and the recovery of tungsten topped out at79.2%. However, it's difficult to obtain product due to the complex composition of acid leaching solution. Using the process of preroasting-water leaching, leach liquor contains low contents of impurities. It is found that recycling of tungsten bearing leach liquor benefit the increases of tungsten recovery. The amount of tungsten in the solution may reach16.6g·L-1and total recovery of tungsten may over88%after three cycles.
     The enrichemnt of tantalum and niobium from tungsten residue was systematically studied. Enriching behaviors and recoveries of tantalum and niobium were compared in the technologies such as hydrochloric acid treatment directly, leaching directly by sulfuric acid solution, concentrated sulfuric acid roasting and complexation leaching, the technology of soda sintering and water leaching, combining acid&alkaline process. According to the experimental results, the different solubilities of tantalum and niobium salts in the acid and alkaline solution led to differences of the enrichment effect and recoveries. Recoveries of tantalum and niobium ran up to80.1%and72.3%respectively as the tungsten residue was processed at low temperature and low acidity. Concentrate carried Ta2O5and Nb2O5with the total content as5.34%can be gained at high temperature and high acidity. And concentrate with the total content of Ta2O5and Nb2O5as13.03%was gained via process involving concentrated sulfuric acid roasting and complexing leaching, which could be used as the feed for tantalum and niobium metallurgy. The total content of Ta2O5and Nb2O5in concentrate from the combining technology was higher than acid treatment or alkaline treatment directly, while the overall recovery decreased. The application sequence of the acid and alkaline in the combining technology had some effects on the enriching behavior of tantalum and niobium. Few tantalum and niobium turned into solution when alkaline treated.
     Preparation of manganese-zinc ferrite powder from tungsten residue has been studied for the first time, which comprised high-value utilization of manganese and iron. Process of manganese-zinc ferrite powder prepara-tion involving leaching by sulfuric acid, purification of leaching liquor, coprecipitation and sintering has been investigated. The experimental results demonstrated that proportion of main metals in manganese-zinc ferrite powder near the theoretical value and the powder has low contents of impurities, for instance, silicon0.023%, calcium0.021%, magnesium0.027%, which can meet the quality requirements of manganese-zinc ferrite powder. Manganese-zinc ferrite powder with different ingredients may be obtained by compositional controlling of liquor before coprecipita-tion.
     Process of the preparation of manganic manganous oxide from tungsten residue has been investigated. Two-stage sulphating roasting was adopted to separate manganese from iron. The tungsten residue&50%sulfuric acid mixture was roasted at200℃for60min and then the temperature is raised to700℃and keep120min. Manganese beraing solution, in which mass ratio of manganese and iron could reach more than3000, was gained by water-leaching and the leaching efficiency of iron was only0.01%. The results show good separation of manganese and iron. Ultrafine manganic manganous oxide powder with particle size of less than0.1μm was prepared by means of purification of solution, neutralization and precipitation of manganese and oxidation of hydroxide by H2O2. The major product quality indexes basically can meet the enterprise standard (HG/T2835-1997).
     The clean process involving comprehensively recovery of valuable metals in tungsten residue was developed. Investigation shows that tungsten, tantalum, niobium, iron and manganese could be recovered effectively from tungsten residue via the technology composed of soda sintering, sulfuric acid leaching, liquor purification, coprecipitation and sintering procidure. And the total recoveries of tungsten, tantalum, niobium, iron and manganese weres reported to88.1%,78%,56%,95.2%,68.5%respectively. According to researches on the radioactivity and three-wastes treatment during comprehensive recovering procee, the radioactive elements were distributed in many kands of products, mainly in the leach sludge from sulfric acid processing with a specific radioactivity as18556Bq/Kg, which meets discharge standards and may be used in tantalum and niobium metallurgy. The technology has better achieved clean processing of tungsten residue due to less three wastes which are easily disposed. It not noly recycled industrial wastes but also opened new doors for manganese resource ferrite industry via its production from tungsten residue. There were73figures,67tables and136references.
引文
[1]Lassner E, Schubert W D. Tungsten:Properties, Chemofth Element, Alloys and Chemical Compounds[M]. New York:Kluwcr Academ/Plenum Publishers,1999: 133-180,
    [2]李洪桂,羊建高,李昆.钨冶金学[M].长沙:中南大学出版社,2010:1-320.
    [3]张启修.钨钼冶金[M].长沙:中南大学出版社,2008:12-25.
