用户名: 密码: 验证码:
7075铝合金螺旋电磁搅拌技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
7075铝合金具有超高强度,广泛应用于航天、航空及军工行业。但由于该合金元素含量高,凝固组织粗大不均匀,合金元素偏析严重,导致铸坯和热轧开坯易开裂,严重限制了其使用和发展。强制均匀凝固技术通过对合金熔体施加物理外场,促进熔体剪切流动,形成均匀分布的温度场、成分场和细小的异质颗粒基底,合金熔体整体爆发形核,最终可以有效的细化晶粒、减少偏析。因此本文进行7075铝合金强制均匀凝固技术及应用研究。
     首先研究了双螺旋机械搅拌技术对7075铝合金凝固行为的影响。在双螺旋机械搅拌条件下合金熔体的流动速度和剪切速率非常高,温度场和成分场非常均匀,强制均匀效果非常好。通过理论和实验分析确定了双螺旋机械搅拌的最优工艺参数为:搅拌强度100rpm,搅拌时间60s,浇注温度650℃。在该工艺条件下,7075铝合金晶粒组织十分细小均匀,平均晶粒尺寸约为55μm;而且合金的化学成分偏析大大减弱,Zn、Mg和Cu元素的偏析率分别降为0.71%、0.87%和2.1%。然而双螺旋机械搅拌不足之处主要是容易污染合金熔体,维护成本高,不适宜高温金属(熔点超过1000℃)的研究与应用。
     电磁搅拌具有能量的高密度性和清洁性、优越的响应性和可控性、易于自动化、能量利用率高等优点,率先实现产业化并获得较为广泛的商业应用。本文研究了环缝电磁搅拌技术对7075铝合金凝固行为的影响。相比普通电磁搅拌,环缝电磁搅拌技术避开了磁感应强度较低的部分,充分利用趋肤效应层磁感应强度高的优点,使合金熔体在缝隙内搅拌,熔体剪切速率增大,同时增加了熔体心部的散热面积,使熔体获得更加均匀的温度场和成分场,合金凝固组织更加细小均匀。但由于电磁搅拌的电磁力在熔体中主要是按周向分布,熔体周向流动为主,而轴向流和径向流较弱,产生了沿轴向和径向分布的温度梯度和成分梯度,同时熔体剪切速率相对于双螺旋机械搅拌弱很多,对合金熔体的强制均匀效果差很多,晶粒组织细化效果也就差很多。
     在以上研究的基础上,本文提出了螺旋电磁搅拌技术。螺旋电磁搅拌技术克服了机械搅拌易污染、难应用和环缝电磁搅拌不均匀、剪切速率低的缺点,实现了在电磁搅拌条件下熔体流动速度和剪切速率明显增加、紊流更加剧烈、温度场和成分场更加均匀,对合金熔体的强制均匀效果与双螺旋机械搅拌大幅接近。通过理论和实验分析获得了螺旋腔体的最优结构和螺旋电磁搅拌的最优工艺参数,分别为:螺旋腔体的螺杆直径40mm、螺纹高度12mm、螺纹斜度65。及螺纹螺距55mmm:搅拌电流30A、搅拌频率50Hz、浇注温度650℃。在该腔体结构和工艺参数条件下,7075铝合金凝固组织演变为细小均匀的等轴晶组织,晶粒尺寸约为68gm,而且合金的化学成分偏析大大减弱,Zn、Mg和Cu元素的偏析率分别降为1.5%、3.3%和3.4%。
     以上述的实验研究为基础,深化丰富了强制均匀凝固技术对合金凝固行为的影响,建立了强制均匀凝固作用下控制形核及长大的描述模型。强制均匀凝固技术可以有效控制熔体温度场和成分场的均匀性,增加了合金熔体的形核过冷度,缩小甚至消除成分过冷区,从而显著增加了合金熔体的有效均匀形核率、非均匀形核率及核心存活率,使熔体整体爆发形核,并削弱甚至消除了枝晶生长的条件,最终使凝固组织变为细小均匀的等轴晶粒。
     最后进行了螺旋电磁搅拌技术在7075铝合金流变压铸成型中的应用研究,研究结果表明:相比于普通压铸成型,螺旋电磁搅拌条件下7075铝合金流变压铸零件显微组织分布均匀细小,不同位置的组织差别不大;布氏硬度显著提高且分布均匀;零件裂纹倾向性降低明显;凝固组织和性能均接近双螺旋机械搅拌流变压铸的零件,而且生产效率明显增加。同时针对螺旋电磁搅拌技术自动化程度不高的缺点,设计出自动化螺旋电磁搅拌技术原型,集熔体自动收集、自动处理和自动浇注于一体,为最终实现产业化生产奠定基础。
7075aluminum alloy with high strength is widely used in the aerospace, aviation and military industry. Due to the high content of alloy elements, the solidification structure is non-uniform and coarse and alloy elements segregation is serious, resulting in being craze when casting and hot rolling, which seriously limits its use and development. By applying physical fields on alloy melt, mandatory uniform solidification technology can promote the melt flowing and shearing and make the temperature field, component field and tiny heterogeneous particles uniformly distribute in the melt, which will make the alloy melt overall nucleate, effectively refine the grain and reduce segregation. So this paper was concerned on the technology and application research on mandatory uniform solidification of7075aluminium alloy.
