用户名: 密码: 验证码:
7000系铝合金的淬火敏感性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空航天领域对飞机机身、机舱壁板、机翼梁等更加轻量化的要求,使得轻质铝合金构件呈现大型化、整体化的发展趋势,而为了保障大型整体构件厚度截面各处性能的均匀性,所使用的铝合金材料必须具有低淬火敏感性。因此,对7000系铝合金淬火敏感性的研究具有一定的理论意义和工程应用价值。
     7000系铝合金,主要通过固溶处理获得α-A1过饱和固溶体,后时效使合金得到强化。若过饱和固溶体稳定,则大型构件的厚度截面各处,即使淬火冷却速度不同,也不会发生严重的淬火分解析出现象,时效后基体中析出的沉淀相差别不大,性能差别不大。
     本文主要采用SEM. XRD. TEM.3DAP及电导率等测试手段,系统研究了Zn、Mg、Cu三种元素对7000系铝合金过饱和固溶体稳定性的影响规律,分析了铝合金淬火冷却过程中“诱导析出”的现象,并初步探讨了铝合金淬火敏感性的机理。
     鉴于直接对7000系四元合金过饱和固溶体稳定性影响因素研究的复杂性,首先对zn、Mg、Cu三种元素与二元和三元铝合金过饱和固溶体的稳定性之间的关系进行了研究,结果表明,二元及三元合金分别进行固溶处理淬火后,含Cu元素的合金,相对含Zn、Mg两种元素的合金过饱和固溶体不稳定,较易脱溶析出;且随Cu元素含量的增加,淬火态二元Al-xCu合金和三元Al-xZn-yCu合金基体中,脱溶析出相密度越高,尺寸越大。二元及三元两类合金过饱和固溶体体系中,Cu元素原子引起的过饱和固溶体的晶格常数变化量最大,即|△aCu|>|△aMg|>|△aZn|;晶格常数改变量越大,过饱和固溶体越不稳定。
     淬火态7000系四元铝合金中,Zn、Mg、Cu三种元素原子引起合金过饱和固溶体的晶格常数改变趋势与二元及三元合金体系中相同,添加相同含量的三种合金元素时,Cu元素原子引起晶格常数变化量最大;当(zn+Mg+Cu)值约在5.8at%-7at%范围内时,合金晶格常数变化量最小。现阶段航空航天中应用广泛的7085与7050两种铝合金经固溶淬火处理,晶格常数改变量较大的7050合金过饱和固溶体中,室温放置1.5h后,基体中所含原子团簇的密度(约9.3×1024/m3)相比7085合金(3.5×1024/m3)较高;大部分团簇中包含的原子数少于30个,在电镜二维观察视场中尺寸约小于1nm;当遭遇合适的热力学条件时,这些团簇将进一步长大粗化,加速沉淀析出过程。
     在含10~15个原子的小尺寸团簇中,7085合金基体中含Cu原子团簇占总团簇比例约为65%,Cu元素含量约5at%-6at%;7050合金基体中含Cu原子团簇占总团簇比例约为82%,Cu元素含量约9at%~10at%,远远超出合金中Cu为1at%的名义成分含量。随团簇尺寸的增加,两种合金中含Cu原子的团簇比例均增加,当原子团簇中所含原子个数超过30时,两种合金基体中含Cu原子团簇的比例均上升至95%,进一步说明了Cu在铝合金中为淬火敏感性元素,在基体中造成的晶格畸变大,形成的畸变能高,降低了沉淀相的形核位垒,加速部分析出相的长大粗化过程。因此,Cu元素含量较高的7050合金过饱和固溶体不稳定,室温放置1.5h后,尺寸超过约2nm的沉淀相(所含原子数多于50个的团簇)密度约0.7/nm3,而7085合金基体中密度仅为0.035/nm3,不含Cu元素的7021合金基体中未见明显析出。
     淬火态7000系铝合金基体中容易“诱导析出”位置的顺序是:晶界、亚晶界及与基体非共格的Al18Cr2Mg3第二相颗粒、A13Zr相、过量的Cu元素原子,这些因素均增加了铝合金的淬火敏感性,但这些因素在不同合金基体中产生“诱导析出”的能力不同,要结合合金本身α--A1过饱和固溶体的稳定性来解释合金淬火敏感性问题。
     端淬实验显示,在7B04合金中,除去(亚)晶界优先参与“诱导析出”外,基体中存在的、与之非共格的Al18Cr2Mg3第二相粒子,也是一个与亚晶界诱导析出能力基本相当、促进第二相析出并长大的主要因素,严重增加合金的淬火敏感性,因此在距离淬火端较近的位置便充当异质形核位置,诱导产生第二相;7050合金中,除去(亚)晶界优先参与“诱导析出”外,与基体完全共格的A13Zr、过量的Cu元素原子也是加速沉淀相产生并粗化的重要因素;7085合金基体中,A13Zr第二相粒子是促进第二相产生并粗化的第二大影响因素,相比7050合金,主合金元素Cu含量较低,α-A1过饱和固溶体比较稳定,淬火敏感性相对较低,此研究结论与能够代表合金过饱和固溶体在淬火过程中稳定性的TTP实验曲线结论相吻合。
More lightweight demands for aircraft fuselage, cabin siding, wing beam etc in aerospace field, making the lightweight aluminum alloy components trend to large and overall development. To ensure the uniformity of proerties cross the thickness section, the aluminum alloys are required to have low quenching sensitivity. The study for quenching sensitivity of7000series aluminum alloy will be given the theoretical significance and application value.
     7000series alloies are strengthened through thermal treatment to get a α-Al supersaturated solid solution and then by the decomposition of the solid solution to precipitate. When the supersaturated solid solution is stable, cross the thickness section the precipitate will have small difference after ageing and little difference in performance even at different quenching rates.
     In this study, XRD, XAFS, SEM,3DAP and electrical conductivity were used. The influencing regularities of the addition of Zn, Mg, Cu three alloying element and the stability on supersaturated solid solution were systematic investigated. The process of quench-induced precipitate of the7000series alloys was studied. The quenching sensitivity of the7000series aluminum alloys was discussed theoretically.
