用户名: 密码: 验证码:
含铁回收料球团金属化烧结新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:钢厂含锌粉尘和化工厂硫酸渣具有排量大、含有多种有价金属元素和有害元素及含碳量高等特点,导致难以利用。该类含铁回收料的大量堆存不仅造成二次污染,而且浪费资源。因此,研究该类含铁回收料高效利用新技术,制备出优质高炉炉料,实现其综合利用,将具有重要的现实意义。
     本文以三种含铅锌粉尘和一种高砷硫酸渣为对象,系统研究了其物理化学性质及工艺矿物学特征。研究了铁氧化物还原和锌、铅氧化物及FeAsO4还原挥发热力学行为;阐明了焙烧过程中锌、铅、砷还原挥发脱除行为,分析了金属化烧结过程脱除锌、铅、砷的可行性。在此基础上开发了“含铁回收料球团金属化烧结新工艺”,研究了烧结料层中锌、铅、砷的迁移规律及其脱除行为,揭示了预还原烧结矿的固结机理。
     研究所用原料瓦斯灰、干法灰、转炉污泥和硫酸渣的铁品位分别为33.45%、26.40%、56.30%和46.02%;碳含量分别为33.80%、26.50%、0.57%和0.35%;锌含量分别为0.66%、5.77%、2.27%和0.25%;铅含量分别为0.15%、2.25%、0.49%和0.11%。硫酸渣中的砷含量为0.17%。三种含锌粉尘中的锌和铅主要以氧化锌和氧化铅的形式存在,它们主要以游离态吸附在铁氧化物颗粒表面。硫酸渣中的锌和铅主要以硫化物的形式存在,砷主要以FeAsO4的形式存在。因此,采用常规选矿工艺均难以有效脱除原料中的锌、铅和砷。
     热力学研究表明:当固体碳还原ZnO时,随着温度的升高,ZnO还原对CO含量的要求逐渐降低。当体系温度低于1085℃时,FeO比ZnO更容易还原,当还原温度高于1085℃时,ZnO比FeO更容易还原。PbO极易被还原,在还原温度为800℃时,还原反应所需要的CO/(CO+CO2)比值仅为0.52%。当还原温度为1000℃,只有在弱还原性气氛时,FeAsO4才能还原成As406挥发。若体系中CO/(CO+CO2)比值大于9.39%时,FeAsO4被还原为金属砷挥发。在球团金属化烧结过程中,由于料层中燃烧和预还原带为还原性气氛,最高温度高于1300℃,能够实现铁氧化物的金属化和锌、铅、砷的还原挥发。
     铁氧化物、氧化锌和氧化铅的还原动力学表明:铁氧化物还原和氧化锌还原挥发的限制环节为界面化学反应控制,其表观活化能分别为43.88KJ.mol-1和7.33KJ.mol-1。氧化铅还原挥发的限制环节为气体扩散控制,其表观活化能为18.22KJ.mol-1。高温快速还原的动力学条件,保证了铁的金属化率及锌、铅、砷的还原挥发。
     球团金属化烧结新工艺研究表明:在内配无烟煤,生球水分18%,造球时间13min的条件下,得到的生球落下强度、抗压强度和爆裂温度分别为7.4次/0.5m,15N/个和461℃。在总C/Fe为0.5、外配烟煤(内外还原剂按碳量分加比例为50:50)、烧结料层高度400mm及风速0.4m/s的条件下进行鼓风烧结,可得到成品率85.62%、利用系数0.471t·m-2·h-1、转鼓强度81.31%及固体燃耗309.67kg·t-1的良好指标。金属化烧结矿中全铁含量60.53%,金属化率45.23%;Zn、Pb、As含量分别为0.18%、0.015%和0.025%,Zn、Pb、As的脱除率分别为92.78%、96.37%和62.45%。金属化烧结矿总还原度为80.69%,还原粉化指数RDI+3.15为96.45%,是一种优质的高炉炉料。烟气冷凝后得到的粉尘ZnO、PbO和As205含量分别为51.49%、3.15%和1.45%。
     球团金属化烧结过程中锌、铅、砷迁移规律及还原挥发行为表明:烧结料层可划分为五个反应带:原始料带、过湿带、干燥预热带、燃烧和预还原带和成品矿带。在成品矿带,由于再氧化,球团周围的金属铁被氧化成浮氏体。在燃烧和预还原带,还原剂剧烈燃烧,料层温度迅速升高,最高温度大于1300℃,高温(大于1250℃)保持时间大于5mmin,料层气氛为还原性气氛,烟气中C02含量为12-15%,CO含量为10-13%,02含量为2-5%。球团内为强还原性气氛(球团内C/Fe为0.33),铁氧化物在该带还原成金属铁,ZnO、PbO和FeAsO4在该带还原成金属而挥发。在干燥预热带,料层温度急剧降低,料层气氛为氧化性气氛,金属锌、铅、砷在挥发过程中氧化,其氧化物在该带冷凝聚集,沉积在干燥预热球团表面。随着烧结过程的推进,冷凝在干燥预热球团表面的锌、铅、砷的氧化物经历再还原、再挥发氧化、再冷凝,如此不断反复循环,直至烧结过程结束而转入烟气。
     金属化烧结矿的固结机理研究表明:金属化烧结矿的宏观结构是呈葡萄状结构,球团被液相粘结在一起。微观结构是球团内部主要以金属铁形成的金属键相互连接,金属铁含量为39.82%;球团之间粘结相主要以液相粘结为主,主要粘结相为浮氏体、铁橄榄石和钙镁橄榄石,其中浮氏体含量为31.95%,渣相含量为24.29%。金属化烧结矿同时以金属键和液相粘结两种形态实现固结。
     球团金属化烧结新工艺一步实现了铁与铅、锌、砷等有色金属的分离,得到满足高炉炉料要求的预还原产品。新上艺因利用系数较高、对设备要求简单、生产成本低和对原料适应性强,具有良好的工业应用前景。本研究为大规模高效利用含锌粉尘和硫酸渣开辟了一条新的途径。图111幅,表41个,参考文献216篇
Abstract:Zinc-bearing dust and pyrite cinder discharged from steel companies and chemical companies,have the characteristics of the large amount and containing many valuable metals and detrimental elements, resulting in huge waste of resources and serious environment pollution. Therefore,it has the considerable realistic significance to develop a new technology of utilizing these dusts to obtain the high quality burden for blast furnace.
