用户名: 密码: 验证码:
锌铝合金的组织性能优化及相关基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:本文针对我国炼锌企业在开发高性能锌铝合金面临的技术瓶颈,瞄准国际上锌铝合金研究开发的最新发展趋势,分别对压铸锌铝合金、重力铸造锌铝合金以及热镀锌铝合金展开研究,为生产出符合市场需求的高性能锌铝合金提供技术支撑,对我国资源的综合利用及现代化工业建设具有重要的现实意义。
     锌铝合金具有熔点低、熔炼耗能少、流动性好、常温强度优良等特点,可以满足不同用户的使用需求,具有很强的市场竞争力。然而国产锌铝合金普遍存在塑韧性较差、杂质含量高、尺寸稳定性差、耐蚀性较差等缺陷,因此开展锌铝合金的相关基础研究和应用技术研究具有重要意义。论文采用金相、扫描电镜、X射线衍射以及流动性测试、力学性能测试、耐蚀性测试等方法,系统研究了不同Al含量对锌铝合金流动性、力学性能以及耐腐蚀性能的影响,微合金化对ZnAl4压铸锌铝合金的微观组织及力学性能的影响,热变形、热处理对ZA27重力铸造锌铝合金微观组织及力学性能的影响,以及RE对Zn-5%Al合金耐蚀性的影响。主要结论如下:
     1.研究了不同Al量对锌铝合金微观组织、流动性、力学性能以及耐腐蚀性能的影响,结果表明,当Al含量为4%时,合金流动性较好,抗拉强度较高,适用于压铸力学性能要求不高的零部件,当Al含量为27%时,合金抗拉强度最高,适用于制备具有一定性能要求的零部件,当Al含量为5%时,合金流动性好、耐蚀性好,适用于制备防腐用镀层。
     2.研究了微量Zr、Sr对ZnA14合金硬度、抗拉强度、冲击韧度以及微观组织的影响,结果表明,Zr可有效细化η-Zn枝晶,缩短枝晶网胞间层片组织的片层间距,Zr与Al、Zn原子反应,在枝晶网胞间生成Al2ZnZr,起到钉扎晶界的作用,Zr还可俘获杂质元素Fe,降低杂质Fe对合金性能的有害影响,当Zr的添加量为0.1%时,实验合金的综合力学性能最好。Sr有效细化η-Zn枝晶,Sr还与Zn结合生成SrZn13,起到钉扎晶界的作用,当Sr的添加量为0.1%时,实验合金的综合力学性能最好。
     3.采用FLOW-3D压铸模拟软件,通过表面缺陷追踪模拟分析,确定了ZnAl4合金充型过程中各阶段的氧化夹杂的位置。通过正交压铸模拟试验,分别得出温度场、应力场、速度场以及表面缺陷分布状况的模拟结果,确定了最佳的压铸工艺参数:浇注温度为420℃,压射速度为2.5m/s,模具温度200℃。
     4.通过热压缩实验研究ZA27合金的热变形行为,得到了不同变形温度和应变速率条件的真应力-真应变曲线,建立了ZA27合金热塑性变形的流变应力数学模型,推导出了用Z参数表达的流变应力方程:根据实验结果计算出的材料常数:n=5.21, a=0.007, A=1.81×l010s-1,变形激活能Q=109.39kJ/mol, Z=εexp(13157/T)。采用改进的Arrhenius模型及人工神经网络模型建立了ZA27合金的本构关系,并在实验条件内进行验证,人工神经网络模型可更好地反映ZA27合金的热变形行为。结合热加工图分析及微观组织观察结果,合金的最佳热加工参数区为250~350℃的变形温度和0.1~1s-1的应变速率。
     5.确定了ZA27合金的最佳热处理工艺,最佳均匀化工艺为360℃/12h,炉冷,枝晶偏析及非平衡共晶相基本消除,塑性得到有效改善。最佳固溶工艺为365℃/1h,水淬,实验合金得以充分固溶,α相、η相基本溶入基体。较优的时效工艺为140℃/1h,空冷,时效析出相数量多、尺寸小、分布均匀,合金的综合力学性能得到显著提高。
     6.研究了不同含量RE对Zn-5%Al合金镀层耐蚀性的影响,Zn-5%Al-RE系合金镀层在中性盐雾实验条件下的腐蚀产物主要为ZnO、Zn(OH)2、Zn5(OH)8Cl2·H2O、Zn5(OH)6(CO3)2、Al2(OH)5Cl·2H2O。当RE的添加量达到0.1%后,随着RE含量的增加,镀层的自腐蚀电流密度逐渐下降,当RE的添加量为0.6%时,腐蚀产物结构致密细小且均匀,自腐蚀电流密度最低,电荷转移电阻Rct最小,耐蚀性最好。
Abstract:Aiming at the latest development trends in the world on developing high-performance zinc aluminum alloy, we have developed basic research and applied technology research in pressure casting zinc aluminum alloy, gravity casting zinc aluminum alloy and hot-dip zinc aluminum alloy, respectively, for the purpose of offering technological supports for producing high-performance zinc aluminum alloy which can meet the market demands. This study is of great significance in comprehensive utilizing of zinc resource and modernization of industry in our country.
