用户名: 密码: 验证码:
富Al端Al-Cr合金低温热氧化制备α-Al_2O_3研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
α-Al2O3由于具有热力学稳定、机械强度高、耐蚀能力强等特点而得到广泛的应用。然而,传统上α-Al2O3的制备温度高达1000℃,这却极大地限制了其应用,因此低温制备α-Al2O3成为一个亟需解决的问题。本文采用真空熔炼浇铸的方法制备Al-Cr合金试样,研究富Al端Al-Cr合金在620~720℃下空气中的氧化行为,利用Al-Cr合金在低温下制备α-Al2O3,并考查其影响因素。同时研究A145Cr7粉末在650~720℃下空气中的氧化行为,探讨Cr在α-Al2O3(?)温形核中的作用机理。利用环境透射电镜、以纳米Al粉末为原料制备液态Al并原位观察了液态Al在720℃真空下的氧化,并在720℃研究了不同气氛下块状Al熔化获得的液态Al的氧化,以探讨液态Al的真正氧化结果及其形成机理。
     试样成分与相结构分析结果表明浇铸制备合金的实际Cr含量与设计值基本一致,但相组成与相图略有差别。Cr含量在18wt%以下的试样相成分为Al(Cr)固溶体和金属间化合物Al45Cr7两相;Cr含量在23~27wt%的试样为Al(Cr)固溶体、Al45Cr7和Al4Cr三相;Cr含量30~56wt%的试样则为Al45Cr7、A14Cr和A18Cr5三相。
     氧化结果表明Al-Cr合金可以在720℃下形成α-Al2O3。在氧化中,α-Al2O3同时在Al45Cr7表面、Al45Cr7/Al(Cr)固溶体界面以及Al(Cr)固溶体表面形核,其中在Al45Cr7表面和Al(Cr)固溶体表面的α-Al2O3会形成连续的氧化膜,在Al45Cr7/Al(Cr)固溶体界面处的α-Al2O3则生长成颗粒。
     试样表面粗糙度、Cr含量、合金相结构及氧化温度对α-Al2O3的形成及氧化膜形貌有影响。具有光滑表面的Al-Cr合金试样,短时间氧化后即在表面形成薄且致密的α-Al2O3膜;粗糙表面试样则会形成厚α-Al2O3膜。超声喷丸处理试样形成的氧化膜具有大量排列紧密的α-Al2O3颗粒。高Cr含量有利于α-Al2O3的形成,在一定范围内,Cr含量越高,Al-Cr合金氧化后形成的α-Al2O3膜越厚。但当Cr含量达到27wt%时,试样形成的氧化膜反而非常薄,XRD检测不到。Cr含量高达30wt%以上时,形成的氧化物中含有大量的Cr2O3,使氧化膜呈现蓝色。最有利于形成厚α-Al2O3膜的Cr含量在23wt%附近。合金的相结构对α-Al2O3能否形成没有影响,但Al45Cr7相在基体中均匀分布时有利于致密α-Al2O3膜的形成。不同温度下氧化的研究则表明Al-Cr合金最低可以在670℃的温度下热氧化制备α-Al2O3。
     Al45Cr7粉末也可以在67℃以上温度氧化形成α-Al2O3。Al45Cr7粉末在670~720℃的温度区间内氧化时先形成Cr2O3和非晶Al2O3,再形成α-Al2O3,证明了Cr2O3的形核核心作用。但温度低于650℃时,α-Al2O3无法形核。
     α-Al2O3/Cr2O3形核界面取向关系为(001)α-Al2O3/(001)Cr2O3。界面有一个6原子层厚的过渡区,并且界面两(?)α-Al2O3和Cr2O3的(001)晶面间存在5°的夹角。此外,尽管α-Al2O3在形核时(001)晶面首先形成,并沿着Cr2O3(202)晶面外延生长,但在其后续长大过程中并没有发生这两个晶面的择优生长。
     纳米Al粉末表面有一层厚5-6nm的非晶Al2O3,它们会在350~550℃转变为γ-Al2O3。去除表面原始氧化膜的液态Al在E-TEM中720℃、10-2Pa氧分压下氧化后直接形成α-Al203,产物形貌为垂直于液面的α-Al203纳米棒。同时,去除表面氧化膜的块状A1在720℃、10-2Pa氧分压下氧化,其氧化产物也为α-Al2O3,没有γ等亚稳相Al2O3。此外,不同气氛下的氧化结果表明气氛中氧含量越高越有利于α-Al2O3的形成,但当氧含量过高时反而会在液态Al表面形成较薄的α-Al2O3膜。
α-Al2O3has been widely used in various areas due to its excellent advantages such as thermodynamic stability, high hardness and high corrosion resistance, etc. However, α-Al2O3was conventionally prepared above1000℃, which greatly limits its applications. Therefore, it is urgently demanded to prepare α-Al2O3at low temperature. In the present thesis, Al-rich Al-Cr alloy was cast in vacuum and the oxidation behavior of Al-Cr alloy was carried out at a temperature range of620~720℃in air. The α-Al2O3was prepared on Al-Cr alloy and the influencing factor was studied. Oxidation of Al45Cr7powder was performed between650~720℃in air, and the effect of Cr on the α-Al2O3nucleation at low temperature was investigated. Liquid Al was prepared from nano Al powder and the oxidation of liquid Al was observed in-situ by environmental transmission electron microscope at720℃. Moreover, oxidation of liquid Al prepared from bulk Al was performed at720℃under different atmosphere. The sample and the oxide were analyzed by OM, OES, DTA-TG, XRD, SEM, TEM, XPS and ICP-AES.
