用户名: 密码: 验证码:
双氧水配合-TRPO/TBP混合萃取剂萃取分离钨钼的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:现有钨钼分离工艺处理高钼含钨溶液存在W损大、除Mo不彻底、成本高和对环境污染严重等不足。本文针对此提出了一条从高钼含钨溶液中分离钨钼的清洁高效新工艺,即双氧水配合—TRPO/TBP混合萃取剂萃取分离钨钼新工艺,并成功完成了工业化试验。
     本研究针对钨酸铵溶液调酸制备双氧水配合溶液存在的困难,创新性的提出蒸发脱氨配合法和双极膜电渗析(BMED)配合法由高钼钨酸铵溶液制备用于双氧水配合萃取分离钨钼的萃取料液,大量减少了调酸过程无机酸的消耗,具有清洁环保的优点;首次采用TRPO/TBP混合萃取体系从高钼钨酸铵溶液中分离钨钼,能协同萃取Mo,反协同萃取W,从而实现了降低W损、提高除Mo率的目的。新工艺克服了传统钨钼分离工艺的不足,从高钼含钨溶液中萃取分离钨钼,具有除Mo彻底、W收率高、Mo产品附加值高、成本低、和清洁环保等一系列优势。
     本研究的主要内容包括萃取料液的制备、萃取-反萃取单级试验、多级模拟萃取试验、连续运转试验、工业化试验和TRPO/TBP混合体系对W和Mo的协萃效应及机理探讨。
     萃取料液制备试验考察了H2O2用量、pH值、温度等因素的影响。蒸发脱氨配合法试验结果表明:蒸发脱氨调酸能比直接加酸调pH减少90%以上的耗酸量,配合转化过程控制H2O2用量为k=1.9(k是H2O2摩尔数与w和Mo摩尔总数的比值),温度45℃,初始pH值1.90,时间60min,W和Mo的H2O2配合转化率高于95%,H2O2分解率低于15%。BMED配合法试验结果表明:BMED过程中控制盐室溶液pH值3.20-3.50,运行210min,其电流效率高于72%,直流电耗(以NH4+计)低于0.088kW·h·mol-1;配合转化过程中H2O2无分解,W、Mo配合转化率和H2O2利用率均接近100%。两种方法均可制得合格的萃取料液。
     采用TRPO/TBP煤油体系从萃取料液中萃取分离钨钼,用分液漏斗进行单级条件试验,考察TRPO和TBP浓度、接触时间、温度、H2O2用量和pH值等因素对萃取过程的影响。试验结果表明:TBP的加入不仅能改善萃取和反萃取的分相性能,而且能提高萃Mo率,抑制W的萃取,从而提高Mo/W分离性能。最佳萃取条件为:H2O2用量k=1.2-1.5,萃取料液放置时间24-48h,萃取水相初始pH值1.5-2.0,萃取相比O/A=1/1,接触时间5min,温度15-25℃;用组成为2%(V/V)TRPO+80%(V/V) TBP+18%(V/V)磺化煤油的有机相在优化条件下对含WO390-120g/L, MO/WO3质量比10-15%的萃取料液进行萃取,Mo的单级萃取率大于63%,W的萃取率小于2%,分离系数βMo/W大于80。
     反萃取过程中W和Mo得到了二次分离,NH4HCO3溶液具有分相性能好,反Mo率高,Mo/W选择性好等优点,是最合适的反萃体系。最佳反萃取条件为:反萃剂1.0-1.2mol/L NH4HCO3,相比O/A=8/1-10/1,接触时间10min,温度15-25℃。此条件下对负Mo9.90g/L, WO32.08g/L的有机相进行反萃,Mo的单级反萃率高于95%,w的单级反萃率低于15%,反萃液中Mo浓度可达70-90g/L。
     用分液漏斗模拟多级错流萃取和逆流萃取。绘制了不同条件下的萃取等温线。运用Kremser方程计算与分析了萃取平衡pH与逆流萃取级数、萃余液中Mo、W浓度之间的关系。在此基础上,通过中间1级调酸方法改变了萃取平衡pH值的分布;通过2段式逆流萃取充分利用了放置时间对除Mo深度的有利影响,从而达到了提高除Mo率,保证低W损,进一步优化Mo、W分离指标的目的。
     用混合澄清槽进行了BMED配合法—双氧水配合萃取分离钨钼的连续运转扩大化试验,其中的2段式12级逆流萃取-2段式反萃取连续运转试验条件为:有机相组成为3%(V/V)TRPO+42%(V/V)TBP+55%(V/V)磺化煤油,萃取料液中H2O2用量为k=1.5,放置时间48h;1段萃取为8级逆流,萃取水相初始pH为2.00-2.05,1-3级为调酸级,调酸级平衡pH为0.96-1.20,有机相操作容量7.57-8.97g/L Mo;2段萃取为4级逆流,1段萃余液放置36h后作为2段萃取的料液,萃取水相初始pH为1.00-1.05,有机相操作容量0.12-0.26g/L Mo;1段反萃取和2段反萃取均为3级并流,2段反萃剂为0.05mol/L NH4HCO3,得到的2段反萃液补入0.8mol/L NH4HCO3作为1段反萃剂,反萃取流比为O/A=6/1。在此条件下得到的2段萃余液含WO3102-123g/L, Mo0.0060-0.017g/L, Mo/WO3质量比小于1×10-4。取2段萃余液加NH3·H2O后进行蒸发结晶,得到的APT产品满足国标GB/T10116-2007中对0级APT产品杂质含量的要求。
     对TRPO/TBP混合体系萃取Mo和W的基础理论进行了研究探讨。大量试验数据和红外光谱分析结果表明:TRPO/TBP煤油体系对Mo表现出协同萃取效应,对W表现出反协同萃取效应,试验条件下的协萃系数分别为RMo,协=1.31-2.81和RW,协=0.21-0.53。TRPO能萃取未和H2O2配合的三氧化钨水合物,形成第三相,萃取反应为中性配合机理。TBP的加入能消弱TRPO中P=O键对W6+的萃取能力,从而抑制W的萃取,消除第三相,提高Mo/W分离性能。
     建立了一条年产50tAPT的工业化试验生产线,连续运行21个月状况良好。成本分析结果表明:对MO/WO3质量比为12.5%的高钼钨酸铵溶液而言,采用双氧水配合萃取法较选择性沉淀法能节省除Mo成本5746元/tWO3。新工艺与现有钨钼分离工艺相比,在处理Mo/WO3质量比>5%的钨钼混合溶液时,具有除Mo彻底、W收率高、Mo产品附加值高、成本低、和清洁环保等一系列优势。图80幅,表57个,参考文献175篇。
Abstract:The current processes for separating Mo and W from tungstate solution with high ratio of Mo/W (molybdenum/tugsten) have shortages such as high co-precipitation loss of W, incomplete removing of Mo, high cost and seriously environment pollution. Aiming at this situation, a novel cleaning efficient process for separating Mo and W from tungstate solution with high ratio of Mo/W, i.e. process of extraction separation of Mo and W by hydrogen peroxide (H2O2)-complexation with a mixture extractant tri-alkyl phosphine oxide (TRPO) and tributyl phosphate (TBP) was developed and the industrial test was carried out in this paper.
     Aiming at the difficulties presented in the acid regulation of the preparation of the H2O2-complexation solution from the ammonium tungstate solution, two methods, the evaporation deamination complex method and the dipolar membrane electrodialysis (BMED) complex method, on preparation of feed solution for extraction from the ammonium tungstate solution containing high Mo were proposed. The new methods were clean and environmental friendliness, and by which the consumption of mineral acid was largely decreased. The mixture extractant TRPO and TBP was used for separating Mo and W from the ammonium tungstate solution containing high Mo for first time. There was a synergistic extraction effect of Mo with TRPO/TBP and an antagonistic extraction effect of W with TRPO/TBP. Thus, the purpose of the increase of the removing of Mo and to decrease the extraction of W was carried out. In comparision to the traditional process for separating Mo and W, the new process provided obvious advantages including deep Mo removing, high recovery of W, high added value of Mo product, low cost, clean and environmental friendliness.