     Due to the large complexity on the stability influence factors of7000series Aluminum alloy supersaturated solid solution, the relationship between Zn, Mg, Cu alloying element with binary alloy and ternary alloy were studied firstly, the After solid solution treatment, it was found that the supersaturated solid solution of the Al-xCu binary alloy was not stable with preferential precipitation in comparsion with the Al-xZn and Al-xMg alloys; With the incease in Cu addition, the density and size of the precipitation phases in the matrix of Al-xCu and Al-xZn-yCu alloy become higher and larger.In the binary and ternary alloy systems, the largest change of the lattice constant of the supersaturated solid solution occurred in the alloys with Cu addition. The lattice constant change caused by the addition of alloying elements followed the order of|Δacu|>|Δamg|>|Δazn|; The larger the lattice constant change, the less stable the supersaturated solid solution was.
     In the as-quenched7000series aluminum alloys, the trend of lattice constant changes due to the same alloying element addition was the same in the binary and ternary alloys. In comparison with the addition of Zn and Mg, the same amount of Cu addition led to the largest change of lattice constant of the supersaturated solid solution; When the (Zn+Mg+Cu) value is about5.8at%-7at%, the change of lattice constant of the supersaturated solid solution is smaller. After solid solution treatment and stay in room temperature for1.5h, alloy7050with larger lattice constant change had the higher cluster density of9.3x1024/m3. The cluster densities of7085were3.5x1024/m3. These clusters normally have less than30atoms with the size less than1nm in the2D HRTEM field. Under the appropriate thermodynamic conditions, the cluster will grow and become coarser and accelerate the process of precipitate.
     Of the total small clusters composed of10-15atoms, the Cu containing clusters accounted for65%in7085alloy. The average content of Cu atoms in the clusters was about5at%-6at%. The Cu containing clusters accounted for82%of the total clusters in7050alloy. The content of Cu atoms in the clusters was about9at%-10at%, much higher than the Cu atom content of1%in the alloy. With the increase of cluster size, the Cu atom content increased in both alloys. In the clusters with more than30atoms, the percentage of Cu containing clusters increased to95%. It indicates that Cu atoms are quenching sensitive elements in the aluminum alloys. Cu atoms can cause large lattice distortion with high formation energy. They can overcome the nucleation barrier to reduce the nucleation energy and accelerate partial coarse phase precipitation. Therefore, the high Cu containing supersaturated solid solution of7050alloy is least stable. After1.5h stay in room temperature, the density of the precipitation phases with size larger than2nm was0.7/nm3in7050alloy and0.035/nm3in7085alloy. There was no significant precipitation in matrix of7021alloy without Cu alloying element.
