用户名: 密码: 验证码:
ZG20SiMn铸钢的疲劳行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铸造低合金钢由于其优良的性能,在许多领域已经逐渐取代了铸造碳钢。随着铸造低合金钢应用范围的越来越广泛,对其力学性能的要求也越来越高。迄今为止,已开发出多种商业化的铸造低合金钢系列,其中ZG20SiMn铸钢因强度高、塑性与韧性好,被广泛用于水压机立柱、横梁、工作缸以及水轮机转轮等构件。疲劳破坏是各种工程构件服役期间的主要失效形式之一,对于铸钢结构件亦不例外。因此,研究ZG20SiMn铸钢的疲劳行为不仅具有实用价值,而且也可以为ZG20SiMn铸钢结构件的抗疲劳设计和安全使用提供可靠的理论依据。
     本文以用于制作水压机横梁的ZG20SiMn铸钢件为研究材料,针对由实际铸件上切取的疲劳试样在室温下分别进行了应变控制的低周疲劳实验和应力控制的高周疲劳实验,并利用SEM和TEM对疲劳断口形貌和疲劳变形后的微观结构进行了观察与分析,探讨了ZG20SiMn铸钢在室温低周疲劳和高周疲劳加载条件下的变形与断裂机制。
     室温低周疲劳实验结果表明,ZG20SiMn铸钢在应变控制的疲劳变形期间可以表现为循环硬化和循环稳定,主要取决于外加总应变幅的高低,其中当外加总应变幅为0.25~0.45%时,ZG20SiMn铸钢在疲劳变形前期呈现循环稳定,在疲劳变形的后期则表现为循环应变硬化,直至最终断裂或由于疲劳裂纹出现而导致应力快速下降;当外加应变幅为0.6%时,ZG20SiMn铸钢在整个疲劳变形过程中表现为稳定的循环应力响应行为;当外加应变幅为0.8%时,ZG20SiMn铸钢在整个疲劳变形过程中呈现为循环应变硬化。对于ZG20SiMn铸钢而言,其弹性应变幅、塑性应变幅与疲劳断裂时的载荷反向周次之间均表现为单斜率线性行为,并且分别服从Coffin-Manson和Basquin公式。此外,采用拉伸滞后能作为疲劳损伤参数可以较为准确地预测ZG20SiMn铸钢的低周疲劳寿命。
     室温高周疲劳实验结果表明,在应力控制的疲劳加载条件下,ZG20SiMn铸钢在0.5的高应力比下的疲劳强度明显高于其在0.1的低应力比下的疲劳强度;在相同的外加应力幅下,ZG20SiMn铸钢在应力比为0.1时的疲劳寿命明显高于其在应力比为0.5时的疲劳寿命,而在相同的最大循环应力下,ZG20SiMn铸钢在应力比为0.5时的疲劳寿命明显高于其在应力比为0.1时的疲劳寿命;在ZG20SiMn铸钢组织中的鱼骨状硫化物以及含锰和钼的夹杂物将使其高周疲劳寿命大大缩短。
     疲劳断口形貌的扫描电子显微分析结果表明,对于ZG20SiMn铸钢而言,无论是应变控制的低周疲劳加载条件下,还是应力控制的高周疲劳加载条件下,疲劳裂纹均是以穿晶方式萌生于疲劳试样表面,并以穿晶方式扩展,而且在疲劳裂纹扩展区可观察到明显的疲劳条带及疲劳台阶等形貌特征。
     ZG20SiMn铸钢疲劳变形后微观结构的透射电子显微分析结果表明,低周和高周疲劳变形期间,钢中存在的大量50~80nm的颗粒状碳化物可以对位错产生钉扎作用,阻碍位错滑移,引起强化。ZG20SiMn铸钢低周疲劳变形期间,大量运动位错受到晶界的强烈阻碍,在晶界附近随机分布着位错线、位错缠结及位错带,同时也可形成胞状亚结构。ZG20SiMn铸钢在高周疲劳变形后,部分珠光体在发生变形并开裂,这些开裂的珠光体在后续循环应力作用下发生球化现象,即逐渐转变成短棒状或椭球状,当位错运动至这些珠光体周围时,有弯曲、缠结等现象发生。此外,高周疲劳变形后,ZG20SiMn铸钢中的部分晶界出现了明显的扭折,且在晶界处有大量的位错塞积。
Because of the excellent properties, low alloy cast steels have been gradually insteadof cast carbon steels in many fields. Since the application ranges of low alloy cast steelsbecome wider, the requirements in the mechanical properties of low alloy cast steels arehigher. So far many series of commercial low alloy cast steel have been developed.ZG20SiMn cast steel, which is characterized by high strength, excellent plasticity andtoughness, has been widely used for manufacturing such structural components as thecolumn, beam and working cylinder of hydraulic forging press as well as the runner ofhydraulic turbine. The fatigue damage is one of main failure modes in the working periodfor various engineering components including cast steels components. Thus, theinvestigations on the fatigue behavior of ZG20SiMn cast steel not only have practicalvalues, but also can provide a reliable theory basis for the fatigue resistant design andsafety usage of ZG20SiMn cast steel components.