     We studied the effect of twin-screw stirring process on the melt physical fields and solidification structure of7075aluminum alloy. The twin-screw stirring process can make the melt flowing rate and shearing rate very high, the temperature and composition fields very uniform, and the effect of mandatory uniform solidification very well. The optimal process parameters of twin-screw stirring were the intensity of100rpm, the stirring time of60s and the pouring temperature of650℃. Under this process condition, the7075alloy grain was very uniformly fine and the average grain size was55μm. The alloy chemical composition segregation greatly abated. The segregation rates of Zn, Mg and Cu elements were0.71%,0.87%and2.1%, respectively. The deficiencies of twin-screw stirring process were that the stirring device was easy to be corroded and expensive to be maintained, and it cannot process high temperature alloy (melting point higher than1000℃). So it is not suitable for mass production of parts, and it is difficult to realize industrialization production.
     The electromagnetic stirring has the advantages of high density and cleanliness of energy, superior responsiveness and controllability, easy automation, high energy utilization rate, and etc. So it obtains more widely commercial application. We studied the effect of the annular electromagnetic stirring process on the physical fields and solidification structure of7075aluminum alloy. Compared with the conventional electromagnetic stirring process, annular electromagnetic stirring process can avoid the lower part of magnetic induction intensity, alternate the disadvantage of electromagnetic field skin effect into advantage and make full use of the advantage of high magnetic induction intensity on the skin effect layer. Also it increased the cooling area of the melt center and made the melt temperature and composition fields more uniform. But because of the intrinsic characteristics of electromagnetic stirring, electromagnetic force in the melt showed the circumferential distribution. The melt flow was also the circumferential movement. The circumferential flow was strong, but the axial flow and radial flow were weak. It was inevitable that the temperature gradient and composition gradient distributed along the radial and axial part.
     On the basis of the above research, this paper presented the spiral electromagnetic stirring technology which could overcome the shortcomings of mechanical stirring for easy pollution and difficult application. Under the condition of spiral electromagnetic stirring, the flow velocity and shearing rate of melt increased significantly, the temperature gradient significantly decreased, and the turbulence of melt flow became more intensive. The optimal structures of the screw were:the screw diameter of40mm, the screw thread height of12mm, the screw thread angle of65°and the screw thread pitch of55mm. The optimal process parameters of spiral electromagnetic stirring were:the stirring current of30A, the stirring frequency of50Hz and the pouring temperature of650℃. And under this process condition, the7075alloy solidification microstructure became more uniformly fine, and alloy chemical composition segregation greatly abated. The segregation rates of Zn, Mg and Cu elements were1.5%,3.3%and3.4%, respectively.
