用户名: 密码: 验证码:
非晶合金薄膜形变模式转变及其内在机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非晶合金又称金属玻璃,是非晶固体材料家族中的新成员。非晶合金作为具有玻璃、金属、固体和液体特性的新型金属材料,表现出非常独特的性能,同时还是人们探索材料科学与凝聚态物理中一些重要问题的模型体系。半个多世纪以来,非晶合金已经从最初的被人们嘲笑为“愚蠢的合金”到如今成为科研工作者的研究热点。从工业应用的角度出发,非晶合金研究领域目前存在两大基本科学问题:非晶合金的变形机制是什么?非晶合金内部结构与性能、变形行为之间存在什么关系?本论文的主要研究工作围绕着这两个关键问题展开,通过对非晶合金薄膜变形行为的研究,探索了非晶合金变形模式转变的尺寸效应;通过纳米压痕实验测试了非晶合金的剪切转变区体积,从基本流变单元的角度分析了非晶合金薄膜的变形行为。得到的主要结果如下:
     (1)本文在精密抛光的钛基底上沉积了Ni-Nb非晶合金薄膜,通过基底的弯曲带动薄膜的变形。通过扫描电镜对Ni-Nb薄膜的5%拉伸应变区进行了变形行为的研究,发现随着薄膜厚度的降低,拉伸变形会从剪切变形转变为非局域变形。并且变形模式的转变存在过渡区间,即在一定厚度范围内,薄膜可能发生剪切变形也可能发生非局域变形。通过对Ni-Nb薄膜退火处理,发现结构弛豫可以使Ni-Nb非晶合金薄膜发生非局域变形的临界厚度变小,同时两种变形模式转变的厚度区间也被压缩。基于Griffith裂纹扩展准则,从剪切带扩展的驱动能角度理论上预测了发生非局域变形的临界厚度。考虑到基底的束缚作用,引入了薄膜弹性能转移比例Ps这个参数,使理论计算与实验结果基本符合。而退火处理会使Ni-Nb薄膜的杨氏模量变大,同时薄膜与基底结合力降低,导致临界厚度的变小。
     (2)研究了Ni-Nb非晶合金薄膜中应力状态对变形模式转变的影响,发现在非晶合金薄膜拉伸区变形模式转变的临界厚度要明显低于压缩区的临界厚度。基于非晶合金样品在拉伸和压缩时的屈服强度差异和Griffith裂纹扩展准则,提出了正是非晶合金样品在拉伸时屈服强度低于压缩时的屈服强度20%左右,导致了拉伸应力区的临界厚度值低于压缩应力区的临界厚度值。
     (3)进一步开展了Ni-Nb、Cu-Zr-Al、Zr-Cu-Ni-Al、Pd-P和Pd-Ni-P非晶合金样品变形模式转变的温度和应变速率相关性研究。发现非晶合金的变形模式是受实验温度和应变速率调控的,变形模式转变的临界厚度值会随着温度的升高和应变速率的降低而增加。基于Griffith裂纹扩展准则和非晶合金弹性参数与温度和应变速率的关系,温度升高或应变速率降低会减小非晶合金样品的杨氏模量,导致了变形模式转变临界厚度值的下降。
     (4)通过纳米压入技术,研究了八种不同体系的非晶合金薄膜的蠕变性能。发现具有高玻璃转变温度的非晶合金样品抵抗蠕变的能力更强,同时具有更低的应变速率敏感系数。而从稳态蠕变阶段计算得到的各个体系剪切转变区相关信息发现,非局域变形过程中材料的流动性越好(蠕变越明显),那么剪切转变区中包含原子数越少,激活能越低。这说明剪切转区尺寸大小不仅与非晶合金的塑性相关,还和非晶合金的变形模式密切相关。无论是在本课题的研究工作,还是前人对非晶纳米柱状样品的力学研究中,非晶合金的玻璃转变温度越低,发生非局域变形的临界尺寸越大。表明剪切转变区尺寸及激活能越小,非晶合金越容易发生非局域变形。
     (5)同样通过纳米压痕设备,在Ni-Nb非晶合金薄膜中研究了不同结构状态下剪切转变区的体积和不同测试手段对剪切转变区体积的影响。发现结构弛豫可以使剪切转变区体积显著变大。而薄膜变形过程中应变速率越大,对应的剪切转变区体积也越大。这也从内部流变单元角度解释了为什么结构弛豫和应变速率会影响非晶合金发生非局域变形时的临界尺寸。
Amorphous alloy also often referred to as metallic glass, is a relative new member of amorphous solid materials family. As a new-structure metal, amorphous alloy integrates characters of glass, metal, solid and liquid. Amorhpous alloy exhibits very unique properities, meanwhile this new material could be an important part of model system in the material science and condensed matter physics reaserches. As emerged more than half a century, it has been at the cutting edge of material researches though it was treated as a kind of "stupid alloy" at the very beginning. From the sight of industrial application, amorphous alloy researchers are faced with two basic scienctific issues:what is the mechanism of deformation; what is the relation between inernal structure and external performance such as mechanical property and deformation behavior. In this thesis, the main research contents are carried out around these two key questions. We focus on the size effect of deformation mode by the defomation behavior in amorphous alloy film. On the other side, we measure the size of "shear transformation zone" in amorphous alloy by experimental methods. Thus we could analysis the deformation behavior at the point of the basic rheology unit. The main results are summarized as follows.