    [4]ZHao Z W, Liang Y, Li H G. Kinetics of sodium hydroxide leaching of scheelite[J]. International Journal of Refractory Metals and Hard Materials,2011, 29 (2):289-292.
    [5]ZHao Z W, Li J T, Wang S B, et al. Extracting tungsten from scheelite concentrate with caustic soda by autoclaving process[J]. Hydrometallurgy,2011,108(1-2): 152-156.
    [6]Amer A M. Investigation of the direct hydrometallurgical processing of mechanically activated low-grade wolframite concentrate[J]. Hydro-metallurgy, 2000,58 (3):251-259.
    [7]Hairunnisha S, Sendil G K, Rethinaraj J P, et al. Studies on the preparation of pure ammonium paratungstate from tungsten alloy scrap[J]. Hydrometallurgy, 2007,85 (2-4):67-71.
    [8]何利华,刘旭恒,赵中伟,等.钨矿物原料碱分解的理论与工艺[J].中国钨业,2012,27(2):22-27.
    [9]柯家骏.钨矿的碱浸出[M].//陈家镛.湿法冶金的研究与发展.北京:冶金工业出版社,1998:67-76.
    [10]Mara A Moris, Fernando V D, Josei Coca.Solvent extraction of molybdenum and tungsten by Alamine 336 and DEHPA in a rotating disc contactor[J]. Separation and Purification Technology,1999,17 (3):173-179.
    [11]Sato T, Sato K. Liquid-liquid extraction of tungsten (Ⅵ) from hydrochloric acid solutions by neutral organophosphorus compounds and high molecular weight amines [J]. Hydrometallurgy,1995,37 (3):253-266.
    [12]谢昊,赵中伟,曹才放,等.硫化法除钼过程中杂质砷的行为[J].中南大学学报(自然科学版),2012,43(2):435-439.
    [13]ZHao Z W, CaoCF, CHen X Y. Separation of macro amounts of tungsten and molybdenum by precipitation with ferrous salt[J]. Transactions of Nonferrous Metals Society of China,2011,21 (12):2758-2763.
    [14]高利利.高杂钨溶液的净化提纯[D].长沙:中南大学,2011.
    [15]胡芳.高浓度钨酸钠溶液离子交换研究[D].长沙:中南大学,2010.
    [16]Ogata Takashi. Production of highly pure ammonium paratungstate crystal. Japan:6056427[P],1994.
    [17]Fouad N E, Nohman A K H, Zaki M I. Spetro-thermal investigation of the decomposition intermediates developed throughout reduction of ammonium paratungstate[J]. Thermochemical Acta,2000,343 (1-2):139-143.
    [18]Schubert W D, Lassner E. Production and characterization of hydrogen-reduced submicron tungsten powders-Part 1:State of the art in research, production and characterization of raw materials and tungsten powders [J]. International Journal of Refractory Metals and Hard Materials,1991,10 (3):133-141.
    [19]Schubert W D, Lassner E. Production and characterization of hydrogen-reduced submicron tungsten powders-Part Ⅱ:Controlled decomposition of APT and hydrogen reduction of the oxides[J]. International Journal of Refractory Metals and Hard Materials,1991,10 (4); 171-183.
    [20]傅小明.仲钨酸铵循环氧化还原法制备亚微米球形钨粉[J].稀有金属材料与工程,2010,39(z1):468-473.
    [21]林涛.一种微细球形钨粉的制备方法.中国:10143396[P],2009-05-20.
    [22]Peng H U, Yan SH K, Yuan F L, et al. Effect of plasma spheroidization process on the microstructure and crystallographic phases of silica, alumina and nickel particles[J]. Plasma Science and Technology,2007,9 (5):611-615.
    [23]王岗,李海华,黄忠伟,等.蓝钨与紫钨氢还原法生产超细钨粉的比较[J].稀有金属材料与工程,2009,38(z1):548-552.
    [24]姜文伟,陈响明.氧化钨微观结构的研究[J].稀有金属与硬质合金,2009,37(3):8-11.
    [25]李新春,易茂中,罗崇玲,等.带式无舟皿连续还原炉制备粒度均匀的细颗粒钨粉[J].粉末冶金技术,2008,26(3):163-167.
    [26]张启修.钨钼冶金[M].长沙:中南大学出版社,2008:296-333.
    [27]万林生,徐国钻,严永海,等.中国钨冶炼工艺发展历程及技术进步[J].中国钨业,2009,24(5):63-67.