     In the matrix of quenched7000series alloys, the quench-induced precipitate occurs preferentially on the following locations in the order of:grain boundary, sub-grain boundary and Al18Cr2Mg3particles, Al3Zr particles, and excessive Cu atoms. They all can increase the quenching sensitivity of aluminum alloys but with different capabilities of inducing precipitation.
     The end quenching experiment indicates that in7B04alloy the second phase Al18Cr2Mg3particles are another major factors after the (sub)grain boundaries that can induce and promote the second phase precipitation and growth. The Al18Cr2Mg3particles in the location near the quenched end function as nucleus and induce the formation of a second phase to dramatically increase the quenching sensitivity. In7050alloy, the coherent Al3Zr and the excessive Cu atoms are the second important factors after (sub)grain boundaries that accelerate second phase precipitation and growth. In the matrix of7085, the second phase Al3Zr particles can affect the formation and growth of the second phases. However, in comparison with7050alloy, the major alloying element Cu content is not high, the α-Al supersaturated solid solution is more stable, and quenching sensitivity is lower. This is in agreement with the experiment results of TTP curve, which can be used to characterize the stability of supersaturated solid solutions.
引文
[1]张永安.喷射成形超高强铝合金的制备及组织性能研究[D].北京:北京有色金属研究总院,2004
    [2]李志辉,熊柏青,张永安,等.7B04铝合金预拉伸厚板的微观组织与性能[J].稀有金属,2007,31(4):440-445
    [3]美铝网站.http://www.alcoa.com/aerospace/en/history/history_overview.asp
    [4]刘刚.含多尺度第二相时效铝合金力学性能的模型化与试验研究[D].西安:西安交通大学,2002
    [5]林高用,彭大暑,魏圣明.强化固溶对7075铝合金组织的影响[J].金属热处理,2002,27(11):30-34
    [6]曾渝.超高强A1-Zn-Mg-Cu-Zr合金组织与性能研究[D].湖南:中南大学,2004
    [7]熊柏青.我国铝加工业之现状及未来发展[J].新材料产业,2010(8):12-16
    [8]刘文辉.基于位错滑移的铝合金断裂行为的研究[D].湖南:中南大学,2008
    [9]H.Loffler, I.Kovacs, J.Lensval. Review decomposition process in Al-Zn-Mg alloys [J]. Journal of materials science.1983,18 (8):2215-2240
    [10]Dr Roger Grimes,洪永先译.航空与航天铝合金的发展[J].Sheet Metal Industrise.1982,59(12):885-888
    [11]赵普.铝合金在现代飞机上的应用与发展[J].航空材料.1983(2):46-49
    [12]田福泉,李念奎,崔建忠.超高强铝合金强韧化的发展过程及方向[J].轻合金加工技术.2005,33(12):1-9
    [13]郑祥健,李浩言,李勇,等.固溶处理对7475铝合金组织和性能的影响[J].轻合金加工技术,2004,32(8):45-5 1
    [14]刘海江.单级时效对7475合金组织和性能的影响[J].轻合金加工技术.2004,32(5):41-44
    [15]刘援朝译.美铝航空产品的性能和应用[J].世界有色金属.2008(10):80-82
    [16]C.O.F.T.Ruckert, J.R.Tarpani, W.W.Bose Filho, ect. On the relation between micro-and macroscopic fatigue crack growth rates in aluminum alloy AMS 7475-T7351 [J]. International Journal of Fracture.2006,142 (3-4):233-240
    [17]郑子樵,李红英,莫志民.一种7055型铝合金的RRA处理[J].中国有色金属学报.2011,11(5):771-775
    [18]Luksaak D A. Strong aluminum alloys have airframe weight [J]. Advanced Materials and Processes.1991,10:46-49
    [19]李志辉.7B04铝合金预拉伸板的热处理工艺、微观组织及性能研究[D].北京:北京有色金属研究总院,2007