     (1) By depositing on the polished Ti substrate, Ni-Nb amorphous allopy thin film could be deformed with the bending of substrate. We study the deformation behavior of5%tensile area of thin film by the SEM. As the thickness decreases, defomation mode could be changed from localized shearing to non-localized deformation. In addition, there exists a critical transition zone for the two deformation modes, i.e within a thickness range, the deformation mode is neither complete shearing or non-localized deformation. By annealing of the Ni-Nb thin film, we find the structure relaxation could reduce the critical thickness for non-localized deformation, the "thickness window" is also shorten. Based on the Griffith crack theoy, we theoretically calculate the critical thickness for non-localized deformation at the angle of driving energy for shear banding. Considering the substrate constraint effect,we introduce a paremeter to describe the transfer ratio of thin film elastic energy. Annealing would enlarge the Young's modulus and weaken the adhension between film and substrate,thus results in the reduction of critical thickness for non-localized deformation.
     (2) The transition in deformation mode from highly localized to non-localized deformation was investigated in Ni6oNb4o glassy film bymonitoring the reduction in thickness during film/substrate co-bending. It is revealed that in addition to the film thickness, the mode of plastic deformation depends on the stress state. With the reduction in thickness of thin film, tensile stress can efficiently suppress the change in deformation mode from highly localized to non-localized deformation in comparison with compressive stress. A mechanism for the stress-state-dependent deformation mode change in glassy alloys is discussed on the basis of the pressure/stress effect of plastic deformation and Griffith's crack-propagation criterion. This study provides distinct evidence of the deformation mode change in metallic glassy film via the variation in stress state, and also sheds light on the deformation mechanism of glassy alloys.
     (3) Both the effects of temperature and strain rate on the deformation behavior of metallic glass thin films (Ni60Nb40, Gu44Zr44Al12Zr55Cu15Ni13Al17, Pd79P21, and Pd41Ni39P20) were systematically investigated. The evolution of surface morphology of magnetron sputtered thin films co-bent with the Ti substrate was monitored. A transition from highly localized deformation to non-localized deformation was observed at various temperatures and strain rates by reducing the film thickness to a critical thickness, which can be understood on the basis of Young's modulus, Poisson's ratio, Griffith's crack-propagation criterion and elastic energy transferring efficiency of the material. Temperature and strain rate dependence of the critical thickness for transition are discussed to shed light on the deformation mechanism of glassy thin films.
     (4) By nanoindentation technique, we study the creep behaviors of eight kinds of amorphous alloy films. A phenomenon was observed that the higher Tg or Young's modulu an amorphous alloy film has, the stronger resistance to creep could be detected, and also a lower strain rate sensitivity. The size of "shear transformation zone" could be calculated from the steady-state creep. We found that the material has better fluidity during the non-localized deformation (creep), its STZ size is smaller. This result indicates the STZ size not only influences the plasticity of amorphous alloy but also plays an important part on the transformation of deformation modes. Weather in our work or other groups'researches on the mechanical properties of amorphous alloy nanopillars, there exists a tendency that if an amorphous alloy owns higher Tg, its critical size for non-localized deformation would be larger. That is to say, smaller STZ size could promote the non-localized deformation.