     The zinc aluminum alloy can meet different users' demands with strong market competitiveness, as it has low melting point and fusion energy dissipation, good fluidity as well as excellent room-temperature mechanical properties. However, the domestic zinc aluminum alloy have common defects such as low plasticity and toughness, high impurities, low dimension instability as well as low corrosion resistance, so it is of great significance to develop basic research study. The effects of Al on the fluidity, mechanical properties and corrosion resistance of zinc aluminum alloy were studied, the effects of alloying on the microstructure and mechanical properties and the die casting processing of ZnA14die casting alloy were studied, then the effects of hot deformation and heat treatment on microstructure and mechanical properties of ZA27alloy were studied. Moreover, the effects of RE on the corrosion resistance of Zn-5%Al hot dipped zinc aluminum alloy were studied. The major conclusions were drawn as follows.
     1. The effects of Al on the microstructure, fluidity, mechanical properties and corrosion resistance of Zn-Al alloy were studied, the results show that ZnA14alloy has good fluidity and tensile strength, ZA27alloy has the best tensile strength, Zn-5%Al alloy has good fluidity and corrosion resistance.
     2. The effects of rare Zr and Sr on the microstructure and mechanical properties of ZnA14alloy were studied, the results show that Zr can effectively refine the η-Zn dendrite and shorten the lamellar spacing. The
     Al2ZnZr compounds can be formed between the cellular-dendrite structure and pining the grain boundary effectively. Moreover, Zr can trap the impurity of Fe and eliminate the harmful influence of Fe on the properties of ZnA14alloy. When adding0.1%Zr, the alloy has perfect comprehensive properties. Adding element Sr into the alloy results the formation of SrZn13compounds, the primary η-Zn phase is restrained. When adding0.1%Sr, the alloy has perfect comprehensive properties.
     3. The die casting filling process of ZnA14alloy shell part has been simulated with FLOW-3D software. The die casting processing parameters can be optimized with the help of orthogonal experiment. The simulation results of temperature field, velocity field, pressure field and surface defect concentration show that the optimized processing parameter is pouring temperature420℃, injection speed2.5m/s, mold initial temperature200℃.
     4. The hot deformation behavior of ZA27alloy was investigated by hot compression tests. One linear regression equation with Z constant has been proposed as the following:
     Where n=5.21,α=0.007, A=1.81×1010s-1, Q=109.39kJ/mol and Z=εexp(13157/T). A comparative evaluation of the trained ANN model and the constitutive equations has been carried out. It is found that the trained ANN model is more efficient and accurate in predicting the hot deformation behavior of ZA27alloy. Based on the processing map and deformed microstructure, the hot deformation of ZA27alloy can be carried out safely in the region with a strain rate of0.1~1s-1and temperature range of250-350℃.
     5. The optimal heat treatment conditions of ZA27alloy are as follows:
     After annealing at360℃for24h, the non-equilibrium βphases at the grain boundaries and the dendritic segregation are eliminated. After solution treatment at365℃for1h, complete dissolution of the solute atoms is obtained. After ageing at140℃for1h, fine uniformly precipitates are obtained, and the Comprehensive mechanical properties are improved significantly.
     6. The effects of Re on the corrosion behaviors of Zn-5%Al hot dipped zinc aluminum alloys were studied by SEM, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The results show that ZnO, Zn5(OH)8Cl2·H2O, Zn5(OH)6(CO3)2and Al2(OH)sCl·2H2O are the main corrosion products of Zn-5%Al-RE coatings. By comparing the corrosion behavior of the Zn-5%Al-RE coatings, the corrosion layer formed on Zn-5%A1-0.6%RE coating is more compact than the other coatings and has the best corrosion resistance.
引文
[1]美国金属学会.金属手册[M].第八版.北京:机械工业出版社,1992.