     The main research contents included the preparation of feed solution for solvent extraction separation of Mo and W by H2O2-complexation, single-stage extraction and stripping test, multi-stage extraction test, continuous running test, industrial test and fundamental theory research on extraction.
     The effects of H2O2dosage, pH value and temperature were investigated in the test of preparation of feed solution for extraction. The results indicated that the evaporation deamination complex method reduced the acid consumption by more than90%in comparison to the traditional directly acid regulation complex method. The H2O2-complex transformation rates of W and Mo were higher than95%and the decomposition rate of H2O2was less than15%at a H2O2dosage of k=1.9(k is the mole ratio of H2O2to W and Mo), temperature45℃, initial pH1.90for60min in the H2O2-complexation transformation process. The results of BMED complex method indicated that the current efficiency was higher than72%and the direct current consumption (byNH4+) was less than0.088kW·h·mol-1at a pH of salt compartment solution of3.20-3.50and with running time210min in the electrodialysis process. There was no H2O2decomposed, and the transformation rates of W, Mo and utilization rate of H2O2were close to100%in the H2O2-complex transformation process. The qualified feed solution for extraction could be prepared by both the two methods.
     The single-stage extraction test of solvent extraction separation of Mo and W from feed solution was carried out using separating funnel with tri-alkyl phosphine oxide (TRPO)-tributyl phosphate (TBP)-kerosene system. The effects of concentra-tion of TRPO and TBP, contact time, temperature, H2O2dosage and pH value on the extraction were investigated. The results indicated that the addition of TBP in organic not only improved phase separation both in extraction and stripping, but also increased the extraction of Mo and decreased the extraction of tungsten (W), and hence improved the separation properties of Mo/W. The optimum extraction conditions were as followed:H2O2dosage k=1.2-1.5, storing time of feed solution24-48h, initial pH value of aqueous solution1.5-2.0, O/A phase ratio1:1, contact time5min, temperature15-25℃. Under the optimum conditions, the extraction of Mo was higher than63%and the separation coefficient βMo/w was larger than80using aqueous solutions containing90-120g/L WO3and Mo/WO3mass ratio of10-15%with a mixture of2%(V/V) TRPO and80%(V/V) TBP in kerosene.
     The further separation of W and Mo was realized in stripping process. NH4HCO3was the optimum stripping agent since its good phase separation, effective stripping of Mo and high Mo/W selectivity. The optimum stripping conditions were as followed:NH4HCO310-1.2mol/L O/A ratio8:1-10:1, contact time10min and temperature15-25℃. Under the optimum conditions, the stripping of Mo was higher than95%in comparison that of W less than15%after one contact with the organic loaded9.90g/L Mo and2.08g/L WO3, and the concentration of Mo in strip liquor was70-90g/L
     The muti-stage cross-flow and countercurrent extraction were been simulated using separating funnel. The extraction isotherms for Mo were plotted under different conditions. The relationship between the stage of countercurrent extraction, concentrations of Mo and W in raffinate and the equilibrium pH value was calculated and analyzed by kremser equation. On this basis, the method of acid regulation in one of the middle stages was proposed and the distribution of equilibrium pH value in each stage of extraction was changed. The process of2-section countercurrent extraction was proposed and the positive effect of storing time on the deep removing of Mo was fully utilized. Thus, the purpose for the separation indexes optimization to increase the extraction of Mo and to decrease the extraction of W was carried out.