     Three kinds of zinc-bearing dust and one kind of pyrite cinder were used in this thesis.The physical and chemical properties and mineralogy characters are systematically studied.The thermodynamic behaviors of iron oxides, ZnO, PbO and FeAsO4during the reduction roasting process are also analyzed. The results show that the metallized sintering process is a feasible process to remove Zn, Pb and As.On this basis, a new process of metallized sintering process to separate iron from Zn, Pb and As is developed,and the migrating behaviors of Zn, Pb and As,and the consolidation mechanism of pre-reduced sinter in the sintering process are also revealed.
     The iron content of gas ash, dry tpyed dust, converter sludge and pyrite cinder are33.45%,26.40%,56.30%and46.02%, respectively. The carbon content are33.80%,26.50%,0.57%and0.35%, respectively. The Zn content are0.66%,5.77%,2.27%and0.25%, respectively. The Pb content are0.15%,2.25%,0.49%and0.11%, respectively. The As content of pyrite cinder is0.17%. The mineralogy of raw material shows that most Zn and Pb absorb in the form of ZnO and PbO in the surface of iron oxides in the zinc-bearing dust. Zn and Pb exist in the form of sulfide in the pyrite cinder, and As exists in the form of FeAsO4in the pyrite cinder. Therefore,the Zn, Pb and As cannot be removed effectively from zinc-bearing dust and pyrite cinder by conventional beneficiation processes.
     Thermodynamics investigations show that when ZnO is reduced by carbon,the CO content requirement decreases sharply as the temperature increases.ZnO is harded than FeO to be reducd at the temperature lower than1085℃.However, ZnO is easier than FeO to be reduced at the temperature higher than1085℃. PbO is reduced to Pb easily, and the CO/(CO+CO2) requirement is only0.52%at the temperature of800℃. FeAsO4can be reduced to As4O6at the week reducing atmosphere, and FeAsO4is reduced to As at the CO/(CO+CO2) higher than9.39%at the temperature of1000℃. The Zn、Pb、As can be removed in the metallized sintering process because of the reducing atmosphere and high temperature in the burning and pre-reducing zone.
     The results of dynamics of iron oxides,ZnO and PbO reductions show that the reactions are controlled by chemical reaction,and the calculated activation energier are43.88and72.33KJ.mol-1, respectively, for the reductions of iron oxides and ZnO. The calculated activation energy of18.22KJ.mol-1is characteristic for gas diffusion controlled process in the PbO reducing reaction.The dynamic conditions of high temperature and rapid reduction meet requirements for the reductions of iron oxides,ZnO and PbO.
     The results of new process of metallized sintering show that the drop numbers, compressive strength and shock temperature of green balls are7.4times/0.5m,15N and461℃under the conditions of balling at18%moisture for13min.The green balls are used to conduct the metallized sintering process under conditions of C/Fe of0.5,the carbon ratio of inside to outside pellets of50:50, the bed height of400mm and the air speed of0.4m/s.The pre-reduced product, assaying60.53%Fe with the metallization degree of45.23%,and the Zn,Pb and As content of0.18%,0.015%and0.025%, was obtained at the yield of85.62%, productivity of0.471tm-2h-1, tumble index of81.31%,the solid fuel consumption of309.67kg·t-1,respectively. The reducibility index and reduction disintegration index (RDI+3.15)of pre-reduced product are80.69%and96.45%,which show the pre-reduced product is the high quality burden for blast furnace.The ZnO、PbO and As2O5content of condensation dust are51.49%,3.15%and1.45%,respectively.
     The reducing and removing behaviors of Zn,Pb and As during the metallized sintering show that the bed can be devided five zones, including original material zone,wetting materials zone, drying and preheating zone,burning and pre-reducing zone and product zone.During the product zone,metallic iron outside the pellets is reoxided into wustite. During the burning and pre-reducing zone,the maximum temperature of bed is higher than1300℃,and the duration (temperature higher than1250℃) is longer than5min.The bed atmosphere is reducing atmosphere, and the content of CO2, CO and O2in the exhausted gas are12-15%,10~13%, and2~5%,respectively. The atmosphere inside the pellets is strong reducing atmosphere (C/Fe of pellets is0.33),and iron oxides are reduced into metallic iron.ZnO and PbO are reduced and volatilized in this zone, and FeAsO4is reduced to As.During the drying and preheating zone, the temperature of bed decreases sharply and the oxidized atmosphere strengthens.Zn,Pb and As are oxidized and condensed in the surface of dried and preheated pellets.As the running of sintering process, the ZnO, PbO and As2O5of the drying and preheating zone are re-reduced, re-volatilized, re-oxidized and re-condensed until the end of sintering process to the condensation dust.
     The pre-reduced product presents in the form of grape structure, and the pellets adhere together with liquid phase. The microstructures show that metallic iron is the major bonding connection inside the pellets, and the metallic iron content is39.82%.The liquid phase, such as wustite, FeSiO4and CaMgSiO4are the major bonding connections between pellets, and the wustite and slag content are31.95%and24.29%, respectively. The pre-reducing sinter possesses the metallic iron and luquid phase boding connections to achieve the consolidation.