    [2]闫承俊,王吉岱.锌铝合金的研究现状及应用[J].中国铸造装备与技术,2005,(4):4-7.
    [3]高仑.锌与锌合金及应用[M].北京:化学工业大学出版社,2011.
    [4]田荣璋.锌合金[M].长沙:中南工业大学出版社,2010.
    [5]孙连超,田荣璋.锌及锌合金物理冶金学[M].长沙:中南工业大学出版社,1994.
    [6]李祥,薛涛等.RE对ZA43合金组织、力学性能及抗磨性的影响[J].特种铸造及有色合金,2007,27(5):402-403.
    [7]Kurnaz S C, Sevik H,Turk A,et al.The Effect of Ti-B and Sr on the mechanical behaviour of the zinc-aluminum-based ZA-12 alloy produced by gravity casting[J]. International Journal of Materials Research,2006,97(8):1-6.
    [8]魏晓伟,高铝锌合金压蠕变行为研究[D].四川成都:四川大学,2003.
    [9]司家勇,高铝锌基合金相图、相变与性能研究[D].广西南宁:广西大学,2004.
    [10]刘敬福,李荣德.喷射成形ZA35合金的高温磨损行为[J].热加工工艺,2010,39(4):63-67.
    [11]Yan S Q, Xie J P, Liu Z X, et al. Influence of Different Al Contents on Microstructure, Tensile and Wear Properties of Zn-based Alloy [J] Journal of materials science and technology,2010,26(7):658-652.
    [12]Xie X Q, Zhang D, Liu J S.Thermal expansion properties of TiC particle reinforced ZA43 matrix composite[J].Materials & Design,2001,22(3):157-162.
    [13]Ares A E, Schvezov C E. The effect of structure on tensile properties of directionally solidified Zn-based alloys[J] Journal of Crystal Growth, 2011,318(1):59-65.
    [14]陶琦,李芬芳,邢健敏.金属腐蚀及其防护措施的研究进展[J].湖南有色金属,2007,23(2):43-46.
    [15]徐滨士.高稳定性高速电弧喷涂腐蚀防护技术[M].北京:科学出版社,2011.
    [16]Ramanauskas R, Muleshkova L, Maldonado L, et al. Characterization of the corrosion behaviour of Zn and Zn alloy electrodeposits:atmospheric and accelerated tests[J]. Corrosion Science,1998,40(2/3):401-410.
    [17]Vourlias G, Pistofidis N, Chaliampalias D, et al. A comparative study of the structure and the corrosion behavior of zinc coatings deposited with various methods [J]. Surface and Coatings Technology,2006,200(22/23):6594-6660.
    [18]Berard G, Brun P, Lacombe J, et al. Influence of a sealing treatment on the behavior of plasma-sprayed alumina coatings operating in extreme environments [J]. Journal of Thermal Spray Technology,2008,17(3):410-419.
    [19]Liu L M, Wang Z, Song G Study on corrosion resistance properties of hydrothe-rmal sealed arc sprayed aluminium coating[J]. Surface Engneering,2010,26(6): 399-406.
    [20]李九岭.带钢连续热镀锌[M].北京:冶金工业出版社,2010.
    [21]Ryu H, Sheng N, Ohtsuka T,et al.Polypyrrole film on 55% Al-Zn-coated steel for corrosion prevention [J].Corrosion Science,2012,56(3):67-77.
    [22]Rosalbino F, Angelini E, Maccio D, et al. Influence of rare earths addition on the corrosion behaviour of Zn-5%A1 (Galfan) alloy in neutral aerated sodium sulphate solution[J]. Electrochimica Acta,2007,52(24):7107-7114.
    [23]Jiang L, Volovitch P, Wolpers M, et al.Activation and inhibition of Zn-Al and Zn-Al-Mg coatings on steel by nitrate in phosphoric acid solution[J].Corrosion Science,2012,60(7):256-264.
    [24]袁培燕.新型锌基塑料模具合金的研制开发[J].山东冶金,2011,33(1):44-47.
    [25]康俊峰,单连军,张洪宇.新型锌基耐磨合金的研制[J].有色矿业,2004,20(5):44-47.
    [26]高升吉,沈保,等.Si对Zn-Al合金性能的影响[J].特种铸造及有色合金,1998,19(2):4-6.
    [27]王沛雨,徐淑清,等.Ti,Ce和Mg对Zn-Al合金固态相变的影响,特种铸造及有色合金[J].1998,19(2):7-9.