     Analysis show that the Cr content in cast Al-Cr alloy is consistent with the normal value, while the phase constitution is not. Alloy with Cr contents below18wt%is constituted of Al(Cr) solid solution and intermetallic Al45Cr7; Alloy with Cr contents of23~27wt%is constituted of Al(Cr) solid solution, Al45Cr7and Al4Cr; Alloy with Cr contents of30~56wt%is constituted of Al45Cr7, Al4Cr and Al8Cr5.
     Oxidation results show that α-Al2O3forms on Al-Cr alloy with Cr contents of18wt%and23wt%at720℃, respectively. α-Al2O3nucleates on Al45Cr7surface, Al45Cr7/Al(Cr) solid solution interface and Al(Cr) solid solution surface simultaneously. The α-Al2O3nucleus on Al45Cr7and Al(Cr) solid solution surface grow into oxide film, while the α-Al2O3nucleous on the interface grow into particles.
     Surface roughness, Cr contents, phase constitution of sample and oxidation temperature have influences on the α-Al2O3formation and the oxide morphology. Thin but compact α-Al2O3film forms on Al-Cr alloy with smooth surface rapidly. Sample with rough surface benefits the formation of thick α-Al2O3film. Ultrasonic treatment brings the formation of plenty of compact α-Al2O3particles. High Cr contents favor the formation of thick α-Al2O3film. In a certain range, α-Al2O3film is thicker with higher Cr contents. For the sample with Cr contents of27wt%, a very thin α-Al2O3film forms, which is not detected by XRD. While for samples with Cr contents over30wt%, large amount of Cr2O3makes the color of the oxide be blue. According to the oxidation results of alloys with different Cr contents,23wt%is the most beneficial Cr contents for the formation of α-Al2O3. Phase construction of alloy has little influence on the formation of α-Al2O3, but then a homogeneous distribution of Al45Cr7in Al substrate favors formation of compact α-Al2O3film. Whereas, oxidation results of Al-Cr alloy at different temperatures show that α-Al2O3can form at a lowest temperature of670℃.
     Similarly, α-Al2O3form on Al45Cr7powder at a temperature above670℃. In the oxidation of Al45Cr7powder between670~720℃, Cr2O3and amorphous Al2O3forms at first and then following by α-Al2O3, which certifies the effect role of Cr2O3nuclear. Nevertheless, no α-Al2O3form at temperature below650℃.
     The nucleation interface is (001) α-Al2O3(001) Cr2O3. A six-atom-layer relaxation area is found in the interface, and an angle of5degree appears between (001) crystal plane of α-Al2O3and Cr2O3. Moreover, in spite of the first formation of α-Al2O3(001) plane then grow along Cr2O3(202) plane, no preferred orientation growth occurred during the continuing oxidation process.
     There is an amorphous Al2O3film of5~6nm thick on the surface of nano Al powder, which transforms to γ-Al2O3at a temperature range of350~550℃. After oxidation under an oxygen partial pressure of10-2Pa in E-TEM, α-Al2O3nano wires appear on the oxide-free liquid Al surface, demonstrating that the initial oxidation product of liquid Al is α-Al2O3. Moreover, the oxidation of liquid Al prepared from oxide-free bulk Al at720℃under an oxygen partial pressure of10"2Pa was also studied. XRD analysis of the products confirms that the oxide is constituted of single α-Al2O3. Oxygen content in atmosphere has influence on the oxidation results of liquid Al. With increasing oxygen content, α-Al2O3is more likely to form. However, excessive oxygen content leads to the formation of thin α-Al2O3film on the liquid Al surface.
引文
[1]李金桂,赵闽彦.腐蚀和腐蚀控制手册.北京:国防工业出版社,1988.
    [2]刘秀晨,安成强.金属腐蚀学.北京:国防工业出版社,2002.
    [3]蔡元兴,刘科高,郭晓斐.常用金属材料的耐腐蚀性能.北京:治金工业出版社,2012.
    [4]M. A. Trunov, M. Schoenitz, X. Zhu, and E. L. Dreizin. Effect of Polymorphic Phase Transformations in Al2O3 Film on Oxidation Kinetics of Aluminum Powders. Combust. Flame, 2005,140(4):310-318.
    [5]C. Pflitsch, A. Muhsin, U. Bergmann, and B. Atakan. Growth of Thin Aluminium Oxide Films on Stainless Steel by MOCVD at Ambient Pressure and by using a Hot-Wall CVD-Setup. Surf. Coat. Technol.,2006,201(1-2):73-81.
    [6]M. Trueba and S. P. Trasatti. y-Alumina as a Support for Catalysts:A Review of Fundamental Aspects. Eur. J. Inorg. Chem.,2005,2005(17):3393-3403.
    [7]D. C. Miller, R. R. Foster, S.-H. Jen, J. A. Bertrand, S. J. Cunningham, A. S. Morris, Y.-C. Lee, S. M. George, and M. L. Dunn. Thermo-Mechanical Properties of Alumina Films Created using the Atomic Layer Deposition Technique. Sens. Actuator A-Phys.,2010,164(1-2):58-67.
    [8]D.-H. Kuo, B.-Y. Cheung, and R.-J. Wu. Growth and Properties of Alumina Films Obtained by Low-Pressure Metalorganic Chemical Vapor Deposition. Thin Solid Films,2001,398-399: 35-40.
    [9]N. Ozer, J. P. Cronin, Y. J. Yao, and A. P. Tomsia. Optical Properties of Sol-Gel Deposited Al2O3 Films. Sol. Energy Mater. Sol. Cells,1999,59(4):355-366.
    [10]I. Levin and D. Brandon. Metastable Alumina Polymorphs:Crystal Structures and Transition Sequences. J. Am. Ceram. Soc.,1998,81(8):1995-2012.