     On the basis of the above experiment research, it was further understood that the effect of mandatory uniform solidification technology on the solidification behavior of alloy melt. It was established that the description of controlled nucleation and growth model under the action of mandatory uniform solidification. Mandatory uniform solidification technology can effectively improve the homogeneous nucleation rate and heterogeneous nucleation rate of the alloy melt, improve the survival rate of the nuclus, make the nucleation outbreak in the whole melt, and reduce or even eliminate the undercooling region in the forefront of alloy solid-liquid interface. Finally, it limited the dendrite growth and made the solidification microstructure become fine equiaxed grains.
     Finally on the basis of the above research, the application of the spiral electromagnetic stirring technology on rheo-diecasting was carried on. The results showed that the spiral electromagnetic stirring technology can well applied on the alloy rheo-diecasting forming. Compared with common diecasting forming, under the condition of spiral electromagnetic stirring, the microstructure of rheo-diecasting part distributed uniformly fine and showed little difference in different position. Brinell hardness of rheo-diecasting parts increased significantly, and also showed little difference in different positions. The solidification microstructure and mechanical property were similar with that in the condition of twin-screw mechanical stirring, but the spiral electromagnetic stirring technology obviously increased the production efficiency. In order to overcome the shortcoming of spiral electromagnetic stirring technology for the low automation degree, it was designed that automatic spiral electromagnetic stirring technology prototype, which had the advantages of automatic collection, automatic processing and automatic pouring and laid the foundation for the ultimate realization of industrial production.
引文
[1]曲明洋.热变形对7A04铝合金组织和性能的影响[D].太原:中北大学,2010.
    [2]Lukasak D. A., Hart R. M.. Aluminum Alloy Development[J]. Aerospace Engineering,1991,9(11):21-24.
    [3]熊柏青.国产大飞机用铝合金材料[M]//中国材料研究学会国家发展和改革委员会高技术产业司,中国材料研究学会.中国新材料产业发展报告(2009),.北京:化学工业出版社,2010.
    [4]樊喜刚Al-Zn-Mg-Cu-Zr合金组织性能和断裂行为的研究[D].哈尔滨:哈尔滨工业大学,2007.
    [5]陈昌麒.Al-Zn-Mg-Cu合金的发展[J].中国有色金属学报,2002,3(12):22-27.
    [6]丛福官,赵刚,田妮,等.7×××系超高强铝合金的强韧化研究进展及发展趋势[J].轻合金加工技术,2012,40(10):23-33.
    [7]余瑾,雍文佳,张敏,等.超高强铝合金研发动态与前景[A].2010全国机械装备先进制造技术(广州)高峰论坛,第十一届粤港机械与电子工程技术应用研讨会[C],广州,2010:115-117.
    [8]舒文祥,郭明星,侯陇刚,等.Al-Zn-Mg-(Cu)合金抗应力腐蚀性能影响因素分析[J].材料导报A,2013,27(07):1-9.
    [9]Baydogan M., Cimenoglu H., Sabri K. E., et al. Improved Resistance to Stress-Corrosion-Cracking Failures via Optimized Retrogression and Reaging of 7075-T6 Aluminum Sheets[J]. Metallurgical and Materials Transactions A.,2008, 39(10):2470-2476.
    [10]庚丽萍,阮鹏跃.高性能铝合金厚板的生产技术及应用[J].铝加工,2010,195(04):27-33.
    [11]赵立华.超高强度铝合金研究现状及发展趋势[J].四川兵工学报,2011,32(10):147-150.
    [12]Robins J. S.. Influence of Retrogression and Reaging on Fracture Toughness 7010 Aluminium Alloy[J]. Materials Science and Technology,2003,19(12):1697-1704.
    [13]Srivatsan T. S.. Microstructure, Tensile Properties and Fracture Behaviour of Aluminium Alloy 7150[J]. Journal of Materials Science,1992,27(17):4772-4781.
    [14]曾渝,尹志民,潘青林,等.超高强铝合金的研究现状及发展趋势[J].中南工业大学学报(自然科学版),2002,33(06):592-596.