    [28]Li Y Y, Ngai T L, Xia W, et al.Effects of Mn content on the tribological behaviors of Zn-27%-2%Cu alloy [J]. Wear,1996,198 (1-2):129-135.
    [29]薛涛,古文全,等.稀土对压铸锌合金金相组织及力学性能的影响[J].中国稀土学报,1998,14(9):230-234.
    [30]李秀华,刘海峰等.Ce和Sr对压铸锌合金组织与力学性能的影响[J].金属热处理,2007,32(9):81-82.
    [31]卢锦堂,许乔瑜,等.锌浴中镍含量对热浸镀锌层厚度的影响[J].材料保护,2001,34(4):15-16.
    [32]李焰.Zn-Al-Mg-RE合金镀层钢丝的研制[J].材料保护,2001,34(8):27-29.
    [33]宋人英,许廉.微量RE、Mg对锌基合金镀层耐蚀性的影响[J].稀有金 属,1995,19(1):42-45.
    [34]张丝雨.最新金属材料牌号、性能、用途及中外牌号对照速用速查实用手册[M].北京:中国科技文化出版社,2005.
    [35]ASTM B86-06 Standard Specification for Zinc and Zinc-Aluminum (ZA) Alloy Foundry and Die Castings. West Conshohocken, PA (USA):ASTM International; 2006.
    [36]刘永红,张忠明,刘宏昭,等.锌铝合金的研究现状及应用概况[J].铸造技术,2001,23(1):42-44.
    [37]Zhang Z M, Wang J C, Liu H Z, et al. Effect of annealing of annealing on damping capacities of as-cast ZA27 alloy [J].Acta metallurgica sinica,2006,19(5):379-384.
    [38]Zhu Y H, Lee W B, To S. Ageing characteristics of cast Zn-Al based alloy (ZnAl7Cu3) [J].Journal of materials science,2003,38(9):1945-1952.
    [39]Bobic B, Bajat J, Acimovic-Pavlovic Z, et al.The effect of T4 heat treatment on the microstructure and corrosion behaviour of Zn27Al1.5Cu0.02Mg alloy[J] Corrosion Science,2011,53(1):409-417.
    [40]孔纲,卢锦堂,陈锦虹,等.热浸锌浴中少量铝对镀层性能的影响[J].材料保护,2002,35(7):17-19.
    [41]朱峰,伍超群.ZZnAlD4-0.5锌合金连接件断裂失效分析[J].热加工工艺,2010,39(1):145-147.
    [42]Huang H F, Wang J H, Su X P, et al. Modification effect of Al-30Zn-5Zr-1B on ZnAl4Y alloy [J]. Materials Characterization,2012,71(9):41-48.
    [43]王先德,王建华,苏旭平,等.锰对ZZnA14Y锌合金显微组织和力学性能的影响[J].铸造,2010,59(3):312-314.
    [44]Gobien J M, Scattergood R O, Goodwin F E, et al.Mechanical behavior of bulk ultra-fine-grained Zn-Al die-casting alloys [J]. Materials Science and Engineering A,2009,518(1):84-88.
    [45]Zhang L,Wu YS, Bian XF, et al. Effects of quenching rate on the microstructure of a rapidly solidified Zn-5wt.%Al alloy[J]. Journal of Materials Science Letters, 1999,18(9):1969-1972.
    [46]Narimannezhad A, Aashuri H, Kokabi A H, et al. Microstructural evolution and mechanical properties of semisolid stir welded zinc AG40A die cast alloy [J]. Journal of Materials Processing Technology,2009,209(8):4112-4121.
    [47]Wang J H, Wang X D, Tu H, et al. Effects of titanium on microstructure and mechanical properties of ZnA14Y alloy[J]. China Foundry 2011;8(4):397-400.
    [48]da Costa E M, da Costa C E, Vecchia F D. Study of the influence of copper and magnesium additions on the microstructure formation of Zn-Al hypoeutectic alloys[J]. Journal of Alloys and Compounds,2009;488(1):89-99.
    [49]李亚国,朱奕庆,薛涛,等.铈对ZZn4-1锌合金性能和微观组织的影响[J].中国稀土学报,1999,17(4):373-376.
    [50]Wang J H, Huang H F, Su X P, et al. Effect of reverse modification of Al-5Ti-B master alloy on hypoeutectic ZnA14Y alloy [J]. Materials and Design, 2012,38(6):133-138.
    [51]王先德,王建华,徐琛,等.B对ZZNAL4Y锌合金显微组织和力学性能的影响[J].热加工工艺,2010,39(9):22-27.