     (5) Using nanoindentation technique, we study the STZ siz of Ni-Nb amorphous alloy film in different structure state and experiment methods. The results show that structure relaxation could remarkably enlarge the STZ size in all the tesing. Meanwhile larger STZ size would be detected if the strain rate during the deformation of thin film is faster. This could explain the reason why structure relaxation and strain rate would affect the critical size for non-localized deformation in amorphous alloy in theaspect of internal rheology unit.
引文
[1]R.W. Douglas and S. Frank, A history of glassmaking. Henley-on-Thames:G T Foulis & Co Ltd.1972,5.
    [2]W. Klement, R.H. Willens, and P. Duwez, Non-Crystalline Structure in Solidified Gold-Silicon Alloys. Nature,1960.187(4740):p.869-870.
    [3]W.L. Johnson, Bulk glass-forming metallic alloys:Science and technology. Mrs Bulletin, 1999.24(10):p.42-56.
    [4]J.F. Loffler, Bulk metallic glasses. Intermetallics,2003.11(6):p.529-540.
    [5]W.H. Wang, C. Dong, and C.H. Shek, Bulk metallic glasses. Materials Science & Engineering R-Reports,2004.44(2-3):p.45-89.
    [6]A.L. Greer, Metallic Glasses. Science,1995.267(5206):p.1947-1953.
    [7]J.J. Gilman, Metallic Glasses. Science,1980.208(4446):p.856-861.
    [8]W. Klement, R.H. Willens, and P. Duwez, Non-Crystalline Structure in Solidified Gold-Silicon Alloys. Nature,1960.187(4740):p.869-870.
    [9]Chen H S. Glassy metals[J]. Reports on Progress in Physics,1980,43(4):353.
    [10]Kui H W, Greer A L, Turnbull D. Formation of bulk metallic glass by fluxing[J]. Applied Physics Letters,1984,45(6):615-616.
    [11]A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia,2000.48(1):p.279-306.
    [12]A. Peker and W.L. Johnson, A Highly Processable Metallic-Glass-Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Applied Physics Letters,1993.63(17):p.2342-2344.
    [13]Nishiyama N, Takenaka K, Miura H, et al. The world's biggest glassy alloy ever made[J]. Intermetallics,2012,30:19-24.
    [14]Lou H B, Wang X D, Xu F, et al.73 mm-diameter bulk metallic glass rod by copper mould casting[J]. Applied Physics Letters,2011,99(5):051910.
    [15]Pauly S, Lober L, Petters R, et al. Processing metallic glasses by selective laser melting[J]. Materials Today,2013,16(1):37-41.
    [16]Rebeiz G M. RF MEMS:theory, design, and technology[M]. John Wiley & Sons,2004.
    [17]Wang W H, Dong C, Shek C H. Bulk metallic glasses[J]. Materials Science and Engineering:R:Reports,2004,44(2):45-89.
    [18]Inoue A, Nakamura T, Nishiyama N, et al. Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method. Materials Transactions, JIM(Japan),1992,33(10):937-945.
    [19]MEMS:introduction and fundamentals. CRC press,2010.
    [20]Ho C M, Tai Y C. Micro-electro-mechanical-systems (MEMS) and fluid flows. Annual Review of Fluid Mechanics,1998,30(1):579-612.
    [21]Gad-el-Hak M. The fluid mechanics of microdevices-the Freeman scholar lecture[J]. Journal of Fluids Engineering,1999,121(1):5-33.
    [22]Madge S V, Caron A, Gralla R, et al. Novel W-based metallic glass with high hardness and wear resistance[J]. Intermetallics,2014,47:6-10.
    [23]Iljinas A, Milcius D, Dudonis J. Deposition of amorphous Fe-Zr alloys by magnetron co-sputtering[J]. Vacuum,2007,81(10):1213-1215.
    [24]Cowell E W, Alimardani N, Knutson C C, et al. Advancing MIM electronics:Amorphous metal electrodes[J]. Advanced Materials,2011,23(1):74-78.