    [28]李洪桂,赵中伟.我国钨冶金技术的进步——纪念中国钨业100年[J].中国钨业.2007,22(6):7-10.
    [29]姚珍刚.论中国钨冶炼工业的技术升级[J].中国钨业,2004,19(6):16-18.
    [30]张海宝,袁方利,白柳杨,等.球形钨粉制备与应用研究进展[J].中国钨业,2011,26(1):27-29.
    [31]田开文,尚福军,史洪刚,等.感应等离子体超细钨粉制备技术研究[J].兵器材料科学与工程,2010,33(1);63-66.
    [32]王岗.超细钨粉及碳化钨粉制备工艺研究[D].上海:上海交通大学,2009.
    [33]Wu C H. Preparation of ultrafine tungsten powders by in-situ hydrogen reduction of nanoneedle violet tungsten oxide[J]. International Journal of Refractory Metals and Hard Materials,2011,29 (5):686-691.
    [34]李洪桂.白钨精矿与黑白钨混合矿碱分解方法及设备.中国:851003[P],1987-03-04.
    [35]姚珍刚.高钙钨矿物碱压煮分解方法.中国:1361296A[P],2002-07-31.
    [36]李洪桂,刘茂盛,李运姣,等.白钨矿及黑白钨混合矿的NaOH分解法.中国:ZL00113250.4[P],2004-01-28.
    [37]姚珍刚.氟化钠压煮分解白钨矿工艺研究[J].中国钨业,1999(5-6):166-170.
    [38]肖连生.从钨酸赫溶液中除钼.中国:1256245A[P],2000-05-14.
    [39]李洪桂.从钨酸盐溶液中沉淀除钼、砷、锑、锡的方法.中国:1049925C[P],2000-03-01.
    [40]刘建,李建.P204-kerosene-EDTA体系萃取分离钨钼[J].中国钼业,2007,37(4):26-29.
    [41]Zhao Z W, Liang Y, Liu X H, et al. Sodium hydroxide digestion of scheelite by reactive extrusion [J]. International Journal of Refractory Metals and Hard Materials,2011,29 (6):739-742.
    [42]姜文伟,赵中伟,梁卫东,等.钨冶炼过程中锡行为及除锡工艺的研究[J].稀有金属与硬质合金,2008,36(3):38-42.
    [43]游峰,范景莲,田家敏,等.不规则形貌钨粉的形成机理[J].中国钨业,2010,25(1):34-37.
    [44]J.I.Martins, A.Moreira, S.C. Cost.Leaching of synthetic scheelite by hydrochloric acid without the formation of tungstic acid[J]. Hydrometallurgy,2003,70 (1-3): 131-141.
    [45]Kumar A, Singh K, Pandey O P. Direct conversion of wolframite ore to tungsten carbide nano particles[J]. International Journal of Refractory Metals and Hard Materials,2011,29 (4):555-558.
    [46]MacKenzie K J D, Temuujin J, McCammon C, et al. Mechanochemical activation of mixtures of wolframite (FeWO4) with carbon, studied by 57Fe Mossbauer spectroscopy[J]. Journal of the European Ceramic Society,2006, 26 (13): 2581-2585.
    [47]Kotlov A, Jonsson L, Kraus H, et al. Excited states of molybdenum oxyanion in scheelite and wolframite structures[J]. Radiation Measurements,2007,42 (4-5): 767-770.
    [48]E1-Eskandarany M S, Mahday A A, Ahmed H A, et al. Synthesis and characterization of ball-milled nanoerystalline WC and nanocomposite WC-Co powders and subsequent consolidations[J]. Journal of Alloy and compounds,2003 (12):315-325.
    [49]Lee J D, Lee D H, Park N K, et al. The preparation of nanophase tungsten carbide powder with zeolite-X catalysts[J]. Current Applied Physics,2006,6 (6): 1040-1043.
    [50]Richter V, Ruthendorf M V. On hardness and toughness of ultrafine and nanoCrystalline hard materials[J]. International Journal of Refractory Metals and Hard Materials,1999,17 (1-3):141-152.
    [51]赵秦生.钨精矿铝热还原法生产碳化钨-介绍一种新的碳化钨生产技术[J].稀有金属与硬质合金,2003,31(3):49-50.
    [52]Marris J,李学芳.粗晶铝热工艺揭示.国外难熔金属与硬质材料,2000(1):23-28.
    [53]卢友中,曾青云,陈庆根.微波辅助碱分解低品位黑(白)钨精[J].矿产综合利用,2009(5):20-23.