    [11]L. -W. Lin, Y. Kou, M. Zou and Z. Yan. An Amorphous Approach to the Structure of a Pt-Fe/γ-Al2O3 Catalyst Characterized by XAFS. Phys. Chem. Chem. Phys,2001,3(9): 1789-1794.
    [12]Z. Xu, L. Chang, and J. Y. Zhang. Carbon Deposition and Carbon Elimination over Ni/γ-Al2O3 catalyst for CH4-CO2 Reforming. Chin. J. Catal.,2001,22(1):18-22.
    [13]B. C. Lippens and J. H. de Boer. Study of Phase Transformations during Calcination of Aluminum Hydroxides by Selected Area Electron Diffraction. Acta Cryst,1964,17(10): 1312-1321.
    [14]E. J. W. Verwey. The Structure of the Electrolytical Oxide Layer on Aluminium. Z. Kristall., 1935,91(3/4):317-320.
    [15]M. -H. Lee, C. -F. Cheng, V. Heine, and J. Klinowski. Distribution of Tetrahedral and Octahedral A1 Sites in Gamma Alumina. Chem. Phys. Lett.,1997,265(6):673-676.
    [16]G. Gutierrez, A. Taga, and B. Johansson. Theoretical Structure Determination of γ-Al2O3. Phys. Rev. B,2001,65(1):012101.
    [17]H. P. Pinto, R. M. Nieminen, and S. D. Elliott. Ab Initio Study of γ-Al2O3 Surfaces. Phys. Rev. B,2004,70(12):125402.
    [18]W. Y. Ching, L. Ouyang, P. Rulis, and H. Yao. Ab Initio Study of the Physical Properties of γ-Al2O3:Lattice Dynamics, Bulk Properties, Electronic Structure, Bonding, Optical Properties, and ELNES/XANES Spectra. Phys. Rev. B,2008,78(1):014106.
    [19]A. R. Ferreira, M. J. F. Martins, E. Konstantinova, R. B. Capaz, W. F. Souza, S. S. X. Chiaro, A. A. Leitao. Direct Comparison between Two y-Alumina Structural Models by DFT Calculations. J. Solid State Chem.,2011,184(5):1105-1111.
    [20]K. Shirasuka, H. Yanagida, and G Yamaguchi. The Preparation of η-Alumina and Its Structure. Yogyo Kyokaishi,1976,12(84):610-613.
    [21]C. S. John, N. C. M. Alma, and G R. Hays. Characterization of Transitional Alumina by Solid-State Magic Angle Spinning Aluminum NMR. Appl. Catal.,1983,6(3):341-346.
    [22]F. Ernst, P. Pirouz, and A. H. Heuer. HRTEM Study of a Cu/Al2O3 Interface. Philos. Mag. A, 1991,63(2):259-277.
    [23]Y. Repelin and E. Husson. Etudes Structurales d'alumines de Transition. I-Alumines Gamma et Delta. Mater. Res. Bull.,1990,25(5):611-621.
    [24]I. Levin, Th. Gemming, and D. G Brandon. Some Metastable Polymorphs and Transient Stages of Transformation in Alumina. Phys. Status Solidi A,1998,166(1):197-218.
    [25]J. A. Kohn, G Katz, and J. D. Broder. Characterization of P-Ga2O3 and Its Alumina Isomorph, θ-Al2O3. Am. Mineral,1957,42(5-6):398-407.
    [26]G W. Brindley and J. O. Chloe. The Reaction Series, Gibbsite→χ-Alumina→κ-Alumina →Corundum. Am. Mineral,1961,46(7-8):771-785.
    [27]M. Okumiya, G Yamaguchi, O. Yamada, and S. Ono. The Formation of κ and κ'-Al2O3 from Dehydration of Tohdite 5Al2O3·H2O. Bull. Chem. Soc. Jpn.,1971,44(2):418-423.
    [28]P. Liu and J. Skogsmo. Space-Group Determination and Structure Model for κ-Al2O3 by Convergent-Beam Electron-Diffraction (CBED). Acta Crystallogr. B,1991,47:425-433.
    [29]H. C. Stumpf, A. S. Russell, J. W. Newsome, and C. M. Tucker. Thermal Transformations of Aluminas and Alumina Hydrates-Reaction with 44% Technical Acid. Ind. Eng. Chem.,1950, 42(7):1398-1403.
    [30]刘永杰,刘忆,董闯,邓新绿.A12O3薄膜的应用与制备.真空与低温.2002,8(4):236-240.
    [31]S. Ruppi. Deposition, Microstructure and Properties of Texture-Controlled CVD α-Al2O3 coatings. Int. J. Refract. Met. Hard Mater.,2005,23(4-6):306-316.
    [32]M. Fallqvist, M. Olsson, and S. Ruppi. Abrasive Wear of Texture-Controlled CVD a-Al2O3 coatings. Surf. Coat. Technol.,2007,202(4-7):837-843.
    [33]李世谱.特种陶瓷工艺学.武汉:武汉理工大学出版社.2007:79-89.
    [34]D. L. Smith, J. Konys, T. Muroga, and V. Evitkhin. Development of Coatings for Fusion Power Applications. J. Nucl. Mater.,2002,307(2):1314-1322.
    [35]D. Levchuk, F. Koch, H. Maier, and H. Bolt. Deuterium Permeation Through Eurofer and a-Alumina Coated Eurofer. J. Nucl. Mater.,2004,328(2-3):103-106.
    [36]M. L. Kronberg. Plastic Deformation of Single Crystals of Sapphire:Basal Slip and Twinning. Acta Metall.,1957,5(9):507-524.
    [37]毕诗文,于海燕,杨毅宏,赵福辉,尹中林,翟秀静.拜耳法生产氧化铝.北京:冶金工业出版社,2007:13-14.