    [25]Chu J P, Huang J C, Jang J S C, et al. Thin film metallic glasses:Preparations, properties, and applications[J]. JOM,2010,62(4):19-24.
    [26]Tsai P H, Li J B, Chang Y Z, et al. Fatigue properties improvement of high-strength aluminum alloy by using a ZrCu-based metallic glass thin film coating[J]. Thin Solid Films, 2013.
    [27]Chu J P, Greene J E, Jang J S C, et al. Bendable bulk metallic glass:Effects of a thin, adhesive, strong, and ductile coating[J]. Acta Materialia,2012,60(6):3226-3238.
    [28]Chen H W, Hsu K C, Chan Y C, et al. Antimicrobial properties of Zr-Cu-Al-Ag thin film metallic glass[J]. Thin Solid Films,2013.
    [29]Liu Y H, Fujita T, Hirata A, et al. Deposition of multicomponent metallic glass films by single-target magnetron sputtering[J]. Intermetallics,2012,21(1):105-114.
    [30]Hirata A, Guan P, Fujita T, et al. Direct observation of local atomic order in a metallic glass[J]. Nature materials,2011,10(1):28-33.
    [31]J.D. Bernal, Geometry of the Structure of Monatomic Liquids. Nature,1960.185(4706):p. 68-70.
    [32]Bernal J D. The Bakerian lecture,1962. The structure of liquids[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1964,280(1382): 299-322.
    [33]P.H. Gaskell, New Structural Model for Transition Metal-Metalloid Glasses. Nature,1978. 276(5687):p.484-485.
    [34]Gaskell P H. Medium-range structure in glasses and low-< i> Q structure in neutron and X-ray scattering data[J]. Journal of non-crystalline solids,2005,351(12):1003-1013
    [35]Gaskell P H. A new structural model for amorphous transition metal silicides, borides, phosphides and carbides[J]. Journal of Non-Crystalline Solids,1979,32(1):207-224.
    [36]Inoue A, Negishi T, Kimura H M, et al. High packing density of Zr-and Pd-based bulk amorphous alloys[J]. Materials Transactions, JIM(Japan),1998,39(2):318-321.
    [37]Miracle D B. A structural model for metallic glasses[J]. Nature materials,2004,3(10): 697-702.
    [38]Miracle D B. The efficient cluster packing model-An atomic structural model for metallic glasses[J]. Acta materialia,2006,54(16):4317-4336.
    [39]Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-medium-range order in metallic glasses[J]. Nature,2006,439(7075):419-425.
    [40]Turnbull D, Cohen M H. Free-volume model of the amorphous phase:glass transition[J]. The Journal of Chemical Physics,2004,34(1):120-125.
    [41]J.F. Loffler, Bulk metallic glasses. Intermetallics,2003.11 (6):p.529-540.
    [42]Wang J, Li R, Hua N, et al. Co-based ternary bulk metallic glasses with ultrahigh strength and plasticity[J]. Journal of Materials Research,2011,26(16):2072-2079.
    [43]A. Inoue, B. Shen, H. Koshiba, H. Kato, and A.R. Yavari, Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nat Mater,2003.2(10):p.661-663.
    [44]M.F. Ashby and A.L. Greer, Metallic glasses as structural materials. Scripta Materialia, 2006.54(3):p.321-326.
    [45]Schroers J. Bulk metallic glasses[J]. Physics Today,2013,66(2):32-37.
    [46]Leung P K, Wright J G. Structural investigations of amorphous transition element films:Ⅱ. Chromium, iron, manganese and nickel[J]. Philosophical Magazine,1974,30(5):995-1008.
    [47]Wang W H. Bulk metallic glasses with functional physical properties[J]. Advanced Materials,2009,21(45):4524-4544.
    [48]Inoue A, Nishiyama N. New bulk metallic glasses for applications as magnetic-sensing, chemical, and structural materials[J]. Mrs Bulletin,2007,32(08):651-658.
    [49]H.J. Leamy, H.S. Chen, and T.T. Wang, Plastic-Flow and Fracture of Metallic Glass. Metallurgical Transactions,1972.3(3):p.699-708.
    [50]Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses[J]. Progress in Materials Science,2012,57(3):487-656.