     In this dissertation, the ZG20SiMn steel casting used for manufacturing the beam ofhydraulic forging press is chosen as the experimental material, the strain-controlled lowcycle fatigue tests and stress-controlled high cycle fatigue tests are respectively conductedwith the fatigue specimens cutting from the practical beam castings. The fatigue fracturesurfaces and microstructures after the fatigue deformation are observed and analyzed usingSEM and TEM. The deformation and fracture mechanisms of ZG20SiMn cast steel underlow cycle fatigue and high cycle fatigue loading conditions are discussed.
     The results of low cycle fatigue tests at room temperature indicate that during thestrain-controlled fatigue deformation, the ZG20SiMn cast steel can show the cyclichardening and cyclic stability, depending on the imposed total strain amplitude. At the totalstrain amplitudes ranging from0.25%to0.45%, the ZG20SiMn cast steel shows the cyclicstability in the early stage of fatigue deformation, and then the cyclic hardening occurs inthe late stage of fatigue deformation till the finally fracture or fast stress falling induced bythe formation of fatigue cracks. When the total strain amplitude is0.6%, the ZG20SiMncast steel shows the cyclic stability during whole fatigue deformation. When the total strainamplitude is0.8%, ZG20SiMn cast steel shows cyclic hardening during the whole fatigue deformation. For the ZG20SiMn cast steel, the relationship between elastic strainamplitude and reversals to failure and the relationship between plastic strain amplitude andreversals to failure show the single-slope linear behavior, and obey the Coffin-Manson andBasquin equations, respectively. In addition, the tensile hysteresis energy can be taken asthe fatigue damage parameter to predict accurately the low cycle fatigue life of ZG20SiMncast steel.
     The results of high cycle fatigue tests at room temperature show that understress-controlled fatigue loading condition, the fatigue strength of ZG20SiMn cast steel atstress ratio of0.5is remarkably higher than that at the stress ratio of0.1. At the same stressamplitude, the fatigue life of ZG20SiMn cast steel at the stress ratio of0.1is significantlyhigher than that at stress ratio of0.5, while at the same maximum cyclic stress, the fatiguelife of ZG20SiMn cast steel at the stress ratio of0.5is significantly higher than that atstress ratio of0.1. For the ZG20SiMn cast steel, the fishbone-shaped sulphide as well asthe spherical inclusion containing Mn and Mo will lead to a great reduction of high cyclefatigue life.
     The SEM analysis results on the morphology of fatigue fracture surface reveal that forZG20SiMn cast steel, under strain-controlled low cycle fatigue or stress-controlled highcycle fatigue loading conditions, the fatigue cracks transgranularly initiate on the freesurface of fatigue specimens and propagate in transgranular mode. In the fatigue crackpropagation area, the fatigue striation and fatigue step can be observed.
     The TEM analysis results on the microstructures after fatigue deformation indicatethat during low cycle and high cycle fatigue deformation, a large number of granularcarbides with the size of50to80nm can pin the dislocations and impede the dislocationslip, and finally cause the strengthening. During the low cycle fatigue deformation, a greatamount of mobile dislocations are heavily impeded by grain boundaries. The dislocationline, dislocation tangle and dislocation band randomly distribute near the grain boundaries.After the high cycle fatigue deformation, some pearlites deform and crack. Thespheroidization of these cracked pearlites occurs under the action of cyclic stress. Themorphologies of these cracked pearlites gradually change into rod-shaped andellipsoid-shaped. When the dislocations move around these pearlites, the dislocation bend and tangle occur. After the high cycle fatigue deformation, some grain boundaries arefound to be obviously wrested, and a great amount of dislocations are piled up at the grainboundaries.