    [38]和丽锋.联合法生产氧化铝的基本流程及优缺点分析.今日科苑.2010,2:59.
    [39]张文波.添加剂对水热合成a-Al2O3粉体影响[硕士学位论文].大连:大连交通大学,2008.
    [40]杨琪.氧化铝一维纳米材料液相法制备研究[博士学位论文].上海:上海交通大学,2008.
    [41]张继凯.磁控溅射镀制A12O3薄膜及其应用[硕士学位论文].西安:西安工业大学,2010.
    [42]Z. H. Li, Z. P. Yang, N. X. Qiu, and G. M. Yang. A Sol-Gel-Derived α-Al2O3 Crystal Interlayer Modified 316L Porous Stainless Steel to Support TiO2, SiO2, and TiO2-SiO2 Hybrid Membranes. J. Mater. Sci.,2011,46(9):3127-3135.
    [43]H. J. Grabke. Oxidation of NiAl and FeAl. Intermetallics,1999,7(10):1153-1158.
    [44]H. Josefsson, F. Liu, J.-E. Svensson, M. Halvarsson, and L.-G. Johansson. Oxidation of FeCrAl Alloys at 500-900 ℃ in Dry O2. Mater. Corros.,2005,56(11):801-805.
    [45]Y. Kitajima, S. Hayashi, T. Nishimoto, T. Narita, and S. Ukai. Rapid Formation of a-Al2O3 Scale on an Fe-Al Alloy by Pure-Metal Coatings at 900 ℃. Oxid. Met.,2010,73(3-4): 375-388.
    [46]M. Yasuda, N. Akao, N. Hara, and K. Sugimoto. Self-Healing Corrosion Protection Ability of Composition-Gradient Al2O3·Nb Nanocomposite Thin Films. J. Electrochem. Soc.,2003, 150(10):B481-B487.
    [47]J. F. Gao and J. P. Suo. Effects of Heating Temperature and Duration on the Microstructure and Properties of the Self-Healing Coatings. Surf. Coat. Technol,2011,206(6):1342-1350.
    [48]黄群英,郁金南,万发荣,李建刚,吴宜灿.聚变堆低活化马氏体钢的发展.核科学与工程.2004,24(1):56-64.
    [49]M. Astrand, T. I. Selinder, F. Fietzke, and H. Klostermann. PVD-Al2O3-Coated Cemented Carbide Cutting Tools. Surf. Coat. Technol.,2004,188-189:186-192.
    [50]Z. X. Yan, J. Deng, and Z. M. Luo. A Comparison Study of the Agglomeration Mechanism of Nano- and Micrometer Aluminum Particles. Mater. Charact.,2010,61(2):198-205.
    [51]P. Vozdecky, A. Roosen, C. Knieke, and W. Peukert. Direct Tape Casting of Nanosized Al2O3 Slurries Derived from Autogenous Nanomilling. J. Am. Ceram. Soc.,2010,93(5): 1313-1319.
    [52]Ch. Taschner, B. Ljungberg, V. Alfredsson, I. Endler, and A. Leonhardt. Deposition of Hard Crystalline Al2O3 Coatings by Bipolar Pulsed D.C. PACVD. Surf. Coat. Technol.,1998, 108(1-3):257-264.
    [53]B. Hirschauer, S. Soderholm, G. Chiaia, and U. O. Karlsson. Highly Oriented α-Alumina Films Grown by Pulsed Laser Deposition. Thin Solid Films,1997,305(1-2):243-247.
    [54]O. Zywitzki, G. Hoetzsch, F. Fietzke, and K. Goedicke. Effect of the Substrate Temperature on the Structure and Properties of Al2O3 Layers Reactively Deposited by Pulsed Magnetron Sputtering. Surf. Coat. Technol.,1996,82(1-2):169-175.
    [55]Y. You, A. Ito, R. Tu, and T. Goto. Low-Temperature Deposition of α-Al2O3 Films by Laser Chemical Vapor Deposition using a Diode Laser. Appl. Surf. Sci.,2010,256(12):3906-3911.
    [56]P. Su, X. Y. Guo, and S. J. Ji. Effects of Multicomponent Catalyzer on Preparation of Ultrafine a-Al2O3 at Low Sintering Temperature. Adv. Powder Technol.,2009,20(6): 542-547.
    [57]M. Kumagai and G L. Messing. Enhanced Densification of Boehmite Sol-Gels by a-Alumina Seeding. J. Am. Ceram. Soc.,1984,67(11):C230-C231.
    [58]M. Kumagai and G L. Messing. Controlled Transformation and Sintering of a Boehmite Sol-Gel by a-Alumina Seeding. J. Am. Ceram. Soc.,1985,68(9):500-505.
    [59]C.-S. Oh, G Tomandl, M.-H. Lee, and S.-C. Choi. The Effect of an Added Seed on the Phase Transformation and the Powder Properties in the Fabrication of Al2O3 Powder by the Sol-Gel Process. J. Mater. Sci.,1996,31(20):5321-5325.
    [60]F. S. Yen, H. S. Lo, H. L. Wen, and R. J. Yang. θ- to a-Phase Transformation Subsystem Induced by α-Al2O3-Seeding in Boehmite-Derived Nano-Sized Alumina Powders. J. Cryst. Growth,2003,249(1-2):283-293.
    [61]H. X. Lu, H. W. Sun, A. X. Mao, H. Z. Yang, H. L. Wang, and X. Hu. Preparation of Plate-Like Nano α-Al2O3 using Nano-Aluminum Seeds by Wet-Chemical Methods. Mater. Sci. Eng., A,2005,406(1-2):19-23.