    [51]Tian L, Cheng Y Q, Shan Z W, et al. Approaching the ideal elastic limit of metallic glasses[J]. Nature communications,2012,3:609.
    [52]Jang D, Greer J R. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses[J]. Nature materials,2010,9(3):215-219.
    [53]Wisitsorasak A, Wolynes P G. On the strength of glasses[J]. Proceedings of the National Academy of Sciences,2012,109(40):16068-16072.
    [54]Bei H, Lu Z P, George E P. Theoretical strength and the onset of plasticity in bulk metallic glasses investigated by nanoindentation with a spherical indenter[J]. Physical review letters, 2004,93:125504-125504.
    [55]Yi J, Xia X X, Zhao D Q, et al. Micro-and Nanoscale Metallic Glassy Fibers[J]. Advanced Engineering Materials,2010,12(11):1117-1122.
    [56]Jiang Q K, Liu P, Ma Y, et al. Super elastic strain limit in metallic glass films[J]. Scientific reports,2012,2.
    [57]Zhang B, Zhao D Q, Pan M X, et al. Amorphous metallic plastic[J]. Physical review letters, 2005,94(20):205502.
    [58]A. Inoue, B.L. Shen, H. Koshiba, H. Kato, and A.R. Yavari, Ultra-high strength above 5000 MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys. Acta Materialia,2004. 52(6):p.1631-1637.
    [59]B.L. Shen, A. Inoue, and C.T. Chang, Superhigh strength and good soft-magnetic properties of (Fe, Co)-B-Si-Nb bulk glassy alloys with high glass-forming ability. Applied Physics Letters,2004.85(21):p.4911-4913.
    [60]T.D. Shen and R.B. Schwarz, Bulk ferromagnetic glasses in the Fe-Ni-P-B system. Acta Materialia,2001.49(5):p.837-847.
    [61]H.W. Chang, Y.C. Huang, C.W. Chang, C.C. Hsieh, and W.C. Chang, Soft magnetic properties and glass formability of Y-Fe-B-M bulk metals (M=A1, Hf, Nb, Ta, and Ti). Journal of Alloys and Compounds,2009.472(1-2):p.166-170.
    [62]A. Inoue and N. Nishiyama, New bulk metallic glasses for applications as magnetic-sensing, chemical, and structural materials. Mrs Bulletin,2007.32(8):p.651-658.
    [63]汪卫华.非晶态物质的本质和特性[J].物理学进展,2013,33(5):177-351.
    [64]Ashby M F. A first report on deformation-mechanism maps[J]. Acta Metallurgica,1972, 20(7):887-897.
    [65]Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses[J]. Acta metallurgica,1977,25(4):407-415.
    [66]De Hey P, Sietsma J, Van Den Beukel A. Structural disordering in amorphous Pd40Ni40P20induced by high temperature deformation. Acta Materialia,1998,46(16): 5873-5882.
    [67]Heggen M, Spaepen F, Feuerbacher M. Creation and annihilation of free volume during homogeneous flow of a metallic glass[J]. Journal of Applied Physics,2004,97(3):033506.
    [68]Kimura H, Masumoto T. A model of the mechanics of serrated flow in an amorphous alloy[J]. Acta Metallurgica,1983,31(2):231-240.
    [69]Cohen M H, Turnbull D. Molecular transport in liquids and glasses[J]. The Journal of Chemical Physics,2004,31(5):1164-1169.
    [70]Turnbull D, Cohen M H. Free-volume model of the amorphous phase:glass transition [J]. The Journal of Chemical Physics,2004,34(1):120-125.
    [71]Turnbull D, Cohen M H. On the Free-Volume Model of the Liquid-Glass Transition[J]. The journal of chemical physics,2003,52(6):3038-3041.
    [72]Argon A S. Plastic deformation in metallic glasses[J]. Acta Metallurgica,1979,27(1): 47-58.
    [73]Gilman J J. Mechanical behavior of metallic glasses[J]. Journal of Applied physics,2008, 46(4):1625-1633.
    [74]Flores K M, Sherer E, Bharathula A, et al. Sub-nanometer open volume regions in a bulk metallic glass investigated by positron annihilation[J]. Acta materialia,2007,55(10): 3403-3411.