     The continuous running test of the BMED-solvent extraction separation of Mo and W by H202-complexation was carried out using mixer-settler. The conditions of the2-section12-stage countercurrent extraction and2-section stripping test were as followed:the organic phase was comprised of3%(V/V) TRPO and42%(V/V) TBP in55%(V/V) kerosene, the H2O2dosage and the storing time of the feed solution for extraction was k=1.5and48h respectively. In the first-section extraction there was8-stage countercurrent extraction and the1-3stage was the acid regulation stage, the initial pH of aqueous solution was2.00-2.05, the equilibrium pH of the1-3stage was0.96-1.20, the operation capacity of organic phase was7.57-8.97g/L Mo. In the second-section extraction there was4-stage countercurrent extraction, the feed solution of the second-section extraction was the raffinate of the first-section stage with storing time36h, and the initial pH value was1.00-1.05, the operation capacity of organic phase was0.12-0.26g/L Mo. In the first and the second section stripping, there were both4-stage cocurrent extraction, the stripping agent in the second-section stripping was0.05mol/L NH4HCO3, the stripping agent in the first-section stripping was the strip liquor of the second-section stripping with0.8mol/L NH4HCO3addition, both the O/A ratio in the two sections stripping were6:1. Under the conditions, the raffinate of the second-section extraction was containing102-123g/L WO3,0.0060-0.017g/L Mo, and in which the Mo/WO3mass ratio was less than1×10-4. The APT product was obtained by evaporation deamination from the raffinate of the second-section extraction with NH3·H2O addition. The product could meet the requirement of0grade of APT of the national standards GB/T10116-2007of China.
     The fundamental theory of extraction of Mo and W with the mixture extractant TRPO/TBP was researched. It was confirmed by a lot of experimental results and infrared (IR) analysis that there was a synergistic effect between TRPO/TBP and Mo, and a antagonistic effect between TRPO/TBP and W. Under the experimental condition, the synergistic coefficient of Mo and W was RMo,协=1.31-2.81and Rw,协=0.21-0.53respectively. The tungsten trioxide (WO3) hydrate without H2O2-complexation could be extracted by TRPO and formed a third phase. The extraction reaction was neutral complex mechanism. The coordination ability of the P=O bond in TRPO for W6+was weakened by the addition of TBP. Thus, the extraction of W was restrained, the third phase was eliminated and the separation properties of Mo/W were improved by the addition of TBP into TRPO.
     An industrial test production line for produce50tAPT per year was established in the factory. It had successfully and continuously running for about21month. The cost analysis indicated that, to the ammonium tungstate solution containing high Mo with Mo/WO3mass ratio of12.5%, the novel process for separating Mo and W by H2O2-complexation could save the cost of removing Mo of4472yuan per WO3in comparison to the selectively precipitation method. Compared with current process for separating Mo and W, the new process provided obvious advantages including deep Mo removing, high recovery of W, high added value of Mo product, low cost, clean and environmental friendliness, especially when the MO/WO3mass ration in the mixture solution was higher than5%.
引文
[1]孔昭庆.新中国钨工业60年[J].中国钨业,2009,24(5):1-10.
    [2]李俊萌.中国钨矿资源浅析[J].中国钨业,2009,24(6):9-13.
    [3]李洪桂,刘茂盛,孙培梅,等.适应钨资源形势的变化开拓钨冶金的新工艺[J].中国钨业,1999,14(5-6):136-139.
    [4]殷俐娟.我国钨资源现状与政策效应[J].中国矿业,2009,(11):1-3.
    [5]张文朴.我国钨资源综合利用研发进展[J].资源再生,2008,(04):44-45
    [6]吕莹,李洪桂.合理利用我国高钼钨精矿[J].中国钨业,2005,20(5):15-21.
    [7]GB/T 3457—1998,氧化钨[S].北京:中国标准出版社,1998.
    [8]GB/T 10116—2007,仲钨酸铵[S].北京:中国标准出版社,1998.
    [9]张启修,赵秦生.钨钼冶金[M].北京:冶金工业出版社,2005:12-41.
    [10]张青莲.无机化学丛书第八卷[M].北京:科学出版社,1998:449-591.
    [11]佐野诚,吴继宝.用D2EHPA和LIX63萃取钼和钨[J].中国钨业,1989,(06):22-27.
    [12]霍广生,孙培梅,贾根贵.关于钨钼分离的可能方法[J].稀有金属与硬质合金,1997,(01):52-56.
    [13]吕希伦.无机过氧化合物化学[M].北京:科学出版社,1987:421-424.
    [14]刘茂盛,孙培梅.关于钨冶炼离子交换工艺除杂效果的探讨[J].稀有金属与硬质合金,1990,(2):8-15.
    [15]张启修,赵秦生.钨钼冶金[M].北京:冶金工业出版社,2005:99-100.
    [16]肖清清,杨天林,陈虎兵,等.仲钨酸铵生产工艺中钼的分离[J].无机盐工业,2009,(10):53-55.