    [62]Z. C. Li, Z. H. Li, A. J. Zhang, and Y. M. Zhu. Synergistic Effect of α-Al2O3 and (NH4)3AlF6 co-Doped Seed on Phase Transformation, Microstructure, and Mechanical Properties of Nanocrystalline Alumina Abrasive. J. Alloys Compd.,2009,476(1-2):276-281.
    [63]X. L. Du, Y. Q. Wang, X. H. Su, and J. G Li. Low Temperature Formation of a-Al2O3 Nanopowder by Dehydration of Grinding-Activated Gibbsite. Nanosci. Nanotechnol. Lett., 2011,3(2):146-150.
    [64]J. S. Hong, X. X. Huang, and J. K. Guo. Synthesis and Sintered Properties of Mullite Powder from Seeded Diphasic Al2O3-SiO2 Gel. Mater. Lett.,1995,24(5):327-331.
    [65]T. Oberbach, C. Gunther, G Werner, and G Tomandl. Methods for Producing Corundum at Low Temperatures. CFI-Ceram. Forum Int.,1997,74(11-12):719-722.
    [66]L. Radonjid and V. Srdic. Effect of Magnesia on the Densification Behavior and Grain Growth of Nucleated Gel Alumina. Mater. Chem. Phys.,1997,47(1):78-84.
    [67]M. Sathiyakumar and F. D. Gnanam. Influence of Additives on Density, Microstructure and Mechanical Properties of Alumina. J. Mater. Process. Technol.,2003,133(3):282-286.
    [68]P. Jin, G. Xu, M. Tazawa, K. Yoshimura, D. Music, J. Alami, and U. Helmersson. Low Temperature Deposition of a-Al2O3 Thin Films by Sputtering using a Cr2O3 Template. J. Vac. Sci. Technol. A,2002,20(6):2134-2136.
    [69]J. M. Andersson, Zs. Czigany, P. Jin, and U. Helmersson. Microstructure of a-Alumina Thin Films Deposited at Low Temperatures on Chromia Template Layers. J. Vac. Sci. Technol. A, 2004,22(1):117-121.
    [70]T. Kohara, H. Tamagaki, Y. Ikari, and H. Fujii. Deposition of a-Al2O3 Hard Coatings by Reactive Magnetron Sputtering. Surf. Coat. Technol.,2004,185(2-3):166-171.
    [71]E. Airiskallio, E. Nurmi, M. H. Heinonen, I. J. Vayrynen, K. Kokko, M. Ropo, M. P. J. Punkkinen, H. Pitkanen, M. Alatalo, J. Kollar, B. Johansson, and L. Vitos. High Temperature Oxidation of Fe-Al and Fe-Cr-Al Alloys:The Role of Cr as a Chemically Active Element. Corros. Sci.,2010,52(10):3394-3404.
    [72]李铁藩.金属高温氧化和热腐蚀.北京:化学工业出版社,2003.
    [73]H. J. T. Ellingham. Reducibility of Oxides and Sulphides in Metallurgical Processes. J. Soc. Chem. Ind. (London),1944,63(5):125-133.
    [74]S. R. Shatynski. The Thermochemistry of Transition Metal Sulfides. Oxid. Met.,1977,11(6): 307-320.
    [75]S. R. Shatynski. The Thermochemistry of Transition Metal Carbides. Oxid. Met.,1979,13(2): 105-118.
    [76]N. Birks, G H. Meier, F. S. Pettit金属高温氧化导论.辛丽,王文,译.北京:高等教育出版社,第二版,2010.
    [77]R. K. Hart. The Oxidation of Aluminium in Dry and Humid Oxygen Atmospheres. Proc. R. Soc. London, Ser. A,1956,236(1204):68-88.
    [78]F. W. Young Jr., J. V. Cathcart, and A. T. Gwathmey. The Rates of Oxidation of Several Faces of a Single Crystal of Copper as Determined with Elliptically Polarized Light. Acta Metall., 1956,4(2):145-152.
    [79]M. W. Roberts. Mechanism of the Oxidation of Iron Films at Temperatures From-195 ℃ to 120 ℃. Trans. Faraday Soc.,1961,57(1):99-109.
    [80]W. W. Smeltzer. Oxidation of Aluminum in the Temperature Range 400°-600℃. J. Electrochem. Soc.,1956,103(4):209-214.
    [81]R. Friedman and A. Macek. Ignition and Combustion of Aluminum Particles in Hot Ambient Gases. Combust. Flame,1962,6(1):9-19.
    [82]P. E. Doherty and R. S. Davis. Direct Observation of Oxidation of Aluminum Single-Crystal Surfaces. J. Appl. Phys.,1963,34(3):619-628.
    [83]M. E. Derevyaga, L. N. Stesik, and E. A. Fedorin. Ignition and Combustion of Aluminum and Zinc in Air. Combust. Explo. Shock Waves,1977,13(6):722-726.
    [84]J. I. Eldridge, R. J. Hussey, D. F. Mitchell, and M. J. Graham. Thermal Oxidation of Single-Crystal Aluminum at 550 ℃. Oxid. Met.,1988,30(5-6):301-328.
    [85]3K. Shimizu, R. C. Furneaux, G. E. Thompson, G. C. Wood, A. Gotoh, and K. Kobayashi. On the Nature of "Easy Paths" for the Diffusion of Oxygen in Thermal Oxide Films on Aluminum. Oxid. Met.,1991,35(5-6):427-439.
    [86]K. Shimizu, K. Kobayashi, G. E. Thompson, and G. C. Wood. The Apparent Induction Period for γ-Al2O3 Development in Thermal Oxide Films on Aluminum. Oxid. Met.,1991,36(1-2): 1-13.
    [87]K. P. Brooks and M. W. Beckstead. Dynamics of Aluminum Combustion. J. Propul. Power, 1995,11(4):769-780.