引文
[1]耿浩然.铸钢[M].北京:化学工业出版社,2007.
    [2] Cias W W, Doane D V. Martensitic air-hardenable Si-Mn-Cr-Mo and Si-Mn-Cr-Ni-Mo abrasion-resistant steels[J]. Transactions of the American Foundrymen's Society,1977,84:603-614.
    [3]赵以洲.稀土元素在低合金高强度铸钢件上的应用[J].钢铁,1993,28(1):45-50.
    [4] Fu H, Miao Y, Chen X et al. A study of microstructures and properties of high-carbon Si-Cr caststeel containing rare earth and titanium[J]. Materialwissenschaft und Werkstofftechnik,2007,38(3):233-238.
    [5] Guan Q F, Fang J R, Jiang Q C et al. Effect of rare earth composite modification on microstructureand properties of a new cast hot-work die steel[J]. Journal of Rare Earths,2003,21(3):368-371.
    [6] Yu Z S. Research on the application of rare earths in iron and steel in recent years[J]. Journal ofthe Chinese Rare Earth Society,1990,8(2):139-148.
    [7]马志英,方静,杨弋涛.用于煤机的低合金耐磨铸钢性能改良研究[J].铸造.2011,60(3):302-306.
    [8]李传栻.谈铸钢熔炼方面的几个问题[J].铸造,2010,59(3):266-271.
    [9]胡永科,李淑娟.高锰钢ZGMn13的切削加工工艺研究[J].机械工程与自动化,2011,164(1):176-177.
    [10]程巨强,刘志学,王元辉.ZGCr28铸钢组织和性能研究[J].铸造技术,2006,27(2):156-159.
    [11]刘腾轼,安立聪,杨弋涛.Mn和Ni对ZG25MnNi铸钢组织和性能的影响[J].铸造,2013,62(12):1229-1233.
    [12]崔琦,包晔峰,张国伟等.16MnDR与ZG20SiMn铸钢焊接接头的微观组织与低温性能[J].电焊机,2010,40(1):75-78.
    [13]赵历,尹历涛,李其清.预热器铸钢箱体的焊接修复[J].焊接,1999(9):42.
    [14]耿涛,付立华.ZG20SiMn水轮发电机转轮体的修复工艺技术[J].重工与起重技术,2007(1):13-15.
    [15]李华.水轮发电机顶盖不锈钢带极宽带埋弧堆焊[J].焊接技术,2009,38(10):21-22.
    [16]孙江,韩学军,郭士正.ZG20SiMn焊接接头裂纹扩展速率影响因素的分析[J].机械设计与制造,1997(4):40-41.
    [17]冯强,吕小礼.ZG0Gr13Ni5Mo与ZG20SiMn钢焊接接头热处理后碳迁移问题[J].郑州纺织工学院学报,1997,8(4):33-37.
    [18]刘丽旺.ZG20SiMn低合金钢的熔炼实践[J].金属加工,2008(23):56-57.
    [19]陈全生,开文宗.60吨货车侧架、摇枕采用ZG20SiMn铸钢的情况[J].铁道车辆,1972(2):14-16.
    [20]吕小礼.ZG20SiMn厚板CO2气体保护焊接接头的组织与性能[J].水利电力机械,1993(1):17-19.
    [21]王辉亭,赵宏明,刘向东.残余元素对20SiMn铸钢性能的影响[J].黑龙江科技信息,2002(8):24.
    [22]焦何生,尚贺军.ZG20SiMn铸件热处理工艺[J].金属加工,2012(11):48-49.
    [23]宋勇.ZG20SiMn铸件的脆性断裂分析[J].重型机械,2013(1):91-93.
    [24]赵芳欣,王琳,张瑛洁.热处理不当造成ZG20SiMn铸件的脆性[J].机械工程材料,1994,18(3):46-48.
    [25]潘秉臣.ZG0Cr13Ni4Mo与ZG20SiMn异种钢焊后热处理试验研究.大电机技术,1986(5):54-59.