     The new process is an effective one step process to separate iron from Zn, Pb and As,and the high quality burden for blast furnace is achieved.The new process possesses the characters of high productivity, simple equipments,low cost and material adaptability, which has the bright prospect in the industrial application.The study has opened a new way to utilize the zinc-bearing dust and pyrite cinder large scaly and efficiently.
引文
[1]2013 年中国铁矿石进口量再创新高[EB/OL].2014-01-27. http://finance.chinairn.com/News/2014/01/27/181635371.html.
    [2]王涛,夏幸明,沙高原.宝钢含锌尘泥的循环利用工艺简介[J].中国冶金,2004,76(3):9-14.
    [3]陈砚雄,冯万静.钢铁企业粉尘的综合处理与利用[J].烧结球团,2005,30(5):42-46.
    [4]徐勇,王海滨,李丽颖,等.本钢转炉尘泥的直接用于烧结的实践研究[J].辽宁科技学院学报,2008,10(3):17-19.
    [5]杨雪峰,张竹明,沈峰满,等.锌对昆钢2000m3高炉的危害[J].钢铁,2006,41(9): 9-13.
    [6]李肇毅.宝钢高炉的锌危害及其抑制[J].宝钢技术,2002,6:18-21.
    [7]糜克勤,杨胞,吕苏民,等.1号高炉锌平衡与瓦斯泥回收[J].宝钢技术,1990,4:14-19.
    [8]Charles J. L. Update on electric arc furnace dust treatment[J]. Iron and Steel Engineer.1992,69(5):48-50.
    [9]Darlene M.F. Electric arc furnace dust treatment symposium IV[J]. Iron and Steel Engineer,1994,71(3):53.
    [10]Lopez, F.A., Gonzalez, P., Sainz, E., et al. Electric arc furnace flue dust-Characterization and toxicity with Photobacterium phosphoreum (English) [J]. International Journal of Environment and Pollution.1993,3(4):269-283.
    [11]宋雄,余中平.中国铁矿资源利用现状及其保证程度[J].地质与勘探,1998,34(2): 1-4.
    [12]楼紫阳,宋立言,赵由才,等.我国化工废渣污染现状及资源化途径综述[C].第五届中国粉煤灰、矿渣及煤矸石加工与应用技术交流大会暨展示会论文集.北京:2007:213-220.
    [13]李振飞,文书明,周兴龙,等.我国硫铁矿加工业现状及硫铁矿烧渣利用综述[J].国外金属矿选矿,2006,43(6):10-12.
    [14]刘全军,周兴龙,李华伟,等.硫酸渣综合利用的研究现状与进展[J].云南冶金,2003,32(2):27-29.
    [15]汪大晕,徐新华.化工环境保护概论[M].北京:化学工业出版社,1999:122-123.
    [16]王雪松,张德海,任允芙.黄铁矿烧渣的特性及其利用[J].环境工程,1999,17(1):58-61.
    [17]胡宾生,王晖.南化硫酸渣综合利用过程中矿物特征变化规律的研究[J].化学通报,2000,63(7):40-43.
    [18]李华伟.硫铁矿烧渣资源化开发与利用研究[D].昆明:昆明理工大学,2004.
    [19]张德海.黄铁矿烧渣工艺矿物学研究[J].黄金科学技术,1999,7(4-5):102-105.
    [20]楼紫阳,宋立言,赵由才,等.中国化工废渣污染现状及资源化途径[J].化工进展,2006,25(9):988-994.
    [21]Giunti M., Baroni D., Bacci E. Hazard Assessment to Workers of Trace Metal Content in Pyrite Cinders [J]. Bulletin of Environmental Contamination and Toxicology,2004,72(2):352-357.
    [22]罗道成,易平贵,刘俊峰.硫铁矿烧渣综合利用研究进展[J].工业安全与环保,2003,29(4):10-12.
    [23]叶志平,何国伟.硫酸渣资源化及其以废治废技术研究[J].华南师范大学学报:自然科学版,2010,(2):72-75.
    [24]化学工业部环境保护设计技术中心站.化工环境保护设计手册[M].北京:化学工业出版社,1998:250-263.
    [25]陈永亨,吴颖娟.硫酸废渣中铁、锌、铜元素的迁移及其对环境的潜在影响[J].广州大学学报,2001,15(2):78-81.
    [26]刘闯,蒋其胜,王志勇,等.论硫铁矿烧渣的再生与利用[J].安徽地质,2000,10(4):290-293.
    [27]许亚华.钢铁厂含锌尘泥的除锌工艺[J].上海金属,1998,20(2):38-41.
    [28]张向伟,廖洪强,包向军.除尘灰泥集中处理及资源化利用技术[J].冶金环境保护,2007,5:32-34.
    [29]王全利.含铁尘泥的综合利用[J].包钢科技,2002,28(6):75-77.
    [30]佘雪峰,薛庆国,董吉杰.钢铁厂典型粉尘的基本物性与利用途径分析[J].过程工程学报,2009,9(S1):7-12.
    [31]宋海琛,彭兵.不锈钢粉尘综合利用现状及研究进展[J].矿产综合利用,2004,3:18-22.
    [32]刘承军,扈恩征.开辟除尘灰利用和环保新途径[J].中国冶金,2004,82(9):40-45.
    [33]石磊,陈荣秋,王如意.钢铁工艺含铁尘泥的资源利用现状与发展方向[J].中国资源综合利用,2008,126(2):12-15.
    [34]Leater G. Recycling vitrification process for electric arc furnace dust[J]. Iron and Steel Engineer,1993,70(8):38-40.
    [35]Roger B.E, John E. Classification of electric arc furnace dust[J]. Iron and Steel Engineer,1993,70(4):82-84.
    [36]Ionescu D., Meadowcroft T.R., Barr P.V. Classification of EAF dust:the limits for Fe2O3 and ZnO content and an assessment of leach performance [J]. Canadian Metallurgical Quarterly,1997,36(4):269-281.