    [88]E. L. Dreizin. Experimental Study of Stages in Aluminum Particle Combustion in Air. Combust. Flame,1996,105(4):541-556.
    [89]L. P. H Jeurgens, W. G Sloof, F. D. Tichelaar, and E. J. Mittemeijer. Structure and Morphology of Aluminium-Oxide Films Formed by Thermal Oxidation of Aluminium. Thin Solid Films,2002,418(2):89-101.
    [90]L. P. H. Jeurgens, W. G Sloof, F. D. Tichelaar, and E. J. Mittemeijer. Growth Kinetics and Mechanisms of Aluminum-Oxide Films Formed by Thermal Oxidation of Aluminum. J. Appl. Phys.,2002,92(3):1649-1656.
    [91]N. Eisenreich, H. Fietzek, M. del M. J.-Lorenzo, V. Kolarik, A. Koleczko, and V. Weiser. On the Mechanism of Low Temperature Oxidation for Aluminum Particles Down to the Nano-Scale. Propell. Explos. Pyrot.,2004,29(3):137-145.
    [92]S. Hasani, M. Panjepour, and M. Shamanian. The Oxidation Mechanism of Pure Aluminum Powder Particles. Oxid. Met.,2012,78(3-4):179-195.
    [93]F. Reichel, L. P. H. Jeurgens, G. Richter, and E. J. Mittemeijer. Amorphous versus Crystalline State for Ultrathin Al2O3 Overgrowths on Al Substrates. J. Appl. Phys.,2008,103(9): 093515.
    [94]N. A. Ziegler. Resistance of Iron-Aluminum Alloys to Oxidation at High Temperatures. Trans. Am. Inst. Mining Met. Engrs.,1932,100:267-270.
    [95]C. G McKamey, J. H. DeVan, P. F. Tortorelli and V. K. Sikka. A Review of Recent Developments in Fe3Al-Based Alloys. J. Mater. Res.,1991,6(8):1779-1805.
    [96]I. Rommerskirchen, B. Eltester, and H. J. Grabke. Oxidation of β-FeAl and Fe-Al Alloys. Mater. Corros.,1996,47(11):646-649.
    [97]Z. -G Yanga and P. Y. Hou. Wrinkling Behavior of Alumina Scales Formed during Isothermal Oxidation of Fe-Al Binary Alloys. Mater. Sci. Eng., A,2005,391(1-2):1-9.
    [98]M. W. Brumm and H. J. Grabke. The Oxidation Behavior of NiAl-1. Phase Transformations in the Alumina Scale during Oxidation of NiAl and NiAl-Cr Alloys. Corros. Sci.,1992, 33(11):1677-1690.
    [99]杨松岚,王福会.NiAl金属间化合物高温氧化的研究进展.腐蚀科学与防护技术.2002,14(2):109-112.
    [100]张光业,张华,唐果宁,郭建亭,廖艳春,李茂华.NiAl及NiAl基合金的氧化.材料导报.2006,20(3):71-75.
    [101]Y. Shida and H. Anada. Oxidation Behavior of Binary Ti-Al Alloys in High-Temperature Air Environment. Mater. Trans. JIM,1993,34(3):236-242.
    [102]李向阳,张永刚,陈昌麒,张孝吉,张通和,张荟星.二元Ti-Al合金高温氧化机理.金属学报.1997,33(9):964-970.
    [103]F. H. Stott, G. C. Wood, and J. Stringer. The Influence of Alloying Elements on the Development and Maintenance of Protective Scales. Oxid. Met.,1995,44(1-2):113-145.
    [104]C. Wagner. Passivity and Inhibition during the Oxidation of Metals at Elevated Temperatures. Corros. Sci.,1965,5(11):751-764.
    [105]Z. G. Zhang, F. Gesmundo, P. Y. Hou, and Y. Niu. Criteria for the Formation of Protective Al2O3 Scales on Fe-Al and Fe-Cr-Al Alloys. Corros. Sci.,2006,48(3):741-765.
    [106]Z. Q. Dong, H. R. Jiang, X. R. Feng, Z. L. Wang. Effect of Cr on High Temperature Oxidation of TiAl. Trans. Nonferrous Met. Soc. China,2006,16(3):S2004-S2008.
    [107]R. Klumpes, C. H. M. Maree, E. Schramm, and J. H. W. de Wit. The Influence of Chromium on the Oxidation of β-NiAl at 1000 ℃. Mater. Corros.,1996,47(11):619-624.
    [108]R. E. Newnham. Citation-Classic-Refinement of the Alpha A12O3, Ti2O3, V2O3 and Cr2O3 Structures. Curr. Cont./Engin. Tech. Appl. Sci.,1987,43:18-18.
    [109]A. J. Bradley and S. S. Lu. An X-ray Study of the Chromium-Aluminium Equilibrium Diagram. J. Inst. Met.,1937,60:319-337.
    [110]A. J. Bradley and S. S. Lu. The Crystal Structures of Cr2Al and Cr5Al8. Z. Kristallogr.,1937, 96(1):20-37.
    [111]M. J. Cooper. The Structure of the Intermetallic Phase θ (Cr-Al). Acta Crystallogr.,1960, 13(3):257-263.
    [112]V. T. Swamy, S. Ranganathan and K. Chattopadhyay. Rapidly Solidified Al-Cr Alloys: Crystalline and Quasicrystalline Phases. J. Mater. Res.,1989,4(3):539-551.
    [113]K. Y. Wen, Y. L. Chen, and K. H. Kuo. Crystallographic Relationships of the Al4Cr Crystalline and Quasi-Crystalline Phases. Metall. Trans. A,1992,23(9):2437-2445.