    [26]邵潭华,周丽霞.采用两相区热处理改善ZG20SiMn钢电渣焊焊缝韧性的研究[J].金属热处理,1991(12):16-21.
    [27]邵潭华,周丽霞.改善ZG20SiMn铸钢电渣焊焊接接头冲击韧性的研究[J].热加工工艺,1992(1):25-28.
    [28]鲁连涛,张卫华.金属材料超高周疲劳研究综述[J].机械强度,2005,27(3):388-394.
    [29] Suresh S著,王中光译.材料的疲劳[M].北京:国防工业出版社,1999.
    [30] Golanski G, Mrozinski S. Fatigue life of GX12CrMoVNbN9-1cast steel in the energy-basedapproach[J]. Advanced Materials Research,2011,396-398:446-449.
    [31] Kim Y J, Jang H. High temperature fatigue resistance of an ACI HH50-type cast austeniticstainless steel[J]. Materials Science and Engineering A,2010, A527:5415-5420.
    [32] Schilke M, Ahlstrm J, Karlsson B. Low cycle fatigue and deformation behaviour of austeniticmanganese steel in rolled and in as-cast conditions[J]. Procedia Engineering,2010,2(1):623-628.
    [33]李时磊,王艳丽,连俊培等.Z3CN20-09M铸造奥氏体不锈钢的低周疲劳行为[J].机械工程学报,2012,34(8):903-907.
    [34] Grzegorz G, Cezary K, Joanna K. Changes in microstructure of GX12CrMoVNbN9-1cast steelafter low cycle fatigue[J]. Solid State Phenomena,2013,197:47-52.
    [35] Grzegorz G, Stanisaw M. Low cycle fatigue and cyclic softening behaviour of martensitic caststeel[J]. Engineering Failure Analysis,2013,35:692-702.
    [36] Grzegorz G, Krzysztof W, Stanisaw M. Low cycle fatigue behaviour of GX12CrMoVNbN9-1caststeel at room temperature[J]. Advanced Materials Research,2011,291-294:1106-1109.
    [37] Grzegorz G, Krzysztof W, Stanisaw M. Low cycle fatigue of GX12CrMoVNbN9-1cast steel at600C temperature[J]. Advanced Materials Research,2012,396-398:326-329.
    [38] Grzegorz G. Low cycle fatigue behaviuor and microstructural evolution of GX12CrMoVNbN9-1cast steel[J]. Steel Research International,2012(S):1227-1230.
    [39] Grzegorz G, Joanna K. Evolution of microstructure in martensitic GX12CrMoVNbN9-1cast steelafter low cycle fatigue[J]. Solid State Phenomena,2013,199:418-423.
    [40] Stanisaw M, Grzegorz G, Krzysztof W. Microstructural aspects of low cycle fatigue of agedGX12CrMoVNbN9-1cast steel[J]. Key Engineering Materials,2014,592-593:708-711.
    [41] Srinivasan V S, Sandhya R, Valsan M et al. Comparative evaluation of strain controlled low cyclefatigue behaviour of solution annealed and prior cold worked316L(N) stainless steel[J].International Journal of Fatigue,2004,26:1295-1302.
    [42] Ye D Y, Saburo M, Noburo N et al. The low-cycle fatigue, deformation and final fracturebehaviour of an austenitic stainless steel[J]. Materials Science and Engineering A,2006, A415:104-117.
    [43] Niendorf T, Lotze C, Canadinc D et al. The role of monotonic pre-deformation on the fatigueperformance of a high-manganese austenitic TWIP steel[J]. Materials Science and Engineering A,2009, A499:518-524.
    [44] Glage A, Weidner A, Biermann H. Effect of austenite stability on the low cycle fatigue behaviorand microstructure of high alloyed metastable austenitic cast TRIP steels[J]. Procedia Engineering,2010,2:2085-2094.
    [45]王建国,杨胜利,王红缨等.800MPa级低合金高强度钢低周疲劳性能.北京科技大学学报,2005,27(1):75-78.
    [46]陈荐,何建军,孙清民等.加载速率对30Cr1Mo1V汽轮机转子钢低周疲劳特性的影响[J].动力工程学报,2010,30(9):711-714.