    [37]周渝生,张美芳,陈亮,等.用高炉瓦斯泥生产铁精矿的试验研究[J].安徽工业大学学报,2003,20(4):142-1461.
    [38]孙体昌,胡永平.济钢高炉瓦斯泥的可选性研究[J].矿产综合利用,1997,5:4-8.
    [39]丁忠浩,翁达.高炉瓦斯泥微泡浮选柱浮选工艺研究[J].武汉科技大学学报:自然科学版,2001,24(4):353-354.
    [40]鲁健.含锌含铁尘泥处理技术研究[J].烧结球团,2011,36(6):50-56.
    [41]王东彦,王文忠,陈伟庆,等.含铅锌钢铁厂粉尘处理技术现状和发展趋势分析[J].钢铁,1998,33(1):65-67.
    [42]余雪峰,薛庆国,董洁吉,等.钢铁厂典型粉尘的基本物性与利用途径分析.过程工程学报[J],2009,9(1):7-12.
    [43]黎燕华.我国转炉污泥资源化技术研究与进展[J].金属矿山,2005,增刊:101-106.
    [44]陈砚雄.钢铁企业粉尘的综合处理与利用[J].烧结球团,2005,30(5):42-46.
    [45]Callenfels S, Van J E.高炉污泥处理用的水力旋流设备[J].钢铁,2004,39(1):59-64.
    [46]邹宽,林高平.使用水力旋流器回收高炉瓦斯泥[J].中国冶金,2003,9:29-34.
    [47]章立新,王治云,杨茉.一种锌的高炉瓦斯泥旋流脱锌监控方法[J].动力工程,2005,25:23-26.
    [48]曹克,胡立光,杨茉,等.水利旋流分离技术在瓦斯灰脱锌工程中的应用研究[J].宝钢技术,2006,5:16-18.
    [49]Cruells M., Roca C. Electronic arc furnace flue dusts:characterization and leaching with sulphuric acid[J]. Hydrometallurgy,1992,31(3):213-231.
    [50]Asadi Z. B., Mowla D., Shariat M. H. et al. Zinc recovery from blast furnace flue dust[J]. Hydrometallurgy,1997,47:113-125.
    [51]Smith S.M. A novel Process for recycling steelmaking dust[J]. Ironmaking & Steelmaking,2000, (2):69-71.
    [52]Zunkel A.D. Electric arc furnace dust management:A review of technologies[J]. Iron and Steel Engineer,1997,74(3):33-38.
    [53]马文冀.湿法处理炼钢烟尘[J].湖南冶金,1997,2:14-16.
    [54]佘雪峰,薛庆国,王静松,等.钢铁厂含锌粉尘综合利用及相关处理工艺比较[J].炼铁,2010,29(4):56-61.
    [55]Herk P.V., Vandecasteele C, Swennen R. Zinc and lead removal from blast furnace sludge with a hydrometallurgical process [J]. Environmental Science and Policy,2000,44(6):3802-3808.
    [56]Christian W., Jen J. Recycling of dusts from the electric arc furnace[J]. ASIA STEEL,1999:120-123.
    [57]Kelebek S. Characterization of basic oxygen furnace dust and zinc removal by acid leaching [J]. Minerals Engineering,2004,17:285-291.
    [58]Gekhan O. Leaching and cement at ion of heavy metals from electric arc furnace dust in alkaline medium[J]. Hydrometallurgy,2005,78:236-2431.
    [59]Siebenhofer M., Schweiger H. Upgrading of zinc from galvanic sludge and steel furnace dust[J]. Separation science and technology,1997,32(1-4):759-773.
    [60]XIA D. K. Microwave Caustic Leaching of Electric Arc Furnace Dust[J]. Minerals Engineering,2000,13(1):79-941.
    [61]张祥富.高炉瓦斯灰(泥)中锌的萃取利用[J].环境工程,1999,17(5):48-49.
    [62]黄志华,伍喜庆,彭冠兰.高炉尘泥化学除锌[J].中国有色金属学报,2007,17(7):1207-1212
    [63]Gerolf S, John E. B. Steelworks residues and the Waelz Kiln treatment of electric arc furnace dust [J]. Iron and Steel Engineer,1996,73(4):87-90.
    [64]Rankin W. J., Wright S. The reduction of zinc from slags by an Iron-carbon melt[J]. Metallurgicaland materials transactions B,1990,21B(10):885-897.
    [65]Geutskens R., Separation of non-ferrous metals from iron-containing powdery material[J]. European:EP024910[P],1987.
    [66]Mario C. M., Cyro T. The strength and the high temperature behaviors of self-reducing pellets containing EAF dust[J]. ISIJ International,2000,40(3): 224-230.
    [67]Trisc A., Bobok L. Processing of steel melt-shop flue ashes in the pellet production process[J]. Metalurgija,1999,38(4):205-208.
    [68]Neihoff J. Continuous dust injection into the cupola combine with a natural gas/oxygen burner[J]. Cast plant technology inst. Set.1998,14(3):10-12,14-15.
    [69]Sresty G. C. Method for recycling electric arc furnace dust, U.S:5013512[P], 1991.
    [70]Diaz G., San Lorenzo D.M. Zinc recycling through the Modified Zincex process[J]. JOM,1995,(10):22-23.
    [71]Norman L. K.., Michael D.L. Inclined rotary reduction system for recycling electric arc furnace baghouse dust[J]. Iron and Steel Engineer,1991,68(4): 43-45.
    [72]Money K.L., Hanewald R.H., Bleakney R.R. Processing steel wastes pyrometallurgically at INMECTCO[C]. Proceedings of the TMS Fall Extraction and Processing Conf.,2000,397-408.
    [73]Bauer K.H., Hutte D. Recycling of iron and steelworks wastes using the Inmetco direct reduction process[J]. Metallurgical Plant and Technology International, 1990, (4):74-87
    [74]王东彦,陈伟庆,周荣章,等.钢铁厂含锌铅粉尘配碳球团的直接还原工艺[J].北京科技大学学报,1997,19(2):130-133.