    [52]Li Y G, Zhu Y Q, Xue T, et al. Effect of Cerium on Mechanical Properties and Morphology of ZZn4-1 Alloy [J]. Journal of rare earths,2000,18(2):120-123.
    [53]潘金生,仝健明,田民波.材料科学基础[M].北京:清华大学出版社,1998.
    [54]梁焕操.锌合金压铸缺陷分析及解决办法[J].机电工程技术,2010,39(6):143-145.
    [55]赵文杰,王清林,任凤竹,等.第一性原理计算ZrnFe(n=2-13)团簇的基态结构及其磁性[J].物理学报,2007,56(10):5746-5752.
    [56]赵浩峰.现代压力铸造技术[M].北京:标准工业出版社,2002.
    [57]陈彬,曾小勤,胡斌,等.基于数值模拟的铝合金汽车零部件压铸工艺优化[J].铸造技术,2009,30(10):1323-1325.
    [58]于彦东,雷黎,蒋海燕,等.基于数值模拟的镁合金真空压铸浇注系统设计与优化[J].中国有色金属学报,2005,15(12):1903-1909.
    [59]Kang C G, Seo P K, Kang S S. The effect of injection velocity on liquid segregation and mechanical properties in arm part fabricated by semi-solid die casting process[J]. Journal of Materials Processing Technology,2006,176 (1):32-40.
    [60]李强,毛伟民,白月龙,等.半固态AZ91D镁合金触变压铸充型过程的数值模拟[J].北京科技大学学报,2006,28(8):755-758.
    [61]闫洪,贺儒,胡志.基于数值模拟的YL112压铸浇注系统设计与优化[J].南昌大学学报(工科版),2010,32(4):312-317.
    [62]Kim Y C, Kang C S, Cho J I, et al. Die Casting Mold Design of the Thin-walled Aluminum Case by Computational Solidification Simulation[J]. J. Mater. Sci. Technol,2008,24(3):383-388.
    [63]Ilinca F, Hetu J F, Moisan J F, et al. Three-dimensional injection molding simulation of AZ91D semi-solid magnesium alloy[J].2008,1(1):3-12.
    [64]李远发,李强,罗守靖,等.基于数值模拟的AZ91D压铸浇注系统设计与优化[J].计算机应用技术,2007,28(5):449-453.
    [65]袁有录,揭小平,闫洪.镁合金半固态流变压铸充型凝固过程数值模拟及试验研究[J].铸造,2006,55(12):1260-1264.
    [66]袁有录,闫洪,揭小平,等.YL112铝合金压铸充型凝固过程的数值模拟[J].轻合金加工技术,2005,33(5):25-28.
    [67]Hu B H, Tong K K, Niu X P, et al. Design and optimisation of runner and gating systems for the die casting of thin-walled magnesium telecommunication parts through numerical simulation[J]. Journal of Materials Processing Technology, 2000,105(1-2):128-133.
    [68]高小荣.AZ91D摩托车发动机壳体液态压铸充填过程数值模拟[D].哈尔滨:哈尔滨工业大学,2006.
    [69]Francis H. Harlow J. Eddie W.The MAC Method:A Computing Technique for Solving Viscous. Impressible, Transient Fluid Flow. Physics of Fluids.1965, 8(12):2182-2190
    [70]柳百成,荆涛.铸造工程的模拟仿真与质量控制[M].北京:机械工业出版社,2000.
    [71]Liu Z L, HuJY, Wang Q D, et al. Evaluation of the effect of vacuum on mold filling in the magnesium EPC process [J]. Journal of Materials Processing Technology,2002,120(1-3):94-100.
    [72]周乐.镁合金压铸充型过程的计算机模拟及在工程上的应用[D].辽宁:沈阳工业大学,2007.
    [73]李强.铸件充型过程三维流场数值模拟[D].哈尔滨:哈尔滨工业大学,2002.
    [74]张晓晨.基于CAE的铝及镁合金壳形件压铸工艺分析与优化[D].哈尔滨:哈尔滨理工大学,2009.
    [75]吴士平,于彦东,王丽萍,等.提高充型过程数值模拟运算速度的动态超松弛迭代算法[J].中国有色金属学报,2003,13(5):1219-1222.
    [76]刘传胜.铝合金高压压铸模拟分析[J].武汉科技大学学报(自然科学版),2005,28(1):28-31.
    [77]贾良荣,熊守美,冯伟明,等.压力铸造充型过程流动与传热数值模拟的研究[J].清华大学学报(自然科学版),2001,41(2):8-11.