    [17]韩曙祥.仲钨酸铵结晶过程中除杂方法的研究[J].稀有金属与硬质合金,1993,(03):28-31.
    [18]万林生.仲钨酸铵结晶过程钨钼分离条件及其机理研究[J].稀有金属,1993,(04):245-249.
    [19]吴冲浒.应用于仲钨酸铵结晶过程中钨铝分离的高效方法[J].粉末冶金材料科学与工程,2010,(06):601-605.
    [20]刘旭恒,孙放,赵中伟.钨钼分离的研究进展[J].稀有金属与硬质合金,2007,35(4):42-45.
    [21]曹佐英,张启修.钨钼分离研究进展[J].稀有金属,2004,(06):1076-1081.
    [22]孙培梅,霍广生.钨钼分离方法的研究进展[J].中国钼业,2003,27(2): 35-38.
    [23]张启修,龚柏凡.钨钼分离方法的研究及应用选择[J].中国钨业,1996,(05):16-18.
    [24]刘建,王秀山.钨钼分离的研究与进展[J].国外稀有金属,1989,(4):15-21.
    [25]张邦胜,肖连生,张启修.沉淀法分离钨钼的研究进展[J].江西有色金属,2001,(02):26-29.
    [26]卢博,乔珊,张小林.萃取法分离钨钼研究进展[J].硬质合金,2011,28(2):130-135.
    [27]张邦胜,蒋开喜,王海北,等.萃取法分离钨钼的研究进展[J].有色金属,2004,56(4):89-91.
    [28]王荣耕,赵建戌,李学平.利用离子交换树脂提取钨、钼的技术进展[J].河北化工,2005,(02):16-18.
    [29]吕莹,孙放Fe(OH)_3吸附法从高钨钼酸钠溶液中分离钨钼的研究[J].稀有金属与硬质合金,2005,33(3):1-3.
    [30]蒋安仁,蒋伟中,庞震.利用钨、钼同多酸形成能力的差异进行钨钼沉淀分离[J].稀有金属与硬质合金,1989,(2):26-29.
    [31]李绍秀,王向德,张秀娟.乳状液膜法分离钨钼的研究-弱碱性体系[J].膜科学与技术,1996,16(2):8-14.
    [32]万印华,王向德,朱斌,等.新型乳化液膜用表面活性剂LMA-1的性能及其应用[J].膜科学与技术,1992,12(4):17.
    [33]徐廷华,邓佐国,徐志锋.碱性体系中乳状液膜法分离钨钼的研究[J].中国钨业,1998,(4):20-34
    [34]顾珩,汪剑岭,王继民,李杏英.高钼钨酸钠溶液萃取分离钨钼的研究.稀有金属与硬质合金,1997,129:7-1 0.
    [35]卢博,谢方浩,邓声华,乔珊,杨幼明.N263-仲辛醇-煤油体系萃取分离钨钼[J].硬质合金,2011,(05):311-315.
    [36]赵小翠;郑明东;黄宪法等.废催化剂中钼和钨的溶剂萃取分离研究[J].中国钼业,2008,32(2):28-32.
    [37]俞克宁.伯胺萃取分离钨、钼及其机理的初步研究[J].应用化学,1983,1(1):121-122.
    [38]于淑秋,喻克宁,陈家镛.伯胺及中性协萃剂从含钨的钼酸盐水溶液中萃钨规律的研究[J]. 过程工程学报,1987,8(1):1-11.
    [39]Ning Pengge, Cao Hongbin, Zhang Yi. Selective extraction and deep removal of tungsten from sodium molybdate solution by primary amine N1923[J]. Separation and Purification Technology,2009,70(1):27-33.
    [40]Maria A. Moris, Fernando V. Diez, Jose Coca. Solvent extraction of molybdenum and tungsten by Alamine 336 and DEHPA in a rotating disc contactor[J]. Separation and Purification Technology,1999,17(3)::173-179.
    [41]Jose Coca, Fernando V. Diez, Maria A. Moris. Solvent extraction of molybdenum and tungsten by Alamine 336 and DEHPA[J]. Hydrometallurgy,1990,25 (2): 125-135.
    [42]Zheng Qingyuan, Fan Huihao. Separation of molybdenum from tungsten by di-2-ethylhexyl phosphoric acid extractant [J]. Hydrometallurgy,1986,16: 263-267.
    [43]刘建,李建.P204-kerosene-EDTA体系萃取分离钨钼[J].中国钼业,2007,37(4):26-29.
    [44]苏元复,戴各生.用协同萃取分离钨钼[J].化学世界,1984,(9):322-325.
    [45]Dai Gesheng., Xuan Baoyuan, Su Yuanfu, Separation of tungsten and molybdenum in dilute hydrochloric acid solution by extraction with sulfoxides[J]. Hydrometallurgy, 1984,13 (2):137-153.
    [46]穆光照,荣风光,薛鉴,等.亚砜类萃取剂M-601分离钨钼[J].化学世界,1986,(11):487-489.
    [47]顾功凯,马秀英.用伯胺N1923萃取法分离钨中微量钼[J].广州化工,1992,20(4):52-55.
    [48]王秀山,杨子超,刘建,等.CL-P204萃淋树脂吸附及分离钨钼性能的研究[J].离子交换与吸附,1989,(2):102-107.
    [49]刘建,王秀山,杨子超,等.CL-P5709萃淋树脂吸附及分离钨钼性能的研究[J].化工冶金,1990,11(3):222-228.
    [50]刘建,王秀山,杨子超,等.萃淋树脂CL-P507吸附、分离钨钼的研究I.树脂的吸附及分离性能[J].应用化学,1990,7(4):37-41.