    [75]王东彦,陈伟庆,周荣章,等.处理含锌铅钢铁厂粉尘的Inmetco工艺[J].环境工程,1997,15(3):49-52.
    [76]陈亮,周渝生,张美芳,等.将宝钢高锌含铁尘泥资源化的试验研究[J].宝钢技术,2000,1:27-31.
    [77]Tennies W. L., Lepinski J. A., Kopfle J. T. The Midrex Fastmet Process, a Simple Economic Ironmaking Option[J]. M PT,1991, (2):36-42.
    [78]Fuji K., Tanaka H., Maki T. Startup operation's report on the 2nd commercial FASTMET plant [C].Proceedings-Ironmaking Conference,2002,705-712.
    [79]Lepinski J. A., Griscom F. N. Producing Direct Reduced Iron Utilizing Rotary Hearth Furnace[J]. Industrial Heating,1994, (1):28-31.
    [80]Takao H., Hidelosh T., Hiroshi S. Fastmet process Verificaiton for steel Mill waste Recycling[J]. Kobelco Technology Review,2001,24:26-31.
    [81]Lepinski J. A. Fastmet直接还原工艺在美国的应用.烧结球团,1992,5:27-30.
    [82]Kenneth E. J.生产DRI和铁水的Fastmet新工艺过程[J].钢铁,2000,35:62-67.
    [83]王涛.国外钢厂含锌粉尘的循环利用[J].炼钢,2002,18(5):50-54.
    [84]Lopez F. A., Lopez D. A. Enhancement of electric arc furnace dust by recycling to electric arc furnace [J]. Journal of Environmental Engineering,2002, 128(12):1169-1174.
    [85]Noboru S., Katsuhiro T., Naoki Y. Zinc recovery from zinc bearing dusts by use of sensible heat of hot metal[J]. ISIJ international,1995,35(11):1323-1330.
    [86]Fenwei S., Hans O., Ryan R. Recycling of sludge and dust to the BOF converter by cold bonded pelletizing[J]. ISIJ International,2004,44(4):770-776.
    [87]Kawata Y. Recovery of zinc oxide from steelmaking dust at Onahama plant of Ryoho recycle company[J]. ISIJ International,1985,25(3):358-364.
    [88]Sumio Y. Simultaneous recovery of zinc and iron from electric arc furnace dust with a coke packed bed smelting reduction process [J]. Iron and stell Engineer, 1998,74(8):64-67.
    [89]John F. P. Apparatus for the pyrometallurgical treatment of finely divided materials. US:4732368[P],1988.
    [90]Guorgi G.A., Lightfoot B.W., Short W.E. Processing EAF dust with Ausmelt technology (English) [J]. Steel Times,1993,221(12):520-521.
    [91]Romenets V, Valavin V. Processing industrial wastes with the liquid-phase reduction Romelt Process[J]. JOM,1999, (8):33-37.
    [92]Hasegawa S. Development of a smelting reduction process for recycling steelmaking dust[J]. Rawasaki stel tech. Pep.1998, (38):32-37.
    [93]杨丽芬.国外含铁尘泥的处理与利用技术简介[J].冶金环保情报,1992,3:12.
    [94]郭延杰.日本钢铁厂含锌粉尘的综合利用[J].中国资源综合利用,2003,1:4-5.
    [95]Yoshiak H., Natsuo I., Hiroshi I., et al. Smelting Reduction Process with a Coke Packed Bed for Steelmaking Dust Recycling[J]. ISIJ International,2000,40 (3):231-237.
    [96]王涛,夏幸明,沙高原.宝钢含锌尘泥的循环利用工艺简介[J].中国冶金,2004,76(3):9-14.
    [97]王涛,王英钧,陈幼禄,等.宝钢含锌粉尘用于转炉前期化渣的工艺实践[J].炼钢,2004,20(5):14-18.
    [98]王东彦.宝钢含锌粉尘快速还原技术[J].宝钢技术,2005,3:31-34.
    [99]Kohei Y., Hiroyuki M., Fumitaka T. Evaporation Behavior of Zinc Chloride in ArCl2-H2O Atmosphere[J]. ISIJ International,2009,49(1):10.
    [100]Zhang B., YAN X. Y., Kiyoshi S., et al. Thermogravimetric Mass Spectrometric Analysis of the Reactions Between Oxide (ZnO, Fe2O3 or and Polyvinyl Chloride Under Inert Atmosphere[J]. Materials Transactions,2000, 41(10):1342.
    [101]Micco G. D., Fouga G. G, Boh A. E. Chlorination of Zinc Oxide Between 723 an d 973K[J]. Metallurgical and Materials Transact ions B,2007,38:853.
    [102]GUO Ting, HU Xiaojun, Hiroyuki Matsuura, et al. Kinetics of Removal Zn From ZnO-Fe2O3-CaCl2 System[J]. ISIJ International,2010,50(8):1084.
    [103]陈津.微波加热还原自熔性含碳球团的应用基础研究[D].北京:钢铁研究总院,2003.
    [104]蔡卫权,李会泉,张懿.微波在冶金中的应用[J].过程工程学报,2005,5(2):228-232.
    [105]Standish N., Huang W. Microwave Application in Carbothermic Reduction of Iron Ores[J]. ISIJ International,1991,31(3):241-245.
    [106]Standish N, Worner H. Microwave Application in reduction of metal oxides with carbon[J]. Journal of Microwave Power and Electromagnetic Energy,1990, 25(3):177-180.
    [107]郭兴忠.铅锌分离的理论及应用研究[D].重庆:重庆大学,2002.
    [108]Eschenbach R.C. Plasma arc systems from waste treatment and metal recovery[J]. The Journal of the Minerals, Metals & Materials Society,1996, 48(6):49-52.