    [20]刘昌斌,夏长清,戴晓元.高强高韧铝合金的研究现状及发展趋势[J].矿冶工程,2003,23(5):74-78
    [21]Y.Kim, Y.J.Chao. Prediction of stable crack growth in surface cracked plate of Aluminum 7050 alloy [J]. International Journal of Fracture.2004,130 (2):583-600
    [22]X.J.Jiang, B.Noble, V.Hansen. Influence of Zirconium and Copper on the Early Stages of Aging in Al-Zn-Mg Alloys [J]. Metallurgical and Materials Transactions A. 2001,32(5):1063-1073
    [23]I.I.Sidorin. Development of New High-strength Aluminum Alloy [J]. Metal Science and Heat Treatment.1978,20 (3):252-253
    [24]David A Clark, W.Steven, Johnson. Temperature effects on fatigue performance of cold expanded holes in 7050-T7451 aluminum alloy [J]. International Journal of Fatigue,2003,25 (2):159-165
    [25]D.J.Chakrabarti, J.Liu, R.R.Sawtell, ect. New Generation High Strength High Damage Tolerance 7085 Thick Alloy Product with Low Quench Sensitivity [C]. [In] Proceedings of the 9th International Conference on Aluminum Alloys, Vancouver, (2004):969-974
    [26]R.T.Shuey, F.Barlat, M.E.Karabin, ect. Experimental and Analytical Investigation on Plane Strain Toughness for 7085 Aluminum Alloy [J]. Metallurgical and Materials Transactions A.2009,40 (2),365-376
    [27]熊柏青,李锡武,张永安,等.新型高强韧低淬火敏感性[J].中国有色金属学报.2009,19(9):1539-1547
    [28]祁小红,邓运来,刘胜胆,等.微量Sc对7085铝合金淬火敏感性的影响[J].中国有色金属学报.2013,23(3):666-672
    [29]肖代红,巢红,陈康华,等.微量Sc对AA7085铝合金组织与性能的影响[J].中国有色金属学报.2008,18(12):2145-2150
    [30]刘文军,张新明,刘胜胆,等.均匀化对7050铝合金板材淬火敏感性的影响[J].中国有色金属学报.2010,20(6):1102-1109
    [31]孙洪军,杨兴玲.超高强铝合金的发展[J].研究探讨.2007(9):41-43
    [32]沈君.高强铝合金预拉伸板的断裂韧性研究[J].轻合金加工技术.2008,36(9):46-50
    [33]L.K.Berg, J.GJ(?)nnes, V.Hansen, ect. GP-Zones in Al-Zn-Mg Alloys and their role in artificial aging [J]. Acta Metallurgica.2001,49 (17):3443-3451
    [34]X. Z. Li, V.Hansen, J.GJ(?)nnes, ect. HREM Study and Structure Modeling of the η Phase, the Hardening Precipitates in Commercial Al-Zn-Mg Alloys [J]. Acta Metallurgica.1999,47 (9):2651-2659
    [35]T.Engdahl, V.Hansen, P.J.Warren, ect. Investigation of fine scale precipitates in Al-Zn-Mg alloys after various heat treatments [J]. Materials Science and Engineering: A.2002,327(1):59-64
    [36]M.R.Clinch, S.J.Harris, W.Hepples, ect. Influence of Zinc to Magnesium Ratio and Total Solute Content on the Strength and Toughness of 7xxx series Alloys. Materials Science Forum.2006,519-521:339-344
    [37]J. Lendvai. Precipitation and strengthening in aluminum alloys. Materials Science Forum.1996,217-222:43-56
    [38]Torsten E.M.Staab, Matz Haaks, Hartwig Modrow. Early precipitation stages of aluminum alloys-the role of quenched-in vacancies [J]. Applied Surface Science. 2008,255(1):132-135
    [39]G.Dlubek, R.Krause, O.Brummer, ect. Study of formation and reversion of Guenier-Preston zones in Al-4.5at%Zn-xat%Mg alloys by positrons [J]. Journal of materials science.1986,21 (3):853-858.