    [47] Kim Y J, Jang H, Oh Y J. High temperature low cycle fatigue properties of a HF30-type castaustenitic stainless steel[J]. Materials Science and Engineering A.2009, A526:244-249.
    [48] Kulawinski D, Ackermann S, Glage A et al. Biaxial low cycle fatigue behavior and martensiteformation of a metastable austenitic cast TRIP steel under proportional loading[J]. Steel ResearchInternational,2011,82(9):1141-1148.
    [49] Golanski G, Mrozinski S, Werner K. Low cycle fatigue life of martensitic cast steel after ageing[J].Materials Science Forum,2012,726:3-10.
    [50]张亚军.10CrNiMo高强钢的低周疲劳特性[J].北京科技大学学报,2011,33(1):22-27.
    [51]束德林.工程材料力学性能[M].北京:机械工业出版社,2003.
    [52] Ludovic V, Jean-Christophe L R, Said T. On the high cycle fatigue behavior of a type304Lstainless steel at room temperature[J]. International Journal of Fatigue.2012,38:84-91.
    [53] Miura N, Takahashi Y. High-cycle fatigue behavior of type316stainless steel at288°C includingmean stress effect[J]. International Journal of Fatigue,2006,28,1618-1625.
    [54] Karjalainen L P, Hamada A, Misra R D K, et al. Some aspects of the cyclic behavior of twinning-induced plasticity steels[J]. Scripta Materialia,2012;66(12):1034-1039.
    [55] Song S, Kandaka S, Sugimoto K et al. Fatigue properties of low alloy TRIP sheet steels[J].CAMP-ISIJ,2000,13:622-628.
    [56] Song S, Sugimoto K, Kandaka S, et al. Effect of prestraining on high cycle fatigue strength ofhigh-strength low alloy TRIP-aided steels[J]. Materials Science Research International,2003,9(3):223-229.
    [57] Sugimoto K, Fiji D, Yoshikawa N. Fatigue strength of newly developed high-strength low alloyTRIP-aided steels with good hardenability[J]. Procedia Engineering,2010,2:359-362.
    [58]王琼.微观组织和冶金质量对微合金非调质钢疲劳性能影响的研究[D].昆明:昆明理工大学,2009.
    [59] Randelius M, Sandstrom R, Melander A. Fatigue strength of conventionally cast tool steels and itsdependence of carbide microstructure[J]. Steel Research,2012,83(1):83-90.
    [60] Wang X S, Zhu S Q, Kawagoishi N, et al. A novel parameter for evaluating the fatigue crackgrowth rate in carbon steels [J]. Acta Metallurgica Sinica,2001,14(4):271-279.
    [61] Wang X S, Li Y Q, Yu S W. Evaluation of thermal-mechanical fatigue behavior for62Sn-38Pbbulk solder[J]. Experimental Techniques,2003,27(2):31-34.
    [62]王习术,梁峰,曾燕屏等.夹杂物对超高强度钢低周疲劳裂纹萌生及扩展影响的原位观测[J].金属学报,2005,41(12):1272-1276.
    [63]吴建华.夹杂物对2Cr13钢疲劳性能的影响[J].材料热处理技术,2009,38(12):48-49.
    [64]吕小礼.ZG20SiMn厚板CO2焊焊接接头的疲劳性能[J].焊接技术,1994(l):4-6.
    [65] Cova M, Livieri P, Susmel L et al. Defects vs small notches competition in fatigue failure initiationof cast steel[J]. Key Engineering Materials,2010,417-418:529-532.
    [66] Fu N J, Xie J L, Huang C W et al. Research on fatigue properties of grade b steel casted by theresin sand process[J]. Applied Mechanics and Materials,2012,189:218-224.
    [67]张俊清,周素霞,谢基龙.缺口对车轴疲劳性能的影响[J].北京交通大学学报,2010,34(4):132-135.
    [68]包俊成,赵捷,王志奇等.表面强化对30CrMnSiA钢疲劳性能的影响[J].机械工程材料,2010,34(6):71-73.
    [69]陈树铭,李永德,柳洋波等.不同循环载荷下54SiCr6钢的疲劳强度[J].金属学报,2009,45(4):428-433.
    [70]刘晓燕,张海存,何晓梅等.回火温度对2Cr13钢疲劳强度的影响[J].理化检验-物理分册,2007,43(9):446-448.