    [109]Gregory M. B., Patrick R. T. Using a Plasma-Fired cyclone Reactor for calcining and vitrifying radioactive wastes[J]. JOM,1999, (10):22-24.
    [110]Partrick R. T., Gregory M. B. Plasma-based Processes for waste vitrification[J]. JOM,1999,(10):13.
    [111]Womack R. K. Using the centrifugal method for the Plasma-Arc Vitrification of waste[J]. JOM,1999, (10):14-16.
    [112]Weiss F. J. Electric furnace conference processing,1986,44:373-378
    [113]Xia D. K. Caustic roasting and leaching of electric arc furnace dust[J]. Canadian Metallurgical Quarterly,1999,38(3):175-186.
    [114]沙业汪.我国硫酸工业可持续发展探讨[J].硫磷设计与粉体工程,2004,(6):4-9.
    [115]张汉泉.硫酸渣资源化利用实践[J].中国矿业,2009,(18):116-124.
    [116]彭志坚,刘涛,张敏.硫酸渣的开发利用[J].矿产综合利用,2004,(2):45-47.
    [117]谭定桥.高品位硫铁矿烧渣资源化前景及综合利用研究[J].广东科技,2009,206(4):198-200.
    [118]蒋伟锋.硫酸烧渣综合利用及新途径探析[J].中国资源综合利用,2004,(5):23-25.
    [119]朱申红,吴德礼,孟娟.黄铁矿烧渣的综合利用途径与问题分析[J].青岛建筑工程学院学报,2005,26(1):25-29.
    [120]曹毅轩,崔宏兵,韩美玲,等.利用工业废渣生产瓷质外墙砖的研究[J].佛山陶瓷,2001,(9):11-13.
    [121]汤海生.硫酸渣分选铁精矿余渣制砖[J].使用技术市场,1992,4:21.
    [122]钱玲,侯浩波.废石膏硫酸烧渣砖的研制[J].砖瓦,2005,1:8-9.
    [123]Abdrakhimov A. V., Abdrakhimova E. S., Abdrakhimov V.Z. Technical properties of roof tiles made of technogenic material with pyrite cinder. [J] Glass and Ceramics,2006,63(3-4):130-132.
    [124]Kovkov I. V., Abdrakhimov V. Z. Thermomechanical studies of ceramic tile made from technogenic raw materials [J]. Glass and Ceramics (English translation of Steklo i Keramika),2011,68(3-4):128-130.
    [125]邓世水.利用工业废渣生产水泥新工艺[J].福建环境,2001,2:13-15.
    [126]郭敬波,胡竹寅,张占民,等.粉煤灰、煤矸石、硫酸渣等固体废物在水泥厂的综合利用[J].中国建材装备,2002,3:43-46.
    [127]张占民.用粉煤灰煤矸石硫酸渣综合烧制水泥[J].粉煤灰综合利用,2002,5:43-44.
    [128]Alp I., Deveci H., Yazici E. Y, ed al. Potential use of pyrite cinders as raw material in cement production:Results of industrial scale trial operations [J]. Journal of Hazardous Materials,2009,166(1):144-149.
    [129]Popescu C. D., Muntean M., Sharp J.H. Industrial trial production of low energy belite cement[J]. Cement and Concrete Composites,2003,25(7):689-693.
    [130]严波,徐志.硫酸渣作混合材生产水泥[J].水泥,1996,9:32-34.
    [131]肖忠明,王昕,霍春明,等.硫酸渣对水泥性能的影响[J].水泥,2009,9: 12-15
    [132]周敏,冯业铭,王永忠,等.用硫铁矿烧渣生产氧化铁黄新工艺[J].环境工程,1996,14(5):49-53.
    [133]陈吉春,孔磊.硫铁矿烧渣制备纳米铁黄工艺的研究[J].矿业工程,2008,(1):67-69.
    [134]温普红,高均科.用硫酸渣制备铁基颜料铁黄[J].化工环保,2003,23(2): 100-102.
    [135]谭定桥,郑雅杰.硫铁矿烧渣制备铁黄新技术[J].化学工程,2006,34(3):72-75.
    [136]陈白珍,龚竹青,黄坚,等.硫铁矿烧渣制备铁黄颜料的工艺研究[J].无机盐工业,2001,33(4):39-42.
    [137]金士威,易琼,包传平,等.硫铁矿烧渣制高纯氧化铁红的研究[J].化工矿物与加工,2003,12:12-15.
    [138]梁绪树,程帅,孙体昌,等.用硫酸化焙烧渣制备氧化铁红的中试研究[J].矿冶工程,2011,31(4):104-108.
    [139]余海峰,王莹,徐旺生.硫铁矿烧渣制备氧化铁红工艺研究[J].贵州化工,2007,32(6):12-13.
    [140]张玉奇,张嵩松.硫铁矿烧渣简易制备氧化铁红的工艺[J].科技创新导报,2008,5:85.
    [141]郑雅杰,刘昭成.用水热法从硫铁矿烧渣制备氧化铁红[J].金属矿山,2008,2:139-145.
    [142]Zheng Y. and Liu Z. Preparation of monodispersed micaceous iron oxide pigment from pyrite cinders[J]. Powder Technology,2011,207(1-3):335-342.
    [143]包永明.用梅山硫酸渣生产氧化铁红的试验研究[J].金属矿山,2009,8:58-162.
    [144]恭明玺.硫铁矿烧渣综合回收系列铁红产品研究[J].矿冶工程,2008,28(3):38-40.
    [145]贺春明,陈正军.应用选矿新工艺及设备从硫酸烧渣中回收铁红产品[J].工程设计与研究,2005,118:4-8.
    [146]温普红,宋周周.以硫酸渣为原料制备铁黑工艺研究[J].无机盐工业,1994,2:31-33.