    [15]Reese E., Dowson A., Jones T. B.. The Variable Expansion Process — a New Cost Efficient Method for Cold Working Fastener Holes in Aluminium Aircraft Structures[J]. ICAF 2009, Bridging the Gap between Theory and Operational Practice,2009:1275-1284.
    [16]王晨.Sc对Al-Zn-Mg-Cu-Zr合金组织结构及力学性能的影响[D].沈阳:沈阳工业大学,2013.
    [17]李文斌.含Sc的超高强Al-Zn-Cu-Mg-Zr合金微观组织与性能研究[D].长沙:中南大学,2010.
    [18]Jabra J., Romios M., Lai J., et al. The Effect of Thermal Exposure on the Mechanical Properties of 2099-T6 Die Forgings,2099-T83 Extrusions,7075-T7651 Plate, 7085-T7452 Die Forgings,7085-T7651 Plate, and 2397-T87 Plate Aluminum Alloys[J]. Journal of Materials Engineering and Performance,2006,15(5):601-607.
    [19]蹇海根,姜锋,徐忠艳,等.航空用高强韧Al-Zn-Mg-Cu系铝合金的研究进展[J].热加工工艺,2006,35(12):61-66.
    [20]林高用.高性能7×75系铝合金厚板加工技术相关基础研究[D].长沙:中南大学,2006.
    [21]文康.高强高韧Al-Zn-Mg-Cu合金疲劳断裂性能以及微观组织的研究[D].长沙:中南大学,2010.
    [22]Abel E. T.. Principles of Metal Refining (Oxford Science Publications)[M]. Oxford: Oxford University Press,1993.
    [23]郭景杰,傅恒志.合金熔体及其处理[M].北京:机械工业出版社,2005.
    [24]Gezer B. T., Toptan F., Daglilar S.. Production of Al-Ti-C Grain Refiners with the Addition of Elemental Carbon[J]. Materials & Design,2010,1(31):30-35.
    [25]刘丹.铝合金液相线铸造制浆及半固态加工工艺与理论研究[D].沈阳:东北大学,1999.
    [26]Xia K., Tausig G.. Liquidus Casting of a Wrought Aluminum Alloy 2618 for Thixoforming[J]. Materials Science & Engineering A.,1998,1-2(246):1-10.
    [27]Pan Y. Q., Findon M., Apelian D.. The Continuous Rheoconversion Process (CRP): a Novel SSM Approach[A].8th International Conference on Semi-Solid Processing of Alloys and Composites[C], Limassol,2004:2-4.
    [28]汤孟欧.环缝式电磁搅拌理论与工艺研究[D].北京:北京有色金属研究总院,2012.
    [29]李杰.脉冲电流凝固细晶技术的机理及应用[D].上海:上海大学,2009.
    [30]Butler A. W.. Die Casting (Permanent Mold)[J]. Encyclopedia of Materials Science and Technology,2008:2147-2152.
    [31]Ashok S.. Evolution of Microstructure of Cu-4% Zr Alloy Formed by Spray Casting[J]. International Journal of Rapid Solidification,1993,7:283-293.
    [32]Slattery C. J., Lee S.. Analysis of Melt Spinning[J]. Journal of Non-Newtonian Fluid Mechanics,2000,3(89):273-286.
    [33]Riahi M.. Surface Treatment of Cast Iron by Adding Different Alloying Elements to Form a Metallic Glass Structure Layer Using an Industrial Carbon Dioxide Laser[J]. Journal of Materials Processing Technology,1996,1(58):3-12.
    [34]Wilde G., Sebright J. L., Perepezko J. H.. Bulk Liquid Undercooling and Nucleation in Gold[J]. Acta Materialia,2006,18(54):4759-4769.
    [35]边秀房,刘相法,马家骥.铸造金属遗传学[M].济南:山东科学技术出版社,1999.
    [36]Dobatkin I. V., Eskin I. G.. Ingots of Aluminum Alloys with Nondendritic Structure Produced by Ultrasonic Treatment for Deformation on the Semi-solid State[A]. Proceeding of the 4th S2P[C], England,1996:193-196.