    [71]李明珠,赵云龙.提高2Cr13马氏体不锈钢疲劳强度的工艺研究[J].热加工工艺,2010,39(12):171-172.
    [72] Krewerth D, Weidner A, Biermann H. Investigation of the damage behavior of cast steel42CrMo4during ultrasonic fatigue by combination of thermography and fractography[J]. AdvancedEngineering Materials,2013,15(12):1251-1259.
    [73] Pyttel B, Brunner I, Schwerdt D et al. Influence of defects on fatigue strength and failuremechanisms in the VHCF-region for quenched and tempered steel and nodular cast iron[J].International Journal of Fatigue,2012,41:107-118.
    [74]李治彬,姜华,邵长青.高强度钢高周疲劳特性试验研究[J].船舶工程,2001,2:62-64.
    [75] Shiozawa K, Liantao L U, Ishihara S. S-N curve characteristics and sub-surface crack initiationbehavior in ultra-long life fatigue of a high carbon-chromium bearing steel[J]. Fatigue&Fractureof Engineering Materials&Structures,2001,24:781-790.
    [76]李治彬,孙俊岭,胡向亮等.船用65Mn钢高周疲劳强度研究[J].应用科技,2007,34(4):54-56.
    [77] Wang Q Y, Berard J Y, Bathias C et al. High-cycle crack initiation and propagation behavior ofhigh-strength spring steel wires[J]. Fatigue&Fracture of Engineering Materials&Structures,1999,22:673-677.
    [78] Wang Q Y, Bathias C, Kawagoishi N et al. Effect of inclusion on subsurface crack initiation andgigacycle fatigue strength[J]. International Journal of Fatigue,2002,24:1269-1274.
    [79]闫桂玲,王弘,高庆.平均应力对50钢超高周疲劳性能的影响[J].机械工程材料,2006,30(12):14-18.
    [80] Ko S J, Kim Y J. High temperature fatigue behaviors of a cast ferritic stainless steel[J]. MaterialsScience and Engineering A,2012, A534:7-12.
    [81] Li Y D, Chen S M, Liu Y B et al. The characteristics of granular-bright facet in hydrogenpre-charged and uncharged high strength steels in the very high cycle fatigue regime[J]. Journal ofMaterials Science,2010,45:831-841.
    [82]于连友,赵永翔,杨冰.铁路货车转向构架B级铸钢的疲劳极限及损伤[J].机械工程学报,2011,47(4):110-116.
    [83] Zhao Y X, Yang B, Wang Z G. Random fatigue limits of China railway grade B cast steel wheel[J].Key Engineering Materials,2011,480-481:347-351.
    [84] Hayashi Y, Akebono H, Kato M et al. Effect of casting defects on fatigue strength of stainless caststeel SCS6for hydraulic turbine runner[J]. Transactions of the Japan Society of MechanicalEngineers,2011,77:947-955.
    [85] Pantazopoulos G, Vazdirvanidis A. Fatigue fracture of cast steel plate connected in a powertransmission joint assembly[J]. Journal of Failure Analysis and Prevention,2012,12(3):237-241.
    [86] McCartney L N. Can safety factors be reduced safety when designing against fatigue[J]. Fatigue ofEngineering Materials and Structures,1979,2(4):387-400.
    [87] De Bussac A. Prediction of the competition between surface and internal fatigue crack initiation inPM alloys[J]. Fatigue&Fracture of Engineering Materials&Structures,1994,17(11):1319-1325.
    [88]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社.2004.
    [89] Uematsu Y, Kakiuchi T, Tokaji K et al. Effects of shot peening on fatigue behavior in high speedsteel and cast iron with spheroidal vanadium carbides dispersed within martensitic-matrixmicrostructure[J]. Materials Science and Engineering A,2013, A561:386-393.
    [90] Zhao Y X, Yang B, Li Y. Scale and surface machining quality effect on fatigue properties forChina railway grade B cast steel wheel[J]. Key Engineering Materials,2011,480-481:363-368.
    [91]吴化,闫肃,曹正.残余奥氏体对20Mn2SiVB钢的疲劳裂纹扩展的影响[J].热加工工艺,2009,35(4):20-22.