    [147]张仲伟,陈吉春,李旭.硫铁矿烧渣制备铁系化工产品研究方法综述[J].化工矿产地质,2004,26(3):181-185.
    [148]郑雅杰,龚竹青,易丹青.以硫铁矿烧渣为原料制备绿矾新技术[J].化学工程,2005,33(4):51-55.
    [149]陈吉春,陈永亮.硫铁矿烧渣还原酸浸制取硫酸亚铁[J].矿产综合利用,2004,3:42-45.
    [150]郑雅杰,陈白珍,龚竹青,等.硫铁矿烧渣制备聚合硫酸铁新工艺[J].中南工业大学学报:自然科学版,2001,32(2):142-145.
    [151]陶颖.硫铁矿烧渣制备聚合硫酸铁工艺评述[J].化工环保,2000,20(5): 25-27
    [152]姜凌,董亚妮,田萍.用硫铁矿烧渣制取聚合硫酸铁的实验研究[J].环境科学与技术,2010,33(8):148-151
    [153]刘立华,郑雅杰,龚竹青.聚合铁盐絮凝剂的研究进展与发展趋势[J].现代化工,2002,22(10):18-21.
    [154]龚竹青,黄坚.用硫铁矿烧渣制备的硫酸亚铁研制软磁用a-Fe2O3[J].环境工程,2003,21(2):48-51.
    [155]苏莉.用硫铁矿烧渣制取四氧化三铁超细粉体的研究[J].贵州工业大学学报:自然科学版,2003,32(6):75-77.
    [156]冯俊瑜.用硫铁矿烧渣生产液体三氯化铁[J].硫酸工业,1994,3:51-52.
    [157]杨敏,邱廷省,陈金花,等.某硫酸渣选矿试验研究[J].四川有色金属,2009,1:6-10.
    [158]韩远燕,戴惠新.某高砷硫酸渣选铁试验研究[J].矿产保护与利用,2010,3:55-57.
    [159]朱昌洛,沈明伟.高砷高硫硫酸渣综合利用探索性试验[J].云南冶金,2011,40(2):38-40.
    [160]王全亮,周虎强,代奕华.广西某硫酸烧渣脱硫选矿工艺研究[J].矿冶工程,2008,28(5):44-46.
    [161]王全亮,宁平,陈述明.黄铁矿制酸烧渣生产铁精粉试验工艺研究[J].湖南有色金属,2006,22(2):4-6
    [162]董风芝.硫酸渣磁选工艺选铁研究与应用[J].矿业安全与环保,2006,33(6):58-59.
    [163]向发柱,胡春晖,廖锦.硫酸渣选铁试验研究[J].有色金属:选矿部分,2006,5:36-39.
    [164]董风芝,孙永峰.硫酸渣磁重选联合工艺回收铁精矿研究[J].化工矿物与加工,2006,4:14-16.
    [165]胡宾生,张景智.铜陵硫酸渣磁化焙烧-磁选的试验研究[J].矿冶工程,1996,16(3):44-47.
    [166]胡宾生,王晖.铜陵硫酸渣磁化焙烧-磁选过程中硫赋存状态的变化[J].矿产综合利用,1999,1:29-32.
    [167]罗良飞,余永富,陈雯,等.某含铁浸金渣闪速焙烧磁选试验研究[J].矿冶工程,2009,9(3):26-28.
    [168]龚鸿翔.黄铁矿烧渣的综合利用[J].国外重有色金属,1964,8:1-10.
    [169]毕万利,吴文红,李晶.从硫酸渣中选铁试验研究[J].湿法冶金,2011, 30(3):229-230.
    [170]Kihlstedt P. G. Method for purifying and agglomerating pyrite cinders. US: 3849111[P],1974-11-09.
    [171]曾志飞,李茂林.从硫铁矿烧渣中回收铁的试验研究[J].矿冶工程,2006,26(5):29-32.
    [172]朱德庆,李建,李青春,等.硫酸渣复合球团还原焙烧法制备高品位磁铁精矿[J].中国有色金属学报,2007,17(4):649-656.
    [173]吴德礼,朱申红,马鲁铭.化学法处理黄铁矿烧渣的新工艺[J].矿产综合利用,2005,1:34-37.
    [174]He B. B., Tian X. K., Sun Y, et al. Recovery of iron oxide concentrate from high-sulfur and low-grade pyrite cinder using an innovative beneficiating process[J]. Hydrometallurgy,2010.104(2):241-246.
    [175]Angel V. O., Segundo J. G., Federico. L. M. Process for the leaching of pyrite cinders. US:3330648[P],1967-07-11.
    [176]Mora C, Aleta R., Delgado H., et al. Process for the recovery of non ferrous metal values from pyrite cinders. EP:0538168A1[P],1993-04-21.
    [177]喻世杰,詹星.开发利用硫酸渣作炼铁原料[J].四川冶金,1994,16(4):1-4.
    [178]储谦慎,王兴艳.铜陵硫酸渣综合利用[J].河北理工学院学报,2003,25(4):17-22.
    [179]Levin L. I., Iakubtsiner N. M., Sholeninov V. M., ed al. Application of pyrite cinders in the production of high-basicity sinter[J]. Metallurgist,1958,2(6): 278-285.
    [180]阮积海,覃洁,宁玲.芬兰焙烧黄铁矿在烧结工艺的综合利用[J].广西节能,2009,2:30-31.
    [181]胡晓,吕庆,张淑会.含砷铁矿石脱砷研究现状[J].钢铁研究,2010,38(4):47-51.
    [182]吕庆,胡晓,张淑会.含砷铁矿石烧结过程脱砷的实验研究[J].钢铁,2010,45(6):5-21.
    [183]Kihlstedt P. G. Method for purifying and agglomerating pyrite cinders. US: 3849111[P],1974-11-09.
    [184]白国华,周晓青,范晓慧,等.润磨强化硫酸渣制备氧化球团的技术及机理[J].中南大学学报:自然科学版,2011,42(6):1509-1515.