    [78]Lin Y C, Chen M S, Zhong J. Microstructural evolution in 42CrMo steel during compression at elevated temperatures[J]. Materials Letters,2008,62(14): 2132-2135.
    [79]Abbasi S M, Shokuhfar A. Prediction of hot deformation behaviour of 10Cr-10Ni-5Mo-2Cu steel [J]. Materials Letters,2007,61 (11-12):2523-2526.
    [80]Li W, Li H, Wang Z X,et al. Constitutive equations for high temperature flow stress prediction of Al-14Cu-7Ce alloy [J]. Materials Science and Engineering A, 2011,528 (12):4098-4103.
    [81]Slooff F A, Zhou J, Duszczyk J, et al. Constitutive Analysis of Wrought Magnesium Alloy Mg-A14-Znl[J]. Scripta Materialia,2007,57 (8):759-762.
    [82]Cai J, Li F G, Liu T Y, et al. Constitutive equations for elevated temperature flow stress of Ti-6A1-4V alloy considering the effect of strain[J]. Materials & Design, 2011,32(3):1144-1151.
    [83]何宜柱,陈大宏,雷廷权,等.形变Z因子与动态再结晶晶粒尺寸间的理论模型.钢铁研究学报,2000,12(1):26-30.
    [84]韩冬峰,郑子樵,蒋呐,等.高强可焊2195铝锂合金热压缩变形的流变应力,中国有色金属学报,2004,12(14):2090-2095.
    [85]Bardi F,Cabibbo M. An analysis of hot deformation of an Al-Cu-Mg alloy produced by powder metallurgy. Materials Science and Engineering A,2003, 339(1-2):43-52.
    [86]Cavaliere P. Hot and warm forming of 2618 aluminium alloy. Journal of Light Metals,2002,4(2):247-252.
    [87]Sellars C M, McTegart W J. On the mechanism of hot deformation. Acta Metallurgica,1966,14(9):1136-1138.
    [88]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel. Journal of Applied Physics,1944,15(1):22-32.
    [89]Mirzadeh H, Najafizadeh A. Flow stress prediction at hot working conditions. Materials Science and Engineering A,2010,527(4):1160-1164.
    [90]Hodgson P D. Microstructure Modelling for Property Prediction and Control. Journal of materials Processing and Technology,1996,60(1-4):27-33.
    [91]徐洲,酒井拓.Fe-5Ni合金奥氏体高温变形行为.热加工工艺,1996,(6):8-10.
    [92]Sakai T. Dynamic Recrystallization Microstructures under Hot working Conditions. Journal of Materials Processing Technology,1995.53(11):349-361.
    [93]Hirohiko T, Shiomi K, Natsuo H. Modeling of comprehensive formula for flow curves of aluminum alloys at elevated temperatures. Journal of the JSTP,1993, 22(34):165-170.
    [94]侯红亮,姜波,王耀奇,等.基于正交回归的TC4合金本构关系研究[J].航空制造技术,2004,29(11):75-77.
    [95]张麦仓,罗子健,曾凡昌.应用多元非线性回归方法建立FGH95合金的本构关系[J].材料工程,1999,25(1):20-22.
    [96]Phaniraj M P, Lahiri A K. The applicability of neural network model to predict flow stress for carbon steels. Journal of Materials Processing Technology, 2003,141(2):219-227.
    [97]Srinivasulu S, Jain A. A comparative analysis of training methods for artificial neural network rainfall-runoff models. Applied Soft Computing, 2006,6(3):295-306.
    [98]Lin Y C, Fang X, Wang Y P. Prediction of metadynamic softening in a multi-pass hot deformed low alloy steel using artificial neural network. Journal of Materials Science,2008,43(16):5508-5515.
    [99]Sun Y, Zeng W D, Zhao Y Q, et al. Modeling constitutive relationship of Ti40 alloy using artificial neural network. Materials & Design,2011,32(3):1537-1541.
    [100]Lucon P A, Donovan R P. An artificial neural network approach to multiphase continua constitutive modeling. Composites Part B:Engineering, 2007,38(7-8),817-823.
    [101]Prasad Y V R K, Seshacharyulu T. Modeling of hot deformation for microstructural control[J]. International Materials Reviews,1998,43(6):243-258.
    [102]Murty S V S N, Rao B N, Kashyap B P. Instability criteria for hot deformation of materials[J]. International Materials Reviews,2000,45(1):15-26.