    [37]徐骏.强制均匀凝固组织精确控制技术[J].中国材料进展,2010,29(11):26-30.
    [38]程和法,黄笑梅,杨俊,等.超声波处理对过共晶Al-20%Si合金组织的影响[J].材料热处理学报,2011,32(03):35-39.
    [39]李拥军.高能超声波搅拌法制备半固态Al-5%Cu合金的研究[D].合肥:合肥工业大学,2007.
    [40]秦斌.基于超声振动制浆的流变压铸Al-Si合金的充型能力研究[D].武汉:华中科技大学,2009.
    [41]叶晴.单管强冷制备半固态A356铝合金浆料的实验研究及数值模拟[D].南昌:南昌大学,2009.
    [42]李拥军,程和法,黄笑梅,等.超声波搅拌法制备半固态Al-5Cu合金[J].特种铸造及有色合金,2007,27(06):448-450.
    [43]黄笑梅,程和法,李拥军.超声波搅拌法制备半固态铝—铜合金的研究[J].铸造设备与工艺,2011,01:23-25.
    [44]Zhai W., Hong Z., Mei C., et al. Dynamic Solidification Mechanism of Ternary Ag-Cu-Ge Eutectic Alloy under Ultrasonic Condition[J]. Science China Physics, Mechanics & Astronomy,2013,56(2):462-473.
    [45]薛跃腾.A356半固态金属浆料的制备及压铸工艺的数值模拟[D].天津:河北工业大学,2007.
    [46]Wannasin J., Martinez R. A., Flemings M. C. A Novel Technique to Produce Metal Slurries for Semi-Solid Metal Processing[A]. Proceedings of the 9th on Semi-solid Processing of Alloys and Composites[C], Pusan, Korea,2006,116-117:366-369.
    [47]邹莹,董选普,张洁,等.气流搅拌镁合金半固态铸造新技术[J].铸造,2008,57(03):215-218.
    [48]Zhang L., Dong X., Li J., et al. Microstructure Evolution of Al-Si Semi-solid Slurry by Gas Bubble Stirring Method[J]. Journal of Central South University of Technology,2011,18(6):1789-1794.
    [49]王文俊,董选普,张磊,等.气流搅拌振动复合法半固态浆料制备装置与工艺[J].铸造,2011,60(09):865-868.
    [50]Fan Z. Y., John B., Ji S. X.. Method and Apparatus for Producing Semisolid Method Slurries and Shaped Components[P]:US Patent:6745818 B1,2004-06-08.
    [51]Fan Z. Y., Ji S. X., John B. M.. Twin-Screw Rheomoulding-a New Semi-solid Processing Technology [A]. Proceedings of the 6th International Conferrence on Semi-Solid Processing of Alloys and Composites[C], Turin, Italy,2000:61-66.
    [52]Fan Z., Liu G., Wang Y.. Microstructure and Mechanical Properties of Rheo-diecast AZ91D Magnesium Alloy[J]. Journal of Materials Science,2006,41(12):3631-3644.
    [53]Ji S., Fan Z.. Solidification Behavior of Sn-15 wt pct Pb Alloy under a High Shear Rate and High Intensity of Turbulence during Semisolid Processing[J]. Metallurgical and Materials Transactions A.,2002,33(11):3511-3520.
    [54]Ji S., Fan Z.. Solidification Behavior and Microstructural Evolution of Near-Eutectic Zn-Al Alloys under Intensive Shear[J]. Metallurgical and Materials Transactions A., 2009,40(1):185-195.
    [55]Xia M., Huang Y., Cassinath Z., et al. Continuous Twin Screw Rheo-Extrusion of an AZ91D Magnesium Alloy[J]. Metallurgical and Materials Transactions A.,2012, 43(11):4331-4344.
    [56]朱光磊.AZ91D镁合金高剪切流变成形理论与工艺研究[D].北京:北京有色金属研究总院,2010.
    [57]徐国兴,张琪渔.电磁搅拌技术在连铸机上的应用及其对铸坯质量的改善[J].上海金属,1997,03:28-33.