    [185]陈铁军,张一敏.全硫酸渣生产氧化球团试验研究及工业应用[J].钢铁 研究,2005,1:1-4.
    [186]白国华,周晓青.硫酸渣配加磁铁矿制备氧化球团试验研究[J].钢铁,2009,44(7):7-10.
    [187]张一敏,杨士勇,吴寒芬,等.精选硫酸渣球团试验研究[J].烧结球团,2002,27(2):11-14.
    [188]朱德庆,陈栋,潘建.高压辊磨和润磨预处理强化硫酸渣球团对比研究[J].中南大学学报:自然科学版,2011,42(7):1825-1832.
    [189]Zhu D. Q., Chen D., Pan J., et al. Pretreatment of Pyrite Cinder Before Pelletization by High Pressure Roller Grinding[J]. Journal of Iron and Steel Research International,2009,16:345-349.
    [190]刘树立.铜陵有色高配比硫酸渣球团技术的工业化应用[J].烧结球团,2010,35(1):15-20.
    [191]曾文波,蓝庆滔,李要武.铜陵有色高配比硫酸渣球团生产实践[J].烧结球团,2010,35(5):40-44.
    [192]许斌,庄剑鸣,白国华,等.硫酸烧渣综合利用新工艺[J].中南工业大学学报:自然科学版,2000,31(3):215-218.
    [193]薛正良,周利刚,张海峰,等.用含铁物料和煤粉直接制备金属铁粒的新工艺研究[J].武汉科技大学学报,2008,31(5):453-456.
    [194]Mattenberger H., Fraissler G., Brunner T., et al. Sewage sludge ash to phosphorus fertiliser:Variables influencing heavy metal removal during thermochemical treatment[J]. Waste Management,2008,28:2709-2722.
    [195]Fraissler G., Joller M., Brunner T., et al., Influence of dry and humid gaseous atmosphere on the thermal decomposition of calcium chloride and its impact on the remove of heavy metals by chlorination[J]. Chemical Engineering and Processing:Process Intensification,2009,48:380-388.
    [196]Zhu D. Q., Chen D., Pan J. et al. "One step" technology to separate copper, zinc, lead from iron in metallurgical slag and pyrite cinder:part 1-laboratory scale test[J]. Mineral Processing and Extractive Metallurgy (Trans. Inst. Min Metall. C),2012,121(2):79-85.
    [197]Zhu D. Q., Chen D., Pan J. et al. "One Step" Technology to Separate Copper, Zinc, Lead Form Iron in Metallurgical Slag and Pyrite Cinder:Part 2-Pilot Test[C].2011 TMS annual meeting,2nd International Symposium on High-Temperature Metallurgical Processing:151-160
    [198]Umberto C., Giuseppe S., Bruno V., et al. Process for the purification of pyrite cinders from nonferrous metals, from arsenic and form sulfur. US: 3649245[P],1972-05-14.
    [199]Umberto C, Mini I., Sironi G. Process for purifying pyrite cinders by removal of nonferrous metals. US:3499754[P],1970-03-10.
    [200]Ishimitsu A., Sugahara K., Arakawa S., et al., Process of obtaining a granular charge for the blast furnace from a pyrite cinder and iron manufacture dust or powdered iron ore. US:3482964[P],1969-12-09
    [201]中南矿冶学院冶金研究室.氯化冶金[M].北京:冶金工业出版社,1978:129-303
    [202]Wang C, Hu X., Matsuura H., et al. Evaporation kinetics of the molten PbCl2-ZnCl2 system from 973 to 1073 K[J]. ISIJ International,2007,47(3): 370-376
    [203]Matsuura H., Yajima K., Tsukihashi F. Chlorination and evaporation behaviours of zinc and lead at chlorinating and oxidising atmosphere [J]. Mineral Processing and Extractive Metallurgy Review,2011,120(4):235-239.
    [204]彭容秋.重金属冶金学(第二版)[M].长沙:中南大学出版社,2003:29-36.
    [205]莫鼎成.冶金动力学[M].长沙:中南工业大学出版社,1987:9-25.
    [206]刘建华,张家芸,周士平.CO及CO-H2气体还原铁氧化物反应表观活化能的评估[J].钢铁研究学报,2000,12:5-9.
    [207]Guger C. E., Manning F. S. Kinetics of Zinc oxide Reduction with CO[J]. Metall. Trans.1971,2:383-386.
    [208]王东彦.钢铁厂含锌铅粉尘配碳球团还原处理工艺及过程动力学研究[D].北京:北京科技大学,1995.
    [209]Hideaki S., Satoshi M., Koichi N., et al., Development of production process for pre-reduced agglomerate and evaluation of its quality [J]. Tetsu-to-Hagane, 2006,92(12):815-824.
    [210]Eiki K., Takaya K., Takazo K. Carbothermic Reduction in the Combustion Bed Packed with Composite Pellets of Iron Oxide and Coal[J]. ISIJ International, 2000,40(9):842-849.
    [211]Charcraborti N, Lynch D. C. Thermodynamic analysis of the As-S-0 vapor system [J]. Canadian Metallurgical Quarterly,1985,24(1):39-45.
    [212]李殷泰,黄先明,段振赢.广西罗城褐铁矿的脱砷实验研究[J].炼铁,1989,5:59-65.
    [213]李成华,陈文如,韩光烈,等.含砷铁矿在烧结过程中砷的行为研究[J].矿业工程,1989,4:52-56.
    [214]烧结矿的质量指标[EB/OL].2010-02-24. http://baike.gqsoso.com/edition-view-19807-1.
    [215]范振宇.烟气循环烧结的基础研究[D].长沙:中南大学,2011.
    [216]傅菊英,姜涛,朱德庆.烧结球团[M].长沙:中南工业大学出版社,1996:27-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700