    [51]刘建,王秀山,杨子超,等.萃淋树脂CL-P507吸附、分离钨钼的研究II.树脂吸附分离钨钼的机理[J].应用化学,1992,9(1):42-46.
    [52]龚柏凡,张启修.基于硫代钼酸盐分离钨铝的研究小结[J].中国钨业,1995:10-14.
    [53]StarckHC, Gmbh&COKG. Process for preparing pure alkali and/or ammonium tungstate solution[P]. WO:9801393.1998-01-15.
    [54]Bellingham. Tungsten and molybdenum separation from alkaline solutionmixture [P]. US:3939245.1976-02-17.
    [55]Amaxinc. Recovery of tungsten and molybdenum from low grade wolframite by adding sulphide precipitating agent, dissolving precipitate in sodium hydroxide solution and adding agent to precipitate[P]. US:4303622.1981-01-19.
    [56]舒万银,冯才旺,赵景云,等.用硫化物沉淀法除去粗钨酸钠溶液中钼砷硅的研究[J].中南矿冶学院学报,1983,35(1):72-79.
    [57]Gong Bofan, Huang Weizhuang, Zhang Qixiu. A study on separation of molybdenum from tungsten by an adsorption process using activated carbon [J]. International Journal of Refractory Metals and Hard Materials,1996,14(5-6): 319-323.
    [58]黄蔚庄,龚柏凡.柱式吸附法从钨酸钠溶液中分离钼的研究[J].稀有金属与硬质合金,1994,116(1):1-4.
    [59]龚柏凡,黄蔚庄,张启修.从钨酸钠溶液中用活性炭吸附钼的方法[P].中国专利:CN87102098,1991.
    [60]Macinnis, Martin B, Kim, et al. Method for removing molybdenum from tungstate solutions by solvent extraction[P]. United States Patent.4278642. 1981-07-14.
    [61]Macinnis, Martin B, Kim, et al. Separating molybdenum values from an aqueous solution containing tungsten by solvent extraction[P]. United States Patent. 4288413.1981-09-08.
    [62]翁华民.溶剂萃取法从钨酸钱碱性溶液中分离钨钼试验研究[J].稀有金属与硬质合金,1987,(1/2):36-41.
    [63]李菁华.N263萃取分离钼钨的硫代盐[J].稀有金属,1989,13(4):296-300.
    [64]李菁华.碱性介质中萃取分离钼、钨的研究[J].华东化工学院学报,1988,14(3):280-284.
    [65]黄蔚庄,龚柏凡,张启修.溶剂萃取硫代钼酸盐分离钨钼[J].中国有色金属学报,1995,5(1):45-47.
    [66]龚柏凡,张启修,黄蔚庄,等Na2WO4溶液中硫代钼酸盐制备改进研究[J].中南矿冶学院学报,1994,24:30-34.
    [67]张启修,龚柏凡,罗爱平,等.无有害阴离子pH调整法及其作用[J].中南矿冶学院学报,1994,24:27-29.
    [68]席晓丽,张启修,肖连生,等.新型硫化剂制备硫代钼酸盐研究[J].稀有金属与硬质合金,1999,139(4):3-5.
    [69]曹佐英,张启修,肖连生.新硫化剂在Na2WO4溶液中制备硫代钼酸盐[J].中南工业大学学报(自然科学版),2002,(1):28.
    [70]张启修,曹佐英,肖连生.含钼的钨酸钠溶液中分离钼用的硫代钼酸盐制备方法.中国:CN1413912[P],2003-04-30.
    [71]陈洲溪,黄芍英,周良益,等.离子交换法分离钨酸盐溶液中的钼.中国: CN88105712[P],1988-05-16.
    [72]肖连生,龚柏凡,黄芍英,等.离子交换一步法制取高纯仲钨酸铵扩大试验[J].中国有色金属学报,1996,6(3):54-56.
    [73]肖连生,张启修,龚柏凡,等.密实移动床-流化床离子交换除钼技术在工业,上的应用[J].中国钨业,2001,16(2):26-29.
    [74]Xiao Liansheng, Zhang Qixiu, Gong Bofan, et al. Separation of molybdenum from tungstate solution by a combination of moving packed bed and fluid bed ion-exchange techniques[J]. International Journal of Refractory Metals and Hard Materials,2001,19(3):145-148.
    [75]曹佐英,张启修,肖连生.钨钼分离不同酸度调节剂对钨钼交换容量影响的研究[J].湖南理工学院学报(自然科学版),2003,(03):56-60.
    [76]曹佐英,张启修,肖连生.钨钼分离中有机酸阴离子对钨钼交换容量影响的研究[J].矿冶工程,2004,(01):64-66,69.
    [77]郭超,肖连生,曹佐英.一种新型树脂从钨酸盐溶液中分离钼的研究[J].中国钨业,2010,04:31-34.
    [78]霍广生,赵中伟,李洪桂,等.不同金属硫化物从钨酸盐溶液中除钼的效果[J].中国有色金属学报,2004,(02):302-305.
    [79]霍广生.钨冶炼过程中钨钼分离新工艺及其理论研究[D].长沙:中南大学,2001.
    [80]Li Honggui, Huo Guangsheng, Sun Peimei, et al. Developing new reagent for selectively precipitation of molybdenum from tungsten solution[J]. Transactions of Nonferrous Metals Society of China,2003,13(1):184-187.