    [114]M. Audier, M. Durand-Charre, E. Laclau, and H. Klein. Phase-Equilibria in the Al-Cr System. J. Alloys Compd.,1995,220(1-2):225-230.
    [115]K. Mahdouk and J.-C. Gachon. Thermodynamic Investigation of the Aluminum-Chromium System. J. Phase Equilib.,2000,21(2):157-166.
    [116]B. Grushko, E. K.-Strzeciwilk, B. Przepiorzynski, and M. Surowiec. Investigation of the Al-Cr y-Range. J. Alloys Compd.,2005,402(1-2):98-104.
    [117]B. Grushko, B. Przepiorzynski, E. K. -Strzeciwilk, and M. Surowiec. New Phase in the High-Al Region of Al-Cr. J. Alloys Compd.,2006,420(1-2):L1-L4.
    [118]Z. B. He, B. S. Zou, and K. H. Kuo. The Monoclinic Al45Cr7 Revisited. J. Alloys Compd., 2006,417(1-2):L4-L8.
    [119]曹宝宝,郭可信.单斜η-Al11Cr2相的确定.电子显微学报.2007,26(4):270-275.
    [120]B. B. Cao and K. H. Kuo. Crystal Structure of the Monoclinic η-Al11Cr2. J. Alloys Compd., 2008,458(1-2):238-247.
    [121]B. Grushko, B. Przepiorzynski, and D. Pavlyuchkov. On the Constitution of the High-Al Region of the Al-Cr Alloy System. J. Alloys Compd.,2008,454(1-2):214-220.
    [122]Y. Liang, C. P. Guo, C. R. Li, and Z. M. Du. Thermodynamic Modeling of the Al-Cr System. J. Alloys Compd.,2008,460(1-2):314-319.
    [123]H. Okamoto. Al-Cr (Aluminum-Chromium). J. Phase Equilib. Diffus.,2008,29(1):112-113.
    [124]何战兵Al-Cr-(Si)合金系中准晶及其近似晶体相的结构研究[博士学位论文].大连:大连理工大学,2004.
    [125]L. A. Bendersky, R. S. Roth, J. T. Ramon, and D. Shechtman. Crystallographic Characterization of Some Intermetallic Compounds in the Al-Cr System. Metall. Trans. A, 1991,22(1):5-10.
    [126]曹宝宝.A1-Cr合金系中准晶近似晶体相的结构研究[博士学位论文].大连:大连理工大学,2007.
    [127]X. Z. Li, K. Sugiyama, K. Hiraga, A. Sato, A. Yamamoto, H. X. Sui, and K. H. Kuo. Crystal Structure of Orthorhombic e-Al4Cr. Z. Kristallogr.,1997,212(9):628-633.
    [128]M. R. Ali, A. Nishikata, and T. Tsuru. Electrodeposition of Aluminum-Chromium Alloys from AlCl3-BPC Melt and Its Corrosion and High Temperature Oxidation Behaviors. Electrochim. Acta,1997,42(15):2347-2354.
    [129]曹啟宏.铝铬涂层抗高温氧化性能的研究.表面技术.1991,20(6):13-16.
    [130]W. Zhou, Y. G. Zhao, Q. D. Qin, W. Li, and B. Xu. A New Way to Produce Al+Cr Coating on Ti Alloy by Vacuum Fusing Method and Its Oxidation Resistance. Mater. Sci. Eng., A, 2006,430(1-2):254-259.
    [131]K. Kishita, H. Sakai, H. Tanaka, H. Saka, K. Kuroda, M. Sakamoto, A. Watabe, and T. Kamino. Development of an Analytical Environmental TEM System and Its Application. J. Electron Microsc.,2009,58(6):331-339.
    [132]S. Uran, B. Veal, M. Grimsditch, J. Pearson, and A. Berger. Effect of Surface Roughness on Oxidation:Changes in Scale Thickness, Composition, and Residual Stress. Oxid. Met.,2000, 54(1-2):73-85.
    [133]Z. G. Zhang, P. Y. Hou, F. Gesmundo, and Y. Niu. Effect of Surface Roughness on the Development of Protective A12O3 on Fe-10Al (at.%) Alloys containing 0-10 at.% Cr. Appl. Surf. Sci.,2006,253(2):881-888.
    [134]V. Demange, J. W. Anderegg, J. Ghanbaja, F. Machizaud, D. J. Sordelet, M. Besser, P. A. Thiel, and J. M. Dubois. Surface Oxidation of Al-Cr-Fe Alloys Characterized by X-ray Photoelectron Spectroscopy. Appl. Surf. Sci.,2001,173(3-4):327-338.
    [135]H. Lu, D. H. Shen, C. L. Bao, and Y. X. Wang. XPS and AES Studies of the Cr/Al2O3 Interface. Phys. Status Solidi A,1997,159(2):425-437.
    [136]S.-C. Park and Y.-B. Park. Effect of Ar+ Radiofrequency Plasma Treatment Conditions on the Interfacial Adhesion Energy between Atomic-Layer-Deposited Al2O3 and Cu Thin Films in Embedded Capacitors. J. Electron. Mater.,2008,37(10):1565-1573.
    [137]E. A. Gulbransen and K. F. Andrew. Kinetics of the Oxidation of Chromium. J. Electrochem. Soc.,1956,103(9):C203-C203.
    [138]E. A. Polman, T. Fransen, and P. J. Gellings. Oxidation Kinetics of Chromium and Morphological Phenomena. Oxid. Met.,1989,32(5-6):433-447.
    [139]B. Pujilaksono, T. Jonsson, M. Halvarsson, I. Panas, J.-E. Svensson, and L.-G Johansson. Paralinear Oxidation of Chromium in O2+H2O Environment at 600-700 ℃. Oxid. Met., 2008,70(3-4):163-188.