    [54]李洪桂,吕莹,赵中伟.从钨矿物原料制取钨粉的新工艺[J].中国钨业,2007,22(1):30-32.
    [55]邹序枚.用钨精矿制造碳化钨焊条的研究[J].硬质合金,1998,15(1):28-32.
    [56]Singh H, Pandey O P. Direct synthesis of nanoCrystalline tungsten carbide from scheelite ore by solid state reaction method[J]. Ceramics International,2013,39 (1):785-790.
    [57]陈绍依,赵秦生.从钨精矿直接制取碳化钨新工艺的述评[J].中国钨业,1990,5(4): 15-18.
    [58]李俊萌.中国钨矿资源浅析[J].中国钨业,2009,24(6):9-13.
    [59]林海清.近20年来我国钨选矿技术的进展[J].中国钨业,2001,16(5-6):69-73.
    [60]殷俐娟.我国钨资源现状与政策效应[J].中国矿业,2009,18(11):1-3.
    [61]张涛,吴艳,张德会,等.浅析我国钨矿开发利用过程中存在的问题与对策 [J].资源与产业,2009,11(5):79-81.
    [62]孔昭庆.我国钨业发展的新阶段和可持续发展的科学建议[J].中国钨业,2005,20(1):4-8.
    [63]洪明洋.我国钨矿资源开采利用现状及可持续发展战略[J].中国钨业,2004,19(5):52-55.
    [64]左铁镛.树立科学发展观实现我国钨业可持续发展[J].中国钨业,2008,23(1):6-9.
    [65]孔昭庆.贯彻科学发展观,加快转变中国钨业发展方式——后危机时期中国钨业发展的思考[J].中国钨业,2010,25(2):7-11.
    [66]Hairunnisha S, Sendil G K, Rethinaraj J P, et al. Studies on the preparation of pure ammonium para tungstate from tungsten alloy scrap[J]. Hydrometallurgy, 2007,85 (2-4):67-71.
    [67]Martins J I, Lima J L F C, Moreira A, et al. Tungsten recovery from alkaline leach solutions as synthetic scheelite[J]. Hydrometallurgy,2007,85 (2-4):110-115.
    [68]Luo L, Liu K J, Shibayama A, et al. Recovery of tungsten and vanadium from tungsten alloy scrap[J]. Hydrometallurgy,2004,72 (1-2):1-8.
    [69]Ashrafizadeh S N, Bafghi M S, Shahbazi R, et al. Recovery of cobalt and tungsten from scrap carbide pieces through a hydrometallurgic route[A]. In:Young C, Alfantazi A, Anderson C, eds. Hydrometallurgy 2003:proceedings of the 5th international symposium, in honor of Professor Ian M.Ritchie.Warrendale Pennsylvania:TMS (The Minerals, Metals & Materials Society),2003: 1605-1615.
    [70]Luo L, Miyazaki T, Shibayama A, et al. A novel process for recovery of tungsten and vanadium from a leach solution of tungsten alloy scrap[J]. Minerals engineering,2003,16 (7):665-670.
    [71]Van Hoornick N B H, Van Hoeymissen J A B, Heyns M M. Recovery of tungsten from the exhaust of a tungsten chemical vapor deposition tool[J]. Journal of the electrochemical society,2000,147 (12):4665-4670.
    [72]Plattes M, Bertrand A, Schmitt B, et al. Removal of tungsten oxyanions from industrial wastewater by precipitation, coagulation and flocculation processes[J]. Journal of Hazardous Materials,2007,148 (3):613-615.
    [73]Bednar A J, Jones W T, Chappell M A, et al. A modified acid digestion procedure for extraction of tungsten from soil [J]. Talanta,2010,80 (3):1257-1263.
    [74]周晓彤,邓丽红,廖锦.白钨浮选尾矿回收黑钨矿的强磁选试验研究[J].中 国矿业,2010,19(4):64-67.
    [75]李青刚,张启修,李赞恩,等.离子交换法回收高钼钨中矿化选液中的钨钼[J].中国钨业,2009,24(5):56-59.
    [76]Ning P G, CaoHB, Zhang Y, et al. Selective extraction and deep removal of tungsten from sodium molybdate solution by primary amine N1923[J]. Separation and Purification Technology,2009,70 (1):27-33.
    [77]周晓彤,邓丽红,关通,等.从某低品位多金属矿中回收黑白钨矿的选矿试验研究[J].中国矿业,2011,20(7):86-89.