    [40]G.Groma, E.Kovacs-Csetenyi, I.Kovas, ect. The composition of Guinier-Preston Zones in Al-Zn-Mg alloys [J]. Philosophical Magazine A.1979,40 (5):653-665
    [41]Panseri C, Federighi T. Evidence for the interaction between Mg atoms and vacancies in Al-Zn 10%-Mg 0.1% alloy [J]. Acta Metallurgica.1963,11 (6):575-584
    [42]Jurgens G, Kempe M, Loffler H. On the kinetics of the growth of Guenier-Preston Zones in Al-Zn-Mg alloys [J]. Phys Status Solidi.1974, a21:K73-K76
    [43]Jurgens G, Kempe M, Loffler H. On the kinetics of the growth of Guenier-Preston Zones in Al-Zn-Mg alloys [J].Phys Status Solidi.1974, a21:K39-K41
    [44]韩小磊.7150铝合金热处理工艺及组织性能研究[D].北京:北京有色金属研究总院,2010
    [45]P.N.Adler, R.Delasi,G.Geschwind. Influence of microstructure on the mechanical properties and stress corrosion susceptibility of 7075 aluminum alloy [J]. Metallurgical Transactions,1972,3 (12):3191-3200
    [46]华明建,李春志,王鸿渐.微观组织对7075铝合金的屈服强度和抗应力腐蚀性能的影响[J],金属学报.1988,24(1):41-46
    [47]余永宁.材料科学与基础[M].北京:高等教育出版社.2008,201-203
    [48]M.J.Couper, I.J.Polmear. Quench sensitivity in some rapidly solidified aluminum alloys [J]. Journal of Materials Science letters.1987,6 (8):922-924
    [49]胡少虬.7075铝合金厚板淬火残余应力的数值分析[M].湖南:中南大学,2004
    [50]D.S.Thompson, B.S.Subramanya, S.A.Levy. Quench Rate Effects in Al-Zn-Mg-Cu Alloys [J]. Metallurgical Transactions,1971,2 (4):1149-1160
    [51]W.F.Smith, N.J.Grant. The Effect of Two-Step Aging on the Quench Sensitivity of an Al-5 Pct Zn-2 Pct Mg Alloy with and without 0.1 Pct Cr [J]. Metallurgical Transactions,1970,1 (6):1735-1740
    [52]M.Conserva, E. Dirusso, O.Caloni. Comparison of the Influence of Chromium and Zirconium on the Quench Sensitivity of Al-Zn-Mg-Cu Alloys [J]. Metallurgical Transactions,1971,2 (4):1227-1232
    [53]M.Conserva, P.Fiorini. Interpretation of Quench-Sensitivity in Al-Zn-Mg-Cu Alloys [J]. Metallurgical Transactions,1973,4 (3):857-862
    [54]D.L.Zhang, L.Zheng. The Quench Sensitivity of Cast Al-7Si-0.4Mg Alloy [J]. Metallurgical and Materials Transactions A.1996,27 (12):3983-3991
    [55]Tsung-Rong Chen, Guan-Jye Peng, J.C.Huang. Low Quench Sensitivity of Superplastic 8090 Al-Li Thin Sheets [J]. Metallurgical and Materials Transactions A. 1996,27 (10):2923-2933
    [56]Murat Tiryskioglu, Ralph T. Shuey. Quench Sensitivity of an Al-7Si-0.6Mg Alloy: Characterization and Modeling [J]. Metallurgical and Materials Transactions B.2007, 38 (4):575-582
    [57]K.Toman. Change in primary extinction during decomposition of supersaturated solid solution Ⅱ. Al-Cu 4% alloy-formation of G.P.zones [J]. Cechosiovackij fiziceskij zurnal B.1960,10 (3):208-214
    [58]刘胜胆,张新明,游江海,等.淬火介质对7055铝合金晶界析出行为的影响[J].特种铸造及有色合金.2006,26(11):696-698
    [59]刘胜胆,张新明,黄振宝.淬火速率对7055铝合金组织和力学性能的影响[J].材料科学与工艺.2008,16(5):650-653
    [60]刘胜胆,张新明,游江海,等.淬火速率对AlZnMgCu(Zr)合金断裂行为的影响[J].材料热处理学报.2007,28(6):45-49