    [58]Joly P. A., Mehrabian R.. The Rheology of a Partially Solid Alloy[J]. Journal of Materials Science,1976,11(08):1393-1418.
    [59]Midson S. P.. The Commercial Status of Semi-solid Casting in the USA[A]. Proceedings of the 4th International Conferrence on Semi-solid Processing of Alloys and Composites[C], Sheffield,1996:251-255.
    [60]Zillgen M., Hirt G.. Microstructural Effect of Electromagnetic Stirring in Continuous Casting of Various Aluminium Alloys [J]. Solid Liquid Coexistence Forming Technology of Metals,1996,11:142-152.
    [61]Niedermaier F., Langgartner J., Hirt G.. Horizontal Continous Casting of SSM Billets[A]. Proceedings of the 5th International Conferrence On Semi-Solid Processing of Alloys and Composites[C], Colorado,1998:123-127.
    [62]Steinbach S., Ratke L.. The Effect of Rotating Magnetic Fields on the Microstructure of Directionally Solidified Al-Si-Mg Alloys[J]. Materials Science and Engineering, 2005,413-414:200-204.
    [63]Nafisi S., Emadi D., Shehata M. T.. Effects of Electromagnetic Stirring and Superheat on the Microstructural Characteristics of Al-Si-Fe alloy[J]. Materials Science and Engineering,2006,432:71-83.
    [64]Kang C. G., Bae J. W., Kim B. M.. The Grain Size Control of A356 Aluminum Alloy by Horizontal Electromagnetic Stirring for Rheology Forging[J]. Journal of Materials Processing Technology,2007,187-188:344-348.
    [65]张志峰,田战峰,徐骏,等.施加复合电磁搅拌对A357合金微观组织的影响[J].稀有金属,2006,30(02):217-220.
    [66]赵振铎,毛卫民,钟荣茂.用行波电磁搅拌制备半固态AlSi7Mg合金浆料[J].材料研究学报,2008,22(04):369-373.
    [67]蒋业华,周荣,卢德宏,等.ZA27合金的半固态浆液电磁搅拌工艺及其组织和性能[J].铸造,2002,51(02):88-91
    [68]王平,康皓,路贵民,等.电磁场作用下半固态ZL201合金显微组织特征[J].东北大学学报,2005,26(07):637-639.
    [69]Can-feng F., Xing-guo Z., Shou-hua J.. Research on AZ61 Magnesium Alloy by Electromagnetic Stirring and Force Field Analysis[J]. Rare Metal Materials and Engineer,2007,1(36):170-173.
    [70]毛卫民,李强,甄子胜,等.电磁搅拌下半固态AZ91D镁合金的组织形成[J].特种铸造及有色合金,2005,25(03):76-79.
    [71]徐骏,汤孟欧,张志峰.环缝式电磁搅拌制浆技术及其应用[J].特种铸造及有色合金,2011,10(31):883-887.
    [72]陈兴润,张志峰,徐骏,等.环缝式电磁搅拌法制备半固态浆料过程电磁场的数值模拟[J].北京科技大学学报,2009,31(10):1305-1310.
    [73]高泽生.铝合金晶粒细化剂的试验方法(1)[J].轻金属,1999,02:53-57.
    [74]高泽生.铝合金晶粒细化剂的试验方法(2)[J].轻金属,1999,04:52-54.
    [75]Association W. T. A.. AA TP-1-1990, Standard test procedure for aluminium alloy grain refiners (TP-1)[S].1990.
    [76]尹立新,郭雁行,刘晓岚.图像分析仪在金相检验中的应用[J].物理测试,2004,02:38-42.
    [77]黄维.AZ31镁合金变质剂及其细化行为的研究[D].沈阳:东北大学,2009.
    [78]白金泽,孙秦,郭英男.应用ANSYS进行复杂结构应力分析[J].机械科学与技术,2003,22(03):441-443.
    [79]柯常忠,索海波.ANSYS优化技术在结构设计中的应用[J].煤矿机械,2005,01:9-11.
    [80]邢静忠,李军.ANSYS的建模方法和网格划分[J].中国水运(学术版),2006,6(09):116-118.