    [92] Han E H, Han Y M, Zheng Y L et al. Effects of stress ratio and frequency on corrosion fatiguecrack growth mechanism in low alloy steels[J]. Acta Metallurgica Sinica,1993,6(6):373-378.
    [93]王蒲全,崔广椿.过载对ZG20SiMn腐蚀疲劳裂纹扩展速率影响的研究[J].机械强度,1991,13(2):72-76.
    [94]徐人平,李淑兰,王坤茜.应力比对30CrMnSiNi2A钢P-da/dN-K曲线影响研究[J].工程力学,2005,22(2):6-10.
    [95]许飞,周善林,石科学.应力比对TC4-DT钛合金疲劳裂纹扩展速率的影响[J].热加工工艺,2010,39(20):33-35.
    [96]王坤茜,徐人平,林捷晖.考虑应力比的疲劳裂纹扩展概率模型[J].航空动力学报,2009,24(9):2012-2018.
    [97]王立东,李建平,李高宏等.不同应力比下SiCp/A1复合材料疲劳裂纹扩展行为[J].西安工业学院学报,2006,26(1):72-75.
    [98]庄力健,高增梁,王效贵等.16MnR钢在不同应力比下的疲劳裂纹扩展的试验研究及模拟[J].压力容器,2007,24(3):1-7.
    [99]熊缨,陈冰冰,郑三龙等.16MnR钢在不同条件下的疲劳裂纹扩展规律[J].金属学报,2009,45(7):849-855.
    [100]张仕朝,张建国,郭伟彬等.Ti-1023钛合金的疲劳裂纹扩展行为[J].热加工工艺,2009,38(6):43-47.
    [101]郑子樵,孙晓旭,陈圆圆等.一种Al-Cu-Mg-Zr合金的疲劳裂纹扩展行为研究[J].稀有金属材料与工程,2010,39(6):975-979.
    [102]许天旱,冯耀荣,宋生印等.应力比对套管钻井用J55钢疲劳裂纹扩展行为的影响[J].机械工程材料,2009,33(11):19-23.
    [103] Vasudevan A K, Sadananda K. Classification of fatigue crack growth behavior[J]. Metallurgicaland Materials Transactions A,1995,26A(5):1221-1234.
    [104] Sadananda K, Vasudevan A K. Short crack growth and internal stresses[J]. International Journalof Fatigue,1997,19(S1): S99-S108.
    [105]王庆雷,李德才.疲劳裂纹扩展影响因素研究综述[J].机械工程师,2011(8):5-8.
    [106]高文柱,吴欢,赵永庆.金属材料疲劳裂纹扩展研究综述[J].钛工业进展,2007,24(6):33-37.
    [107]熊健民,毛为民,余天庆.残余应力对疲劳裂纹扩展的影响[J].湖北工学院学报,1996,11(4):7-11.
    [108]冯晓曾.5CrMnMo钢回火后疲劳裂纹扩展行为及机制的研究[J].哈尔滨工业大学学报,1989(3):17-20.
    [109] Winstone M R, Nikbin K M, Webster G A. Modes of failure under creep/fatigue loading of anickel-based superalloy[J]. Journal of Materials Science,1985,20(7):2471-2476.
    [110] Ghonem H, Foerch R. Frequency effects on fatigue crack growth behavior in a near-α titaniumalloy[J]. Materials Science and Engineering A,1991, A138:69-81.
    [111] Hardt S, Maier H J, Christ H J. High-temperature fatigue damage mechanisms in near-α titaniumalloy IMI834[J]. International Journal of Fatigue,1999,21(8):779-789.
    [112]李强,周昌玉,黄文龙等.加载频率变化的腐蚀疲劳裂纹扩展速率数学模型[J].南京化工大学学报,2000,22(1):32-36.
    [113]张有宏,吕国志,李仲等.铝合金结构腐蚀疲劳裂纹扩展与剩余强度研究[J].航空学报,2007,28(2):332-335.
    [114]刘艳萍.焊接桥梁钢疲劳裂纹扩展行为研究[D].武汉:华中科技大学,2010.
    [115]北京钢铁研究院金属物理室编.工程断裂力学(上册)[M].北京:国防工业出版社,1977.