    [81]Li Honggui. Production of high purity APT from scheelite and complex tungsten raw material with high Mo content[J]. Transactions of Nonferrous Metals Society of China,2004,14 (2):366-369.
    [82]李运姣,李洪桂,孙培梅,等.选择性沉淀法从钨酸盐溶液中除钼、砷、锑、锡等杂质的工业试验[J].稀有金属与硬质合金,1999,138(3):1.
    [83]孙培梅,李洪桂,李运姣,等.选择性沉淀法从钨酸盐溶液中除钼的工业试验[J].中国有色金属学报,2001,11(3):499-502.
    [84]蒋安仁,欧阳石,庞震.H202配合均相沉淀法分离钨中的钼[J].稀有金属,1988,12(4):245-248.
    [85]王志宏,蒋安仁,顾春林.配合均相沉淀法生产铝酸工艺的除钼研究[J].稀有金属与硬质合金,1991,107(4):3-5.
    [86]李绍秀,王向德,张秀娟.乳状液膜法分离钨钼的研究—酸性体系[J].膜科学与技术,1996,16(3):33-38.
    [87]李绍秀,张秀娟.三烷基氧化磷萃取钨、钼的机理研究[J].化学世界,1998,(2):257-260.
    [88]李绍秀,王向德,张秀娟.乳状液膜法分离高钼低钨料液中钨钼的研究[J].膜科学与技术,1998,18(1):51-54.
    [89]Zelikman, Abram Naumovich, Voldman, et al. Process for separation of tungsten and molybdenum by extraction. United States:3969478[P].1976-07-13.
    [90]Ozensoy, Erol, Burkin,et al. Separation of tungsten and molybdenum by solvent extraction. United States:4275039[P].1981-06-23.
    [91]Vasileo Kh, Karagiozor L. Extration of molybdenum (Ⅵ) from weak acid aqueous solution by quaternary ammonium salts[J]. J. Inorg. Nucl. Chem., 1981,43:199.
    [92]#12
    [93]#12
    [94]黄汉年.萃取法分离钨钼[J].稀有金属与硬质合金,1982,(2):1-9.
    [95]李伟宣,张礼权.液液萃取法分离钨钼的研究[J].稀有金属与硬质合金,1989,97(2):21-24.
    [96]张启修,罗爱平.单阳膜电解法脱除Na2WO4溶液中游离碱研究(Ⅰ)—影响电流效率与能耗的因素考察[J].中南矿冶学院学报,1994,24(钨专辑):126-130.
    [97]罗爱平,张启修.单阳膜电解法脱除Na2WO4溶液中游离碱研究(Ⅱ)—工艺流程研究[J].中南矿冶学院学报,1994,24(钨专辑):131-135.
    [98]Wang Yaoming, Huang Chuanhui, Xu Tongwen. Which is more compe-titive for production of organic acids, ion-exchange or electrodialysis with bipolar membranes?[J]. Journal of Membrane Science,2011,374(1-2):150-156.
    [99]Wei Yanxin, Wang Yaoming, Zhang Xu, et al. Comparative study on the treatment of simulated brominated butyl rubber wastewater by using bipolar membrane electrodialysis (BMED) and conventional electrodialysis (ED)[J]. Separation and Purification Technology,2013,110:164-169.
    [100]H. Strathmann, H.-J. Rapp, B. Bauer, C.M. Bell, Theoretical and practical aspects of preparing bipolar membranes[J], Desalination,1993, (90):303-323.
    [101]H. Strathmann, B. Bauer, H.-J. Rapp, Better bipolar membranes[J], Chemtech, 1993, (23):17-24.
    [102]A.J.B.肯佩曼.双极膜技术手册[M],徐铜文.译.北京:化学工业出版社,2004:6-19.
    [103]Xu Tongwen, Yang Weihua, He Binglin. Water dissociation phenomena in bipolar menbrane: The configur at ions and theoretical voltage analysis[J]. Science in China (Chem),1999,42(6):589-598.
    [104]雷鸣,王元春,雷光鸿,等.双极膜电渗析技术的应用及前景[J].轻工科技,2012,11:26-28.
    [105]郑淑英.双极膜电渗析的理论研究进展与应用[J].化学工程与装备,2011,(10):161-164,175.
    [106]董恒,王建友,卢会霞.双极膜电渗析技术的研究进展[J].化工进展,2010,29(2):217-222.
    [107]谢鸿芳,肖艳春,郑林禄,等.双极膜技术在环境工程中的应用与展望[J].广州化学,2012,01:56-62.
    [108]彭飞燕.双极膜在环境保护方面的应用研究进展[J].安徽化工,2012,04:10-12.
    [109]肖艳春,谢鸿芳,陈巧平,等.双极膜在食品工业领域中的应用[J].化学工程与装备,2011,(10):167-170.
    [110]陈巧平,谢鸿芳,肖艳春,等.双极膜技术在无机盐工业中的应用[J].广州化学,2011,(03):58-63.
    [111]徐芝勇,张建国.双极膜电渗析技术在有机酸生产中的应用进展[J].膜科学与技术,2007,(03):75-79.
    [112]Wang Yaoming, Zhang Xu, Xu Tongwen. Integration of conventional electrodialysis and electrodialysis with bipolar membranes for production of organic acids[J]. Journal of Membrane Science,2010,365(1-2):294-301.
    [113]Luis-Felipe Gutierrez, Laurent Bazinet, Safia Hamoudi, Khaled Belkacemi. Production of lactobionic acid by means of a process comprising the catalytic oxidation of lactose and bipolar membrane electrodialysis[J]. Separation and Purification Technology,2013,109:23-32.