    [81]张晓丽,李德建,李明鹏.ANSYS软件二次开发技术的应用[J].重庆工学院学报(自然科学版),2007,21(01):11-14.
    [82]袁安富,陈俊ANSYS在模态分析中的应用[J].中国制造业信息化,2007,36(11):79-82.
    [83]林建冬,原思聪,郑建校.基于Pro/E与ANSYS的CAD/CAE数据交换方法研究[J].工程机械,2007,38(08):32-36.
    [84]武江传.ANSYS在结构分析中的应用[J].连云港化工高等专科学校学报,2002,15(03):29-31.
    [85]JI S., FAN Z.. Solidification Behavior of Sn-15 Wt Pct Pb Alloy under a High Shear Rate and High Intensity of Turbulence during Semisolid Processing[J]. Metallurgical and Materials Transactions A,2002,11(33):3511-3520.
    [86]朱光磊,徐骏,张志峰,等.搅拌剪切作用下凝固组织演变过程的数学描述[J].北京科技大学学报,2010,32(06):759-763.
    [87]Fan Z., Liu G., Wang Y.. Microstructure and Mechanical Properties of Rheo-diecast AZ91D Magnesium Alloy[J]. Journal of Materials Science,2006,12(41):3631-3644.
    [88]Das A., Fan Z.. Morphological Development of Solidification Structures under Forced Fluid Flow:Experimental Observation[J]. Materials Science and Technology, 2003,5(19):573-580.
    [89]张衬新.电磁搅拌作用下铝合金凝固组织的数值模拟[D].北京:北京有色金属研究总院,2012.
    [90]贾光霖,庞维成.电磁冶金原理与工艺[M].沈阳:东北大学出版社,2003.
    [91]张斌.电磁场作用下液体金属液面运动及控制规律的研究[D].大连:大连理工大学,2002.
    [92]余建波.电、磁复合效应对金属凝固组织的影响[D].上海:上海大学,2009.
    [93]杨东升.电磁搅拌辅助激光熔覆化纤切断刀的初步研究[D].武汉:华中科技大学,2006.
    [94]张勤.低频电磁半连续铸造铝合金工艺及理论研究[D].沈阳:东北大学,2003.
    [95]张北江.低频电磁场作用下铝合金半连续铸造工艺与理论研究[D].沈阳:东北大学,2002.
    [96]Bai Y. L., Xu J., Zhang Z. F.. Annulus Electromagnetic Stirring for Preparing Semisolid A357 Aluminum Alloy Slurry[J]. Transactions of Nonferrous Metals Society of China,2009,5(19):1104-1109.
    [97]Zhu G. L., Xu J., Zhang Z. F.. Annular Electromagnetic Stirring--a New Method for the Production of Semi-solid A357 Aluminum Alloy Slurry[J]. Acta Metallurgica Sinica (English Letters),2009,6(22):408-414.
    [98]Meng-ou T., Jun X., Zhi-feng Z., et al. New Method of Direct Chill Casting of Al-6Si-3Cu-Mg Semisolid Billet by Annulus Electromagnetic Stirring[J]. Transactions of Nonferrous Metals Society of China,2010,9(20):1591-1596.
    [99]Meng-ou T., Jun X., Zhi-feng Z., et al. Effects of Annulus Gap on Flow and Temperature Field in Electromagnetic Direct Chill Casting Process[J]. Transactions of Nonferrous Metals Society of China,2011,5(21):1123-1129.
    [100]Tang M. O., Xu J., Zhang Z. F., et al.3D Numerical Simulation of Flow and Temperature Field in Semi-Solid Slurry Preparation by A-EMS[J]. Materials Science Forum,2011,689:16-23.
    [101]刘相法,边秀房,荣福荣,等.铝合金组织遗传现象及其利用的研究[J].铸造,1994,10:18-23.
    [102]秦敬玉,边秀房,王伟民,等.Al和Sn液态结构的温度变化特性[J].物理学报,1998,03:89-95.