    [78]邓丽红,周晓彤.低品位复杂多金属矿中黑白钨矿分选试验研究[J].矿产综合利用,2011(1):18-20..
    [79]秦玉楠.利用含钨废催化剂生产钨酸的工业实践[J].中国钨业,2002,17(6):40-42.
    [80]羊建高,黄伯云,刘咏.一种利用废残粗晶硬质合金生产超细WC-Co复合粉末的新方法[J].中国钨业,2003,18(2):35-37.
    [81]汤青云,周德坤,段冬平,等.废钨钛钴硬质合金中有价金属的回收[J].中国有色冶金,2006(2):45-47.
    [82]黄炳光,谢克难,解然,等.盐酸法处理硬质合金粉双回收Co和WC新工艺研究[J].四川有色金属,2009(2):30-33.
    [83]张贵清,尚广浩,肖连生.处理仲钨酸铵结晶母液的研究[J].稀有金属,2007,31(3):346-350.
    [84]黄新,彭书杰,孙亚丽,等.含钨废料中提取钨的研究[J].中国矿业,2008,17(11):77-81.
    [85]李洪桂.浅谈为保证我国钨业可持续发展的某些技术措施[J].中国钨业,2004,19(5):40-43.
    [86](?)e(?)(?)KMaH A H. Comprehensive treatment of tungsten concentrate[J]. Non-ferrous metallurgy,1993 (7):44-47.
    [87]Sakharkar M V. Properties of the artificial wolfram and its leaching residue[J]. Hydrometallurgy,1997,44 (1/2):65-69.
    [88]KopmyHOB B (?),杨家驹.低品位钨—锡原料综合处理方案[J].国外锡工业,1994,22(7):1-5.
    [89](?)e(?)(?)HKMaH A H. The existence form of constituents in the redidues from wolframite processing[J]. Non-ferrous metallurgy,1992 (5):51-53.
    [90](?)yMapeB B M,杨家驹.从钨精矿分解渣中提取锡和钨[J].国外锡工业,1998,27(2):8-12.
    [91]#12
    [92]#12
    [93]#12
    [94]#12
    [95]#12
    [96]王树楷.酸浸—萃取法自钨渣中提取氧化钪[J].有色金属(冶炼部分),1978(05): 63-64.
    [97]陈洪泽..从钨渣中回收钨钪铁锰[J].中国资源综合利用,1992(8):42-42.
    [98]赵杰,马国杰,李义辉,黑钨矿渣的综合利用[J].化学世界,1990(10):42-45.
    [99]钟学明,唐洲,唐星华,等.提钪废液制备高纯碳酸锰[J].江西化工,2004(02):64-69.
    [100]钟学明,邓安民,李明俊,等.用钨渣提钪废液制备高纯硫酸锰[J.化工环保,2004,24(z1):301-303.
    [101]钟学明.从钨渣中提取氧化钪的工艺研究[J].江西冶金,2002(03):19-22.
    [102]湖南冶金研究所,株洲硬质合金厂.钨渣综合利用扩大试验报告[R],长沙:湖南冶金研究所,1982.
    [103]国家环境保护局.有色金属工业固体废物治理[M].北京:中国环境科学出版社,1992:356-359.
    [104]杨革.从钨渣中提取高纯氧化钪[J].湖南有色金属,2001,17(1):18-20.
    [105]王钦建.黑钨渣富集工艺的研究[J].化学工程与装备,2009(2):108-110.
    [106]肖连生,张启修,龚柏藩,等.密实移动床-流化床离子交换技术从钨酸盐溶液中除钼试验研究[J].矿冶工程,2001,21(3):66-68.
    [107]罗仙平,刘北林,唐敏康.从钨冶炼渣中综台回收有价金属的试验研究[J].中国钨业,2005,20(3):24-26.
    [108]北京矿冶研究总院分析室.矿石及有色金属分析手册[M].北京:冶金工业出版社,1998:59-160.
    [109]#12 沙:中南工业大学出版社,1997,1-22.
    [110]郭青蔚,王肇信.现代铌钽冶金[M].北京:冶金工业出版社,2009:1-45.
    [111]吕子虎,卫敏,吴东印,等.钽铌矿选矿技术研究现状[J].矿产保护与利用,2010(5):44-47.
    [112]何季麟,刘卫国,张红岳.2006年中国钽铌工业综述[J].稀有金属快报,2007,26(5) 8-13.
    [113]吴荣庆.钽和铌:战略资源如何保护与利用[J].中国金属通报,2009(21):30-33.