    [103]李金泉,黄德武,段占强,李守新.穿甲侵彻过程中靶板内绝热剪切带特性及形成原因分析[J].兵工学报,2005,26(01):60-63.
    [104]唐伟能,陈荣石,韩恩厚.Mg-Y-Nd-Zr合金的高温变形行为与热加工性能[J].金属学报,2006,42(10):1096-1100.
    [105]鞠泉,李殿国,刘国权.15Cr-25Ni-Fe基合金高温塑性变形行为的加工图[J].金属学报,2006,42(2):218-224.
    [106]陆伟,严彪.铸造锌铝合金的研究进展及其应用[J].上海有色金属,2004,25(1):13-17.
    [107]Abou El-khair M T, Lotfy A, Daoud A, et al. Microstructure, thermal behavior and mechanical properties of squeeze cast SiC, ZrO2 or C reinforced ZA27 composites[J]. Materials Science and Engineering A,2011,528(6):2353-2362.
    [108]孙连超,田荣璋.锌及锌合金物理冶金学[M].长沙:中南工业大学出版社,1994.
    [109]Li R X, Li R D, Bai Y H, Qu Y D, Yuan X G. Effect of specific pressure on microstructure and mechanical properties of squeeze casting ZA27 alloy[J]. Transactions of Nonferrous Metals Society of China,2010,20(1):59-63.
    [110]Zhu Y H, To S, Liu XM, et al.Microstructural changes inside the lamellar structures of alloy ZA27[J]. Materials Characterization,2006,57(4-5):326-332.
    [111]Chen T J, Hao Y, Li Y D. Effects of processing parameters on microstructure of thixoformed ZA27 alloy[J]. Materials & Design,2007; 28(4):1279-1287.
    [112]Chen T J, Hao Y, Sun J. Microstructural evolution of previously deformed ZA27 alloy during partial remelting[J]. Materials Science and Engineering A,2002; 337(1-2):73-81.
    [113]蔡强锌合金[M].长沙:中南工业大学出版社,1987.
    [114]杨留栓,王洪敏,陈全德.高铝锌合金[M].西安:西北工业大学出版社,1997.
    [115]Abou El-khair M T, Daoud A, Ismail A. Effect of different Al contents on the microstructure, tensile and wear properties of Zn-based alloy [J].Materials Letters, 2004,58(11):1754-1760.
    [116]Wei X W, Shen B L. Effect of rare earths on phase transformation in as cast ZA27 alloys during compressive creep[J]. Rare Metals,2003,22(4):259-264.
    [117]Turk A, Durman M, Kayali E S.The effect of manganese on the microstructure and mechanical properties of zinc-aluminium based ZA-8 alloy[J]. Journal of Materials Science,2007,42(19):8298-8305.
    [118]Zhang Y M, Yang L J, Zeng X D, et al. The mechanism of anneal-hardening phenomenon in extruded Zn-Al alloys [J]. Materials & Design,2013, 50(1):223-229.
    [119]Mishra S K, Biswas S, Satapathy A. A study on processing, characterization and erosion wear behavior of silicon carbide particle filled ZA-27 metal matrix composites[J] Materials & Design,2014,55(3):958-965.
    [120]汤宏群,曾建民,邹勇志,等.ZA27合金时效过程研究[J].机械工程材料,2007,31(4):68-70.
    [121]李松瑞,周善初.金属热处理[M].长沙:中南大学出版社,2003.
    [122]Starink M J, Wang S C. A model of the yield strength of overaged Al-Zn-Mg-Cu alloys[J]. Acta Materialia,2003,51(17):5131-5150.
    [123]刘自勇,杨涤心,谢敬佩,等.均匀化退火对ZG80Cr2MnMoSi钢组织的影响[J]热处理,2012,27(5):33-36.
    [124]李红英,王晓峰,赵延阔,等.固溶温度对2A97合金组织与性能的影响[J].材料热处理学报,2010,31(4):115-119.
    [125]郑子樵.材料科学基础[M].长沙:中南大学出版社,2005.
    [126]孙秋霞.材料腐蚀与防护[M].北京:冶金工业出版社,2004.
    [127]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003.
    [128]徐滨士.高稳定性高速电弧喷涂腐蚀防护技术[M].北京:科学出版社,2011.
    [129]Zhang X G. Corrosion and Electrochemistry of Zinc, Plenum Press, New York, 1996.
    [130]Li Y, Liu J, Li Y, et al. Corrosion resistance of hot-dipped zinc and zinc alloy coated sheet steels under offshore atmospheric environment[J]. Materials and Corrosion,2007,58(8):616-620.