    [75]Li J, Spaepen F, Hufnagel T C. Nanometre-scale defects in shear bands in a metallic glass[J]. Philosophical Magazine A,2002,82(13):2623-2630.
    [76]Hajlaoui K, Benameur T, Vaughan G, et al. Thermal expansion and indentation-induced free volume in Zr-based metallic glasses measured by real-time diffraction using synchrotron radiation[J]. Scripta materialia,2004,51(9):843-848.
    [77]Spaepen F. Homogeneous flow of metallic glasses:A free volume perspective[J]. Scripta materialia,2006,54(3):363-367.
    [78]Yang B, Wadsworth J, Nieh T G. Thermal activation in Au-based bulk metallic glass characterized by high-temperature nanoindentation[J]. Applied physics letters,2007,90(6): 061911.
    [79]Kobayashi S, Maeda K, Takeuchi S. Computer simulation of deformation of amorphous Cu57Zr43. Acta Metallurgica,1980,28(12):1641-1652.
    [80]Falk M L, Langer J S. Dynamics of viscoplastic deformation in amorphous solids[J]. Physical Review E,1998,57(6):7192.
    [81]Mayr S G. Activation energy of shear transformation zones:A key for understanding rheology of glasses and liquids[J]. Physical review letters,2006,97(19):195501.
    [82]Becker R. Elastic aftereffect and plasticity[J]. Z. Phys,1925,33:185-213.
    [83]Orowan E. Mechanical strength properties and real structure of crystals[J]. Z Phys,1934,89: 327-343.
    [84]Langer J S. Shear-transformation-zone theory of deformation in metallic glasses[J]. Scripta materialia,2006,54(3):375-379.
    [85]Wales D. Energy landscapes:Applications to clusters, biomolecules and glasses[M]. Cambridge University Press,2003.
    [86]Malandro D L, Lacks D J. Relationships of shear-induced changes in the potential energy landscape to the mechanical properties of ductile glasses[J]. The Journal of chemical physics,1999,110(9):4593-4601.
    [87]Malandro D L, Lacks D J. Molecular-level mechanical instabilities and enhanced self-diffusion in flowing liquids[J]. Physical review letters,1998,81(25):5576.
    [88]Stillinger F H. A topographic view of supercooled liquids and glass formation[J]. Science, 1995,267(5206):1935-1939.
    [89]Johnson W L, Samwer K. A universal criterion for plastic yielding of metallic glasses with a (T/T g) 2/3 temperature dependence[J]. Physical review letters,2005,95(19):195501.
    [90]Zink M, Samwer K, Johnson W L, et al. Plastic deformation of metallic glasses:Size of shear transformation zones from molecular dynamics simulations[J]. Physical Review B, 2006,73(17):172203.
    [91]Pan D, Inoue A, Sakurai T, et al. Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses[J]. Proceedings of the National Academy of Sciences,2008,105(39):14769-14772.
    [92]Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-medium-range order in metallic glasses[J]. Nature,2006,439(7075):419-425.
    [93]Miracle D B. A structural model for metallic glasses[J]. Nature materials,2004,3(10): 697-702.
    [94]田民波.薄膜技术与薄膜材料[M].清华大学出版社,2006.
    [95]Young W T, Kersten H. A Study of Electrodeposits Containing Nickel and Sulfur[J]. Transactions of The Electrochemical Society,1937,71(1):225-231.
    [96]Brennert A, Coucht D E, Williams E K. Electrodeposition of Alloys of Phosphorus with Nickel or Cobalt[J].1950.
    [97]非晶态电镀方法及应用[M].北京航空航天大学出版社,1992.
    [98]诚辉.非晶态合金镀及其镀层性能[M].科学出版社,2004.
    [99]Xu Y, Ge X M, Jiang J Z. Preparation and growth behavior of amorphous Pd40Ni40P20 film by electrodeposition[J]. Journal of Solid State Electrochemistry,2009,13(5):713-720.
    [100]Xu Y, Ge X M, Tong Y J, et al. Kinetic surface roughening of electrodeposited amorphous PdP and NiP films-A comparative study[J]. Electrochemistry Communications,2010, 12(3):442-445.