    [140]E. N. Bunting. Phase Equilibria in the System Cr2O3-Al2O3. J. Res. Natl. Bur. Stand.,1931, 6(4/6):947-949.
    [141]J. Z. Sun, T. Stirner, and A. Matthews. Structure and Surface Energy of Low-Index Surfaces of Stoichiometric a-Al2O3 and a-Cr2O3. Surf. Coat. Technol.,2006,201(7):4205-4208.
    [142]J. Z. Sun, T. Stirner, and A. Matthews. Structure and Electronic Properties Calculation of Ultrathin α-Al203 Films on (0001) α-Cr2O3 Templates. Surf. Sci.,2007,601(21): 5050-5056.
    [143]P. Eklund, M. Sridharan, M. Sillassen, and J. B(?)ttiger. α-Cr2O3 Template-Texture Effect on α-Al2O3 Thin-Film Growth. Thin Solid Films,2008,516(21):7447-7450.
    [144]W. C. Sleppy. Oxidation of Molten High-Purity Aluminum in Dry Oxygen. J. Electrochem. Soc.,1961,108(12):1097-1102.
    [145]M. Moskovits. The Kinetics of the Oxidation of Molten Aluminum in Oxidant Streams. Oxid. Met.,1972,5(1):1-9.
    [146]S. A. Impey, D. J. Stephenson, and J. R. Nicholls. Mechanism of Scale Growth on Liquid Aluminum. Mater. Sci. Technol.,1988,4(12):1126-1132.
    [147]E. Bergsmark, C. J. Simensen, and P. Kofstad. The Oxidation of Molten Aluminum. Mater. Sci. Eng., A,1989,120-121(1):91-95.
    [148]I. Akagwu, R. Brooks, Z. Fan, B. Ralph, and P. Quested. Liquid State Oxidation of Aluminium.2nd Materials Research Conference for Young Researchers,17-18th February, IOM3, London,2003.
    [149]C. M. L. Wu and G W. Han. Synthesis of an Al2O3/Al co-Continuous Composite by Reactive Melt Infiltration. Mater. Charact,2007,58(5):416-242.
    [150]吴宜灿,汪卫华,刘松林,黄群英,郑善良,王红艳,陈红丽,陈明亮,柏云清,宋勇,章毛连,柯严,李春京,李艳芬,胡丽琴,刘萍,李静惊,李莹,许德政,曾勤,陈义学.ITER中国液态锂铅实验包层模块设计研究与实验策略.核科学与工程.2005,25(4):347-360.
    [151]A.-P. Xian and G. -L. Gong. Oxidation Behavior of Molten Tin Doped with Phosphorus. J. Electron. Mater.,2007,36(12):1669-1678.
    [152]贡国良,冼爱平.微量Ge对大气下液态Sn抗氧化性能的影响.金属学报.2007,43(7):759-763.
    [153]杨泽焱,冼爱平.液态铅在大气条件下的氧化行为.电源技术.2011,35(1):66-70.
    [154]D. Giuranno, E. Arato, and E. Ricci. Oxidation Conditions of Pure Liquid Metals and Alloys. Chem. Eng. Trans.,2011,24:571-576.
    [155]J. S. Zhang and N. Li. Analysis on Liquid Metal Corrosion-Oxidation Interactions. Corros. Sci.,2007,49(11):4154-4184.
    [156]V. Nemchinsky. A Thermo-Chemical Model of Liquid Iron Oxidation during Plasma Arc or Laser Cutting. J. Phys. D:Appl. Phys.,2012,45(46):465201.
    [157]M. J. Regan, H. Tostmann, P. S. Pershan, O. M. Magnussen, E. DiMasi, B. M. Ocko, and M. Deutsch. X-ray Study of the Oxidation of Liquid-Gallium Surfaces. Phys. Rev. B,1997, 55(16):10786-10790.
    [158]P. Castello, E. Ricci, A. Passerone, and P. Costa. Oxygen Mass Transfer at Liquid-Metal-Vapour Interfaces under a Low Total Pressure. J. Mater. Sci.,1994,29(23): 6104-6114.
    [159]E. Ricci, L. Nanni, and A. Passerone. Oxygen Transport and Dynamic Surface Tension of Liquid Metals. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci.,1998,356(1739):857-869.
    [160]E. Arato, E. Ricci, and P. Costa. Oxygen Transport Phenomena at the Liquid Metal-Vapour Interface. J. Mater. Sci.,2005,40(9-10):2133-2140.
    [161]E. Arato, E. Ricci, D. Giuranno, and P. Costa. Composition Transients and Saturation Phenomena at a Liquid Metal-Vapour Interface-The Oxidation of Tin and Aluminium. J. Cryst. Growth,2006,293(1):186-192.
    [162]E. Arato, E. Ricci, and P. Costa. The Effective Oxygen Pressure of Liquid Binary Alloys. Surf. Sci.,2008,602(1):349-357.
    [163]E. Arato, E. Ricci, and P. Costa. On Diffusion, Oxidation and Condensation Phenomena at the Liquid Metal-Gas Interface. Mater. Chem. Phys.,2009,114(2-3):809-814.
    [164]A. Grigoriev, O. Shpyrko, C. Steimer, P. S. Pershan, B. M. Ocko, M. Deutsch, B. Lin, M. Meron, T. Graber, and J. Gebhardt. Surface Oxidation of Liquid Sn. Surf. Sci.,2005,575(3): 223-232.
    [165]G. Wightman and D. J. Fray. The Dynamic Oxidation of Aluminum and Its Alloys. Metall. Trans. B,1983,14(4):625-631.
    [166]T. Iida, R. I. L. Guthrie.液态金属的物理性能.冼爱平,王连文,译.北京:科学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700