    [131]Vourlias G, Pistofidis N, Chaliampalias D, et al. A comparative study of the structure and the corrosion behavior of zinc coatings deposited with various methods[J]. Surface and Coatings Technology,2006,200(22/23):6594-6660.
    [132]Panossian Z, Mariaca L, Morcillo M, et al. Steel cathodic protection afforded by zinc, aluminium and zinc/aluminium alloy coatings in the atmosphere [J]. Surface and Coatings Technology,2005,190(2/3):244-248.
    [133]Shih H C, Hsu J W, Sun C N, et al. The lifetime assessment of hot-dip 5% Al-Zn coatings in chloride environments [J]. Surface and Coatings Technology,2002, 150(1):70-75.
    [134]Shibli S M A, Jayalekshmi A C, Remya R, Electrochemical and structural characterization of the mixed oxides-reinforced hot-dip zinc coating[J]. Surface and Coatings Technology,2007,201(16-17)7560-7565.
    [135]石焕荣,魏无际,丁毅,等.热镀锌和锌铝合金镀层的微观组织及盐雾腐蚀行为[J].材料保护,2002,35(3):35-36.
    [136]张翔.新型锌基热镀层材料及热镀工艺的研究[D].江苏:南京航空航天大学,2006.
    [137]高秋志,冯彬,杜安,等.热浸镀Zn-5%Al-RE合金层形成机理的研究进展[J].热加工工艺,2008,37(6):89-91.
    [138]Cachet C, Ganne F, Joiret S, et al. EIS investigation of zinc dissolution in aerated sulphate medium. Part Ⅱ:zinc coatings[J]. Electrochimica Acta 2002,47(21):3409-3422.
    [139]Mouanga M, Puiggali M, Tribollet B, et al. Galvanic corrosion between zinc and carbon steel investigated by local electrochemical impedance spectroscopy[J]. Electrochimica Acta 2013,88(15):6-14.
    [140]Morales J, Diaz F, Hernandez-Borges J, et al. Atmospheric corrosion in subtropical areas:XRD and electrochemical study of zinc atmospheric corrosion products in the province of Santa Cruz de Tenerife[J]. Corrosion Science,2006, 48(2):361-371.
    [141]Barranco V, Feliu Jr S, Feliu S, EIS study of the corrosion behaviour of zinc-based coatings on steel in quiescent 3% NaCl solution. Part 2:coatings covered with an inhibitor-containing lacquer [J]. Corrosion Science,2004,46(9) 2221-2240.
    [142]Gonzalez-Garcia Y, Gonzalez S, Souto R M. Electrochemical and structural properties of a polyurethane coating on steel substrates for corrosion protection[J]. Corrosion Science,2007,49(9) 3514-3526.
    [143]Souto R M, Fernandez-Merida L, Gonzalez S, et al.Comparative EIS study of different Zn-based intermediate metallic layers in coil-coated steelsOriginal[J]. Corrosion Science,2006,48(5):1182-1192.
    [144]Mansfeld F, Lee C C, Zhang G. Comparison of electrochemical impedance and noise data in the frequency domain[J]. Electrochimica Acta 1998,43(3-4):435-438.
    [145]Mitton D B, Ford T E, LaPointe E, et al. The potential for unanticipated biodegradation during EIS analysis of polymer-coated metallic substrates[J]. Electrochimica Acta 1997,42(12):1859-1867.
    [146]许秀飞.钢带热镀锌技术问答[M].北京:化学工业出版社,2007.
    [147]Hosking N C, Strom M A, Shipway P H, et al. Corrosion resistance of zinc-magnesium coated steel[J]. Corrosion Science,2007,49(9):3669-3695.
    [148]Qu Q, Yan C, Wan Y, et al. Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc [J]. Corrosion Science,2002,44(12):2789-2803.
    [149]Falk T, Svensson J E, Johansson LG, The Influence of □CO□2 and NaCl on the Atmospheric Corrosion of Zinc [J]. Journal of Electrochemical Society,1998,145(9):2993-2999.
    [150]Neto P D L, Correia A N, Colares R P, et al, Corrosion study of electrodeposited Zn and Zn-Co coatings in chloride medium[J] Journal of the Brazilian Chemical Society,2007,18 (6):1164-1170.
    [151]Volovitch P, Allely C, Ogle K, Understanding corrosion via corrosion product characterization:Ⅰ.Case study of the role of Mg alloying in Zn-Mg coating on steel[J]. Corrosion Science,2009,51 (6):1251-1262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700