    [103]王丽,李辉,边秀房,等.纯铝熔体微观结构演变及液固相关性研究[J].物理学报,2000,01:45-48.
    [104]边秀房,邹新国,刘广荣,等.金属晶粒自身细化[J].金属学报,1997,33(06):602-608.
    [105]边秀房,潘学民,秦绪波,等.金属熔体中程有序结构[J].中国科学E辑:技术科 学,2002,02:145-151.
    [106]马家骥,张林,边秀房.铝硅合金的液相结构转变[J].铸造,1995,10:7-12.
    [107]王同敏.金属凝固过程微观模拟研究[D].大连:大连理工大学,2000.
    [108]周尧和,胡壮麟,介万奇.凝固技术[M].北京:机械工业出版社,1998.
    [109]胡汉起.金属凝固原理[M].北京:机械工业出版社,2000.
    [110]Kurz W., Fisher D.J..凝固原理[M].北京:高等教育出版社,2010.
    [111]Fan Z., Liu G., Hitchcock M., et al. Solidification Behavior Under Intensive Forced Convenction[J]. Transactions of the Indian Institute of Metals,2007,60(2-3): 161-166.
    []12]胡中潮.多元微合金化锚杆新材质的研究[D].阜新:辽宁工程技术大学,2004.
    [113]Fan Z. An Epitaxial Model for Heterogeneous Nucleation on Potent Substrates[J]. Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2013,44(3):1409-1418.
    [114]Solthin R. T.. Heterogeneous Nucleation in Solidifying Metals[J]. Acta Metallurgica, 1978,26(02):223-231.
    [115]Kalikmanov V. I.. Heterogeneous Nucleation[J]. Nucleation Theory,2013,860: 253-276.
    [116]潘冶,孙国雄.棒状共晶界面成分分布及对平界面生长的影响[J].铸造,2000,49(06):315-317.
    [117]边秀房,王方回,王永珊,等.包晶合金的成分过冷[J].特种铸造及有色合金,1989,03:7-10.
    [118]李双明,刘林,李晓历,等.包晶合金定向凝固平界面前沿的形核分析[J].金属学报,2004:40(01):20-26.
    [119]范群成.成分过冷与结晶温度间隔△T_f[J].材料科学与工程,1991,9(04):45-46.
    [120]刘东戎.TiAl合金锭凝固组织形成的数值模拟[D].哈尔滨:哈尔滨工业大学,2006.
    [121]介万奇,傅恒志,周尧和.多元多相合金凝固理论模型的研究进展[J].中国材料进展,2010,29(06):1-11.
    [122]贾志伟,张军,崔春娟,等.非规则共晶凝固理论研究的进展[J].铸造,2008,57(05):428-432.
    [123]袁晓光,黄宏军,李荣德,等.稳步发展的压铸技术——第五届中国国际压铸会议论文综述[J].铸造,2006,55(10):1024-1028.
    [124]白月龙,毛卫民,徐宏,等.半固态A356铝合金流变压铸充填过程的数值模拟[J]. 特种铸造及有色合金,2007,S1:473-476.
    [125]黄晓锋,田载友,朱凯,等.压铸铝合金及压铸技术的研究进展[J].热加工工艺,2008,37(17):137-141.
    [126]侯文杰,谭建波,刘江成.半固态流变压铸的研究现状与发展趋势[J].铸造技术,2009,30(01):91-94.
    [127]黄海军,陈体军,刘明伟,等.流变压铸发展前景[J].上海有色金属,2010,31(03):141-147.
    [128]张俊杰.半固态铝合金流变压铸充型及凝固过程数值模拟[D].石家庄:河北科技大学,2012.
    [129]马跃宇,杨必成,王亚宝,等.双螺旋流变压铸AZ91D镁合金的研究[J].稀有金属,2013,37(01):27-32.
    [130]康永林,张帆,周冰,等.铝、镁合金流变压铸成形技术及应用[J].有色金属科学与工程,2011,2(06):1-6.
    [131]毛卫民,白月龙,陈军.半固态合金流变铸造的研究进展[J].特种铸造及有色合金,2004,02:4-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700