    [114]徐铜文,杨伟华,张玉平,等.双极膜在冶金工业中的应用[J].膜科学与技术,2002,(05):46-51,57.
    [115]Wei Yanxin, Wang Yaoming, Zhang Xu, Xu Tongwen. Treatment of simulated brominated butyl rubber wastewater by bipolar membrane electrodialysis [J]. Separation and Purification Technology,2011,80(2):196-201.
    [116]Karel Ghyselbrecht, Marie Huygebaert, Bart Van der Bruggen, Rob Ballet, Boudewijn Meesschaert, Luc Pinoy. Desalination of an industrial saline water with conventional and bipolar membrane electrodialysis [J]. Desalination,2013, 318:9-18.
    [117]Atsushi Iizuka, Kana Hashimoto, Hiroki Nagasawa, et al. Carbon dioxide recovery from carbonate solutions using bipolar membrane electrodialysis[J]. Separation and Purification Technology,2012,101:49-59.
    [118]Shen Jiangnan, Yu Jie, Huang Jie, et al. Preparation of highly pure tetrapropyl ammonium hydroxide using continuous bipolar membrane electrodialysis[J]. Chemical Engineering Journal,2013,220:311-319.
    [119]付丽丽,高学理,范爱勇,等.双极膜电渗析提取琥珀酸[J].水处理技术,2013,(03):35-38.
    [120]张圩玲,王倩,杨鹏波,等.双极膜电渗析脱除苏氨酸母液中硫酸盐[J].过程工程学报,2012,04:654-659.
    [121]张才华,王昆,李卫星,等.双极膜电渗析提取乳酸的影响因素[J].南京工业大学学报(自然科学版),2012,05:65-69.
    [122]高丽花.双极膜电渗析法由硫酸铵制备硫酸的工艺研究[J].河北化工2012,06:32-33,53.
    [123]蔡茜,周俊波.双极膜电渗析法处理天然碱卤水的工艺条件优化[J].化学与生物工程,2012,08:70-72.
    [124]刘洪涛,袁俊生,刘杰.双极膜法软化海水制备酸碱的研究[J].盐业与化工,2012,(06):15-18.
    [125]Zhang Kai, Wang Meng, Gao Congjie. Ion conductive spacers for the energy-saving production of the tartaric acid in bipolar membrane electrodialysis[J]. Journal of Membrane Science,2012,387-388:48-53.
    [126]Bailly M. Pro duction of or ganic acids by bipolar electro-dialysis:realizations and perspectives [J]. Desalination,2002,144(1-3):157-162.
    [127]Pinacci P, Radaelli M. Recovery of citric acid from fermentation broths by electrodialysis with bipolar membranes[J]. Desalination,2002,148(1-3):177-179.
    [128]H bov V, Melzoch K, Rychtera M, et al. Electrodialysis as a useful technique for lactic acid separation from a model solution and a fermentation broth[J]. Desalination,2004,162(3):361-372.
    [129]Paleologou M, Thibault A, Wong P Y. Enhancement of the current efficiency for sodium hydroxide production from sodium sulphate in a two-compartment bipolar membrane electrodialysis system[J]. Separation and Purification Technology,1997,11:159-171.
    [130]Graillon S, Persin Fm, Pourcelly G, et al. Development of electrodialysis with bipolar membrane for the treatment of concentrated nitrate effluents [J]. Desalination,1996,107(2):159.
    [131]Grabowski A, Zhang G Q, Strathmann H, et al. The production of high purity water by continuous electrodeionization with bipolar membranes: Influence of the anion-exchange membrane permselectivity[J]. Journal of Membrane Science,2006,281:297-306.
    [132]葛道才,范晴晴,黄泉森.国产双极性膜及其电渗析装置[J].膜科学与技术,2011,(06):87-89,94.
    [133]金可勇,金水玉,周勇,等.BPM2型双极膜电渗析装置的研制[J].水处理技术,2010,36(2):119-125
    [134]保积庆,张启修.二室双极膜电渗析器在低浓度二氧化硫净化工艺中应用的可行性[J].膜科学与技术,2003,(2):32-36.
    [135]彭雪娇,牛建国,周勇.双极膜电渗析法处理钨冶炼碱性废水的研究[J].华东理工大学学报(自然科学版),2008,31(3):283-286.
    [136]曾成威,张贵清,关文娟,等.双极膜电渗析制备偏钨酸铵溶液的初步研究[J].中国钨业,2012,27(2:32-36.
    [137]曾成威.双极膜电渗析制备偏钨酸盐的技术研究[D].长沙:中南大学,2012.
    [138]张贵清,尚广浩,刘洪吉,等.双极膜电渗析制取偏钨酸铵溶液的研究[C].中国膜工业协会、中国金属学会、中国有色金属学会、中国有色金属工业协会、中国环保产业协会.第三届膜分离技术在冶金工业中应用研讨会论文集.山东招远,2009:142.
    [139]顾文帅.栾川矿集区钼多金属矿床共伴生元素富集特征及找矿意义[D].北京:中国地质大学,2012.
    [140]王新刚.高钼低品位浮选白钨矿化学选矿工艺研究[D].长沙:中南大学,2009.
    [141]关文娟.从钨矿苏打高压浸出液中萃取钨制取纯钨酸铵溶液的研究[D].长沙:中南大学,2009.
    [142]张贵清,关文娟,张启修.从钨矿苏打浸出液中直接萃取钨的连续运转试验[J].中国钨业,2009,24(5):49-52.