    [101]Liu S Y, Cao Q P, Mori S, et al. Synthesis and magnetic properties of amorphous Fe-YB thin films[J]. Journal of Alloys and Compounds,2014.
    [102]Donohue A. Deformation of metallic glass thin films and multilayers[M].2007.
    [103]张泰华.微/纳米力学测试技术:仪器化压入的测量,分析,应用及其标准化[J].2013.
    [104]Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of materials research,1992,7(06):1564-1583.
    [105]Johnson K L. Contact mechanics[M]. Cambridge university press,1987.
    [106]Bei H, Lu Z P, George E P. Theoretical strength and the onset of plasticity in bulk metallic glasses investigated by nanoindentation with a spherical indenter[J]. Physical review letters, 2004,93:125504-125504.
    [107]Packard C E, Schuh C A. Initiation of shear bands near a stress concentration in metallic glass[J]. Acta Materialia,2007,55(16):5348-5358.
    [108]Li W B, Henshall J L, Hooper R M, et al. The mechanisms of indentation creep[J]. Acta metallurgica et materialia,1991,39(12):3099-3110.
    [109]Nabarro F RN. Creep in commercially pure metals[J]. Acta materialia,2006,54(2): 263-295.
    [110]Yoo B G, Oh J H, Kim Y J, et al. Nanoindentation analysis of time-dependent deformation in as-cast and annealed Cu-Zr bulk metallic glass[J]. Intermetallics,2010,18(10): 1898-1901.
    [111]Castellero A, Moser B, Uhlenhaut D I, et al. Room-temperature creep and structural relaxation of Mg-Cu-Y metallic glasses[J]. Acta Materialia,2008,56(15):3777-3785.
    [112]Yoo B G, Kim K S, Oh J H, et al. Room temperature creep in amorphous alloys:Influence of initial strain and free volume[J]. Scripta materialia,2010,63(12):1205-1208.
    [113]Li W H, Shin K, Lee C G, et al. The characterization of creep and time-dependent properties of bulk metallic glasses using nanoindentation [J]. Materials Science and Engineering:A,2008,478(1):371-375.
    [114]Wei B C, Zhang L C, Zhang T H, et al. Strain rate dependence of plastic flow in Ce-based bulk metallic glass during nanoindentation[J]. JOURNAL OF MATERIALS RESEARCH-PITTSBURGH THEN WARRENDALE-,2007,22(2):258.
    [115]Yang P, Lu D, Kumar R, et al. Influence of plasma treatment on low-< I> k dielectric films in semiconductor manufacturing[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2005,238(1):310-313.
    [116]Yang P, Lu D, Murthy B R, et al. High-resolution synchrotron X-ray reflectivity study of the density of plasma-treated ultra low-< I> k films[J]. Surface and Coatings Technology,2005,198(1):133-137.
    [117]Ashby M F, Greer A L. Metallic glasses as structural materials [J]. Script Materialia,2006, 54(3):321-326.
    [118]Wang R, Cong L, Kido M. Evaluation of the wettability of metal surfaces by micro-pure water by means of atomic force microscopy [J]. Applied surface science,2002,191(1): 74-84.
    [119]Nakae H, Inui R, Hirata Y, et al. Effects of surface roughness on wettability[J]. Acta materialia,1998,46(7):2313-2318.
    [120]Uelzen T, Muller J. Wettability enhancement by rough surfaces generated by thin film technology[J]. Thin Solid Films,2003,434(1):311-315.
    [121]Ma Y, Cao Q P, Qu S X, et al. Stress-state-dependent deformation behavior in Ni-Nb metallic glassy film[J]. Acta Materialia,2012,60(10):4136-4143.
    [122]Ma Y, Cao Q P, Qu S X, et al. Effect of structural relaxation on plastic flow in a Ni-Nb metallic glassy film[J]. Acta Materialia,2012,60(8):3667-3676.
    [123]Cao Q P, Ma Y, Xu Y, et al. Bending behavior of electrodeposited glassy Pd-P and Pd-Ni-P thin films[J]. Scripta Materialia,2013,68(7):455-458.
    [124]Cao Q P, Ma Y, Wang C, et al. Effect of temperature and strain rate on deformation behavior in metallic glassy films[J]. Thin Solid Films,2013.