    [114]Chien Y T, Ko Y C. Dependence of Magnetic Properties of Mn-Zn Ferrites on the Degree of Calcination[J]. Journal of Materials,1991,26 (21):5859-5864.
    [115]Nakamura T, Okano Y. Electromagnetic properties of Mn-Zn ferrite sintered Ceramics[J]. Journal of Applied Physics,1996,79 (9):7129-7133.
    [116]Kilbride I P, Freer R. Effect of Sintering Enclosures and Sintering Parameters on the Magnetic Properties of a High Permeability Manganese-zinc Ferrites[J]. IEEE Tran sactionson Materials,2000,36 (1):375-380.
    [117]Wanli J, Lei Z. Preparation and magnetic properties of Mn-Zn ferrite by altering magnetic filed induce SHS Method[J]. Journal of the Chinese ceramic society, 2010,38 (9):1852-1856.
    [118]Agrafiotis C C, Zaspalis V T. Self-propagating high-temperature synthesis of MnZn-ferrites for inductor applications[J]. Journal of Magnetism and Magnetic Materials,2004,283 (1):364-374.
    [119]卢文华,李定国,王建中,等.液相法制备锰锌铁氧体粉体的研究进展[J].四川兵工学报,2011,32(11):96-100.
    [120]李雪,张俊喜,刘国平,等.锰锌铁氧体结构性能的研究及发展概况[J].材料导报,2008,22(8):9-12.
    [121]Xiang J, Shen X. Preparation of Co-substituted MnZn ferrite fibers and their magnetic properties [J]. Material Chemistry and Physics,2009,114 (1): 362-366.
    [122]罗广圣,李建德,姜贵文,等.微乳液法制备Mn-Zn铁氧体磁性纳米粒子[J].南昌大学学报:理科版,2010,34(4):373-377.
    [123]Yu Z H, Sun K, Li L ZH, et al. Influences of Bi2O3 on microstructure and magnetic properties of MnZn ferrite[J]. Journal of Magnetism and Magnetic Materials,2008,320 (6):919-923.
    [124]Gu M, Liu G Q, Wang W. Study of Mn3O4 doping to improve the magnetic properties of MnZn ferrites[J]. Materials Science and Engineering:B,2009, 158 (1-3):35-39.
    [125]Kalarus J, Kogias G, Holz D, Zaspalis V T. High permeability-high frequency stable MnZn ferrites Original Research Article[J]. Journal of Magnetism and Magnetic Materials,2012,324 (18):2788-2794.
    [126]Zlatkov B S, Mitrovic N S, Nikolic M V, et al. Properties of MnZn ferrites prepared by powder injection molding technology[J]. Materials Science and Engineering:B,2010,175 (3):217-222.
    [127]Kogias G, Tsakaloudi V, Van der Valk P, et al. Improvement of the properties of MnZn ferrite power cores through improvements on the microstructure of the compacts[J]. Journal of Magnetism and Magnetic Materials,2012,324 (2): 235-241.
    [128]De Fazio E, Bercoff P G., Jacobo S E, et al. Electromagnetic properties of manganese-zinc ferrite with lithium substitution[J]. Journal of Magnetism and Magnetic Materials,2011,323 (22):2813-2817.
    [129]李洪桂.冶金原理[M].北京:科学出版社,2005:247
    [130]慕思国,彭长宏,黄虹,等.298K时三元体系MeSO4-(NH4)2SO4-H2O的相平衡[J].过程工程学报,2006,6(1):32-36.
    [131]Yang J, Peng J, Liu K CH. Synthesis of ferrites obtained from heavy metal solutions using wet method [J]. Hazard Material,2006 (10):1-7.
    [132]李伯刚,尹光福,郑昌琼.并加共沉淀制备软磁锰锌铁氧体粉末的新工艺[J].化工冶金,1999(4):381-384.
    [133]李伯刚,尹光福,韩纪梅.制备软磁锰锌铁氧体粉的共沉淀条件的热力学分析[J].稀有金属,1999,23(5):420-423.
    [134]Smith R M, Martell A E. Critical Stability Constants[M]. New York:Plenum Press,1979.
    [135]张保平,张金龙,唐谟堂.共沉淀法制备锰锌软磁铁氧体前躯体的热力学分析[J].江西有色金属,2005,20(2):35-37.
    [136]俞练民,吴介达,顾翼东.钨矿渣的综合利用及放射性的治理[J].复旦学报(自然科学版),1983(2):127-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700