    [61]张新明,刘胜胆,刘瑛.淬火速率和锆含量对7055型铝合金晶间腐蚀的影响[J].中南大学学报.2007,38(2):181-185
    [62]贺永东,张新明,游江海,等.淬火无析出区对A1-Zn-Mg-Cu合金断裂行为的影响[J].中国有色金属学报.2006,16 (3):392-399
    [63]谢优华,杨守杰,戴圣龙.含锆超高强铝合金的研究及发展概况[J].材料导报.2002,16(5):8-10
    [64]席桂荣译,张君尧校.化学成分对铝合金淬透性的影响[J].轻合金加工技术.1994,22(11):36-39
    [65]刘文军,张新明,刘胜胆.均匀化对7050铝合金板材淬火敏感性的影响[J].中国有色金属学报.2010,20(6):1102-1109
    [66]邓运来,万里,张勇,等.固溶处理对铝合金7050-T6淬透层深度的影响[J].金属热处理.2009,34(8):44-47
    [67]张新明,刘胜胆,游江海,等.时效对7055铝合金淬火敏感效应的影响[J].中国有色金属学报.2007,17(2):260-264
    [68]张新明,刘文军,刘胜胆,等.热轧变形量对7050铝合金淬火敏感性的影响[J].材料热处理学报.2010,31(6):33-38
    [69]D.J.查克拉巴提,J·刘,J.H·古德曼,G·B·维尼玛,等.铝合金产品及人工时效方法[P].Int.C17:C22C 21/10.CHINA.CN1489637A.2004.4.14
    [70]R·贝内迪克特斯, C·J凯德尔, A·L·海因茨,等.一种铝-锌-镁-铜合金 [P]. Int.Cl: C22C 21/10. CHINA. CN1780926A.2006.5.31
    [71]王祝堂,田荣璋.金属热处理[M].北京:冶金工业出版社.1984
    [72]N.Q.Chinh, J.Lendvai, D.H.Ping, ect. The effect of Cu on mechanical and preciopitation properties of Al-Zn-Mg alloys [J]. Journal of alloy and compounds 2004,378:52
    [73]Gang Sha, Alfred Cerezo. Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050) [J]. Acta Materialia.2004,52 (15):4503-4516
    [74]H.Loffler, I.Kovacs, J.Lendvai. Review decomposition processes in Al-Zn-Mg alloys [J]. Journal of Materials Science.1983,18 (8):2215-2240
    [75]X.Z.Li, V.Hanaen, J.GJ(?)nnes, ect. Hrem study and structre modeling of the η phase, the hardening precipitates in commercial Al-Zn-Mg alloys [J]. Acta Materialia. 1999,47 (9):2651-2659
    [76]Fu-Shiong Lin, E.A.Starke J. The effect of copper content and degree of recrystallization on the fatigue resistance of 7xxx type aluminum alloys Ⅰ. Low cycle corrosion fatigue [J]. Materials Science and Engineering.1979,39 (1):27-41
    [77]Fu-Shiong Lin, E.A.Starke J. The effect of copper content and degree of recrystallization on the fatigue resistance of 7xxx type aluminum alloys II. Fatigue crack propagation [J]. Materials Science and Engineering.1980,43 (1):65-67
    [78]何小青.喷射成形A1-Zn-Mg-Cu合金的应力腐蚀性能及机理研究[D].北京:北京有色金属研究总院,2009
    [79]Liscic B., Tensi H.M., Canale L.C.F., ect. Quenching Theory and Technology Second Edition [M]. New York:Chemical Rubber Company,2010
    [80]John A.Wagner, R.N.Shenoy. The effect of copper, chromium, and zirconium on the microstructure and mechanical properties of Al-Zn-Mg-Cu alloys [J]. Metallurgical Transactions A.1991,22 (11):2809-2818
    [81]X.J.JIANG, B.NOBLE, ect. Influence of zirconium and copper on the early stages of aging in Al-Zn-Mg Alloys [J]. Metallurgical and Materials Transactions A.2001,32 (5):1063-1073
    [82]D.G.Eskin. Decomposition of supersaturated solid solution in Al-Cu-Mg-Si alloys [J]. Journal of Materials Science.2003,38 (2):279-290
    [83]V.M.Farber. Initial stages of decomposition of supersaturated solid solutions [J]. Metal Science and Heat Treatment.1995,37 (10):391-398