    [125]Chen M. Mechanical behavior of metallic glasses:Microscopic understanding of strength and ductility[J]. Annu. Rev. Mater. Res.,2008,38:445-469.
    [126]Schuh C A, Hufnagel T C, Ramamurty U. Mechanical behavior of amorphous alloys[J]. Acta Materialia,2007,55(12):4067-4109.
    [127]Kawamura Y, Nakamura T, Inoue A. Superplasticity in Pd40Ni40oP20 metallic glass [J]. Scripta materialia,1998,39(3):301-306.
    [128]Schuh C A, Lund A C, Nieh T G. New regime of homogeneous flow in the deformation map of metallic glasses:Elevated temperature nanoindentation experiments and mechanistic modeling[J]. Acta Materialia,2004,52(20):5879-5891.
    [129]Li Q K, Li M. Molecular dynamics simulation of intrinsic and extrinsic mechanical properties of amorphous metals[J]. Intermetallics,2006,14(8):1005-1010.
    [130]Guo H, Yan P F, Wang Y B, et al. Tensile ductility and necking of metallic glass[J]. Nature materials,2007,6(10):735-739.
    [131]Donohue A, Spaepen F, Hoagland R G, et al. Suppression of the shear band instability during plastic flow of nanometer-scale confined metallic glasses[J]. Applied Physics Letters,2007,91(24):241905.
    [132]Wang Y, Li J, Hamza A V, et al. Ductile crystalline-amorphous nanolaminates[J]. Proceedings of the National Academy of Sciences,2007,104(27):11155-11160.
    [133]Volkert C A, Donohue A, Spaepen F. Effect of sample size on deformation in amorphous metals[J]. Journal of Applied Physics,2008,103(8):083539.
    [134]Shan Z W, Li J, Cheng Y Q, et al. Plastic flow and failure resistance of metallic glass: Insight from in situ compression of nanopillars[J]. Physical Review B,2008,77(15): 155419.
    [135]Chen C Q, Pei Y T, De Hosson J T M. Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments[J]. Acta Materialia,2010,58(1):189-200.
    [136]Luo J H, Wu F F, Huang J Y, et al. Superelongation and atomic chain formation in nanosized metallic glass[J]. Physical review letters,2010,104(21):215503.
    [137]Schuster B E, Wei Q, Hufnagel T C, et al. Size-independent strength and deformation mode in compression of a Pd-based metallic glass[J]. Acta Materialia,2008,56(18): 5091-5100.
    [138]Wu X L, Guo Y Z, Wei Q, et al. Prevalence of shear banding in compression of Zr41Ti14Cu12.5Ni10Be22.5pillars as small as 150nm in diameter[J]. Acta Materialia,2009, 57(12):3562-3571.
    [139]Dubach A, Raghavan R, Loffler J F, et al. Micropillar compression studies on a bulk metallic glass in different structural states[J]. Scripta Materialia,2009,60(7):567-570.
    [140]Bharathula A, Lee S W, Wright W J, et al. Compression testing of metallic glass at small length scales:Effects on deformation mode and stability[J]. Acta materialia,2010,58(17): 5789-5796.
    [141]Shimizu F, Ogata S, Li J. Theory of shear banding in metallic glasses and molecular dynamics calculations[J]. Materials transactions,2007,48(11):2923-2927.
    [142]Kim J Y, Jang D, Greer J R. Nanolaminates Utilizing Size-Dependent Homogeneous Plasticity of Metallic Glasses[J]. Advanced Functional Materials,2011,21(23): 4550-4554.
    [143]Wang X, Cao Q P, Chen Y M, et al. A plastic Zr-Cu-Ag-Al bulk metallic glass[J]. Acta Materialia,2011,59(3):1037-1047.
    [144]Chen L Y, Fu Z D, Zeng W, et al. Ultrahigh strength binary Ni-Nb bulk glassy alloy composite with good ductility[J]. Journal of alloys and compounds,2007,443(1):105-108.
    [145]Handbook of Nanoceramics and Their Based Nanodevices:Characterization and properties[M]. American Scientific Publishers,2009.
    [146]Wang W H. Correlations between elastic moduli and properties