    [116] Ostergren W J. A damage function and associated failure equations for predicating hold time andfrequency effects in elevated temperature low cycle fatigue[J]. Journal of Testing and Evaluation,1976,4(5):327-339.
    [117] Halford G R. The energy required for fatigue[J]. Journal of Materials,1996,1:3-18.
    [118]王磊.材料的力学性能[M].沈阳:东北大学出版社.2005.
    [119]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [120]刘恩泽,郑志,佟健等.DZ468合金高周疲劳性能研究[J].金属学报,2010,46(6):708-714.
    [121]赵光菊,郭献忠,毛宗良.Ti6Al4V高锁螺栓疲劳断口形貌及断口分析[J].贵州大学学报(自然科学版),2012,29(3):44-46.
    [122] Dollar M, Bernstein I M, Thompson A W. Influence of deformation substructure on flow andfracture of fully pearlitic steel[J]. Acta Metallurgica,1988,36(2):311-320.
    [123] Dollar M, Bernstein M, Daeubler M et al. The effect of cyclic loading on the dislocation structureof fully pearlitic steel[J]. Metallurgical Transactions A,1989,20A(3):447-451.
    [124]李怀明,杨让.共析轨钢的循环应变行为[J].北京科技大学学报,1991,13(3):233-238.
    [125] Sunwoo I H, Fine M E, Meshii M, et al. Cyclic deformation of pearlitic eutectoid rail steel[J].Metallurgical Transactions A,1982,13A(11):2035-2047.
    [126]董增祥,纪岗昌,马明亮等.ZG20CrMoV低合金耐热钢主蒸汽弯管研制[J].热加工工艺,2005(4):71-72.
    [127] Sangid M D, Ezaz T, Sehitoglu H et al. Energy of slip transmission and nucleation at grainboundaries[J]. Acta Materialia,2011,59(1):283-296.
    [128] Gurtin M E. A gradient theory of single-crystal viscoplasticity that accounts for geometricallynecessary dislocations[J]. Journal of the Mechanics and Physics of Solids,2002,50(1):5-32.
    [129] Gurtin M E, Needleman A. Boundary conditions in small-deformation, single-crystal plasticitythat account for the Burgers vector[J]. Journal of the Mechanics and Physics of Solids,2005,53(1):1-31.
    [130] Feltner C E. A debris mechanism of cyclic strain hardening for fcc metals[J]. PhilosophicalMagazine A,1965,12A:1229-1248
    [131] Grosskreutz J C, Mughrabi H. Constitutive equations in plasticity[M]. Cambrige: MIT Press,1975.
    [132] Cottrell A H著,葛庭燧译.晶体中的位错和范性流变[M].北京:科学出版社,1960.
    [133] Langford G, Cohen M. Strain hardening of iron by sever plastic deformation[J]. Transactions ofASM,1969,62:623-638.
    [134] Langford G, Cohen M. Microstructural analysis by high-voltage electron diffraction of severelydrawn iron wires[J]. Metallurgical Transactions A,1975,6A(4):901-910.
    [135] Gardner R N, Wilsdorf H G F. Ductile fracture initiation in pure α-Fe. II. Microscopicobservations of an initiation mechanism[J]. Metallurgical Transactions A,1980,11A(4):659-669.
    [136] Gardner R N, Pollock T C, Wilsdorf H G F. Crack initiation at dislocation cell boundaries in theductile fracture of metals[J]. Materials Science and Engineering A,1977, A29:169-174.
    [137] Murr L E, Horyler R F, Lin W N. Interfacial energy and structure in fcc metals and alloys[J].Philosophical Magazine,1970,22:515-542.
    [138] Moore J T, Kuhlmann-Wilsdorf D. Theory of dislocation cells[J]. Journal of Applied Physics,1971,42(10):3717-3730.
    [139] Moore J T, Kuhlmann-Wilsdorf D. Stresses of dislocation cells[J]. Surface Science,1971,31(1):456-478.
    [140] Bassim M N, Kuhlmann-Wilsdorf D. Stresses of hexagonal screw dislocation arrays[J]. IV. Cellaggregates. Physica Status Solidi A,1973,17(2):379-393.
    [141] Remy L. The interaction between slip and twinning systems and the influence of twinning on themechanical behavior of fcc metals and alloys[J]. Metallurgical and Materials Transactions A,1981,12A:387-408.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700