    [84]蔡元华,程军胜,郝斌.过饱和A1-Zn-Mg-Cu-Mn合金热分解的XRD研究[J].北京科技大学学报.2006,28(7):650-653
    [85]G.I.Nosova, V.D.Plakhtii, N.A.Polyakova. Decompostion of the supersaturated solid solution in Ni-Cr-Fe-Nb-Al alloys and their heat treatment [J]. Metals Science and Heat Treatment.1991,33 (5):376-379
    [86]L.L.Rokhlin, A.A.Oreshkina. Effect of aluminum content on the decomposition kinetics of supersaturated solid solution in Mg-Al-alloys [J]. Metals Science and Heat Treatment.1989,31 (4):267-270
    [87]张同俊,李星国,杨君友.机械合金化过程中六方相晶格畸变特点的研究[J].材料科学与工艺.1994,2(3):17-23
    [88]Daqin Chen, Yuansheng Wang. Simulation of clusters formation in Al-Cu based and Al-Zn based alloys [J]. Journal of Materials Science.2005,40 (13):3461-3466
    [89]袁晓光,任露泉,董晓亮.时效对微晶A1-Si系合金α-A1相晶格常数的影响[J].辽宁工程技术大学学报.1999,1 8(3):269-272
    [90]周欧,姚强,孙学松.合金元素在ZrCr2-Laves相中的晶格占位及其对力学性能的影响[J].中国有色金属学报.2006,16(9):1603-1607
    [91]孙兆奇,曹春斌,宋学萍.溅射超薄Ag膜中的晶格畸变[J].稀有金属.2006,30(4):444-447
    [92]陈高恩,薛殿麒,郭承铭.用X射线衍射仪法测定纯铜点阵常数[J].中南民族学院学报.1998,17(4):27-31
    [93]辜蕾钢.铝合金厚板预拉伸及淬透性研究[D].重庆:重庆大学,2004
    [94]M.J.Starink, X.M.Li. A model for the Electrical Conductivity of Peak-Aged and Overaged Al-Zn-Mg-Cu Alloys [J]. Metallurgical and Materials Transactions A.2003, 34 (4):899-911
    [95]J.F.Nie, B.C.Muddle, H.I.Aaronson, ect. On the roles of clusters during intragranular nucleation in the absence of static defects [J]. Metallurgical and Materials Transactions A.2002,33 (6):1649-1658
    [96]T.Kratzer, B.M.Gable, K.M.Nairn, ect. The effect of alloying additins on vacancy behaviour in aluminum-copper alloys [C]. [In] Proceedings of the 10th International Conference on Aluminium Alloys, Vancouver,2006:597-602
    [97]Yoshiki Komiya, Shoichi Hirosawa, Tatsuo Sato.3DAP Analysis and computer simulation of nanocluster formation in the initial aging stage of Al-Zn Alloys [C]. [In] Proceedings of the 10th International Conference on Aluminium Alloys, Vancouver, 2006:437-442
    [98]Seizo Nagasaki, Makoto Hirabayashi. Binary alloy phase-diagrams [M], Edited by Liu Ansheng, Metallurgical Industry Press.2004:29-32
    [99]Y.Kim, Y.J.Chao. Prediction of stable crack growth in surface cracked plate of Aluminum 7050 alloy [J]. International Journal of Fracture.2004,130 (2):583-600
    [100]R.Ferragut, A.Dupasquier, M.M.lglesis, ect. Vacancy-Solute aggregates in Al-Zn-Mg-(Cu, Ag) [C]. [In] Proceedings of the 10th International Conference on Aluminium Alloys. Vancouver.2006:309-314
    [101]R.K.W.Marceau, G.Sha, R.N.Lumley, ect. Evolution of solute clustering in Al-Cu-Mg alloys during secondary ageing [J]. Acta Materialia.2010,58 (5): 1795-1805
    [102]R.K.W.Marceau, G.Sha, R.Ferragut, ect. Solute clustering in Al-Cu-Mg alloys during the early stagesof elevated temperature ageing [J]. Acta Materialia.2010,58 (15):4923-4939

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700