    [143]关文娟,张贵清.用季铵盐从模拟钨矿苏打浸出液中直接萃取钨[J].中国有色金属学报,2011,(07):1756-1762.
    [144]柯兆华.从钨矿苛性钠浸出液中萃取钨制取纯钨酸铵的研究[D].长沙:中 南大学,2012.
    [145]柯兆华,张贵清,关文娟,等.季铵盐从碱性钨酸钠溶液中萃取钨的研究[J].稀有金属与硬质合金,2012,(06):1-4,52.
    [146]Zhao zhongwei, Cao caifang, Chen xing-yu, et al. Separation of macro amounts of tungsten and molybdenum by selective precipitation[J]. Hydrometallurgy, 2011,108 (3-4):229-232.
    [147]Zhao zhongwei, Cao caifang, Chen xing-yu. Separation of macro amounts of tungsten and molybdenum by precipitation with ferrous salt[J]. Transactions of Nonferrous Metals Society of China,2011,21(12):2758-2763.
    [148]张春明.中国钨矿资源节约与综合利用的思考[J].中国钨业,2011,(02):1-5.
    [149]陈甲斌,吴淦国.钨资源管理制度与政策调整研究[J].金属矿山,2011,(05):1-3,31.
    [150]祁水连,侯春华.我国钨资源利用情况分析[J].中国国土资源经济,2011,(10):24-27,55.
    [151]王薇.我国钨资源生产和出口[J].中国有色金属,2010,(21):64-65.
    [152]吕希伦.无机过氧化合物化学[M].北京:科学出版社,1987:80-83.
    [153]邝静,林庆,马兰.高钼钨矿中钼对三氧化钨测定值的干扰消除研究[J].中国钨业,2011,26(2):46-48.
    [154]黄继武,李周.多晶材料X射线衍射—实验原理、方法与应用[M].北京:冶金工业出版社,2012.
    [155]朱屯,萃取与离子交换[M].北京:冶金工业出版社,2005:208-223.
    [156]李标国,徐献瑜,徐光宪.串级萃取理论III逆流萃取动态平衡的数学模型[J].北京大学学报(自然科学版),1980,02:66-84.
    [157]周婧,叶枫Aspen Plus对逆流萃取串级实验法的模拟与验证.计算机与应用化学.2008,25(4):441-444.
    [158]彭昌荣,刘期凤.多级错流萃取计算的MATLAB实现[J].西华大学学报(自然科学版),2006,25(1):57-59.
    [159]徐光宪,王文清,吴瑾光,等.萃取化学原理[M].上海:上海科学技术出版社,1984:138-183.
    [160]翁诗甫.傅里叶红外光谱分析(第二版)[M].北京:化学工业出版社,2010.
    [161]韩磊,王海荣,王建晨.混合三烷基氧膦的合成和组分分析[J].核化学与放射化学,2006,(03):169-173.
    [162]辛仁轩,梁俊福,宋崇立,等.γ辐照三烷基氧化膦的红外光谱研究[J].光谱实验室,2000,(06):625-630.
    [163]辛仁轩.三烷基氧化膦及其萃合物的红外光谱研究[J].光谱实验室,2000,(04):373-377.
    [164]顾翼东,宋沅.粉状白钨酸的研究III.从粉状白钨酸制备偏钨酸铵和偏钨酸有机铵盐以及它们的性质研究[J].化学学报,1985,(09):827-831.
    [165]俞斌,陈智,腾藤,沈其丰.TBP-CC14-H2O体系中水合磷酸三丁酯作用的NMR研究[J].化学学报,1984,42:893-898.
    [166]鲍猛,邢湘萍,张振伟,孙国新,陈升.TBP萃取Zn (Ⅱ)的平衡及FT-IR研究[J].山东建材学院学报.1999,13(2):109-111.
    [167]陈靖,李春宇,刘秀琴,焦荣洲.TRPO萃取锕系元素、铕、锝、锆和铁[J].核化学与放射化学,2002,(04):218-222.
    [168]张启卫,焦荣洲,宋崇立.三烷基(混合)氧膦对Fe(Ⅲ)萃取性能的研究[J].清华大学学报(自然科学版),1995,(06):52-58.
    [169]刘金晨,刘志平,陈键,等.TRPO-稀释剂萃取硝酸过程中三相形成机理的研究[J].核化学与放射化学,1998,(01):37-42
    [170]郭一飞,袁建华,梁俊福,等.UO2C2O4·TRPO配合物的制备与分析[J].核化学与放射化学,2002,(02):112-116.
    [171]傅洵,胡正水,正德宝,等.萃取体系第三相的生成、微观结构与应用研究.三相萃取体系研究进展[J].化学通报,2000,(04):13-17.
    [172]尹德成.利用TRPO-煤油/盐酸-ZrOCl2萃取体系的第三相制备ZrO2介孔材料[J].现代技术陶瓷,2008,(02):28-31.
    [173]钟广义,焦荣洲,梁俊福.用EDTA消除TRPO萃取过程中的三相[J].核化学与放射化学,1998,(01):43-50.
    [174]韩宾兵,吴秋林,刘秀琴,等.TBP-TRPO/煤油萃取HNO3、UO22+、Pu(Ⅳ)、 Am3+、TCO4-和Cs+的研究[J].核化学与放射化学,2000,(02):73-79.
    [175]焦荣洲,王守忠,樊诗国,等.用三烷基(C6-C8)氧磷(TRPO)从强放废液中萃取锕系、镧系元素的研究[J].核化学与放射化学,1985,(02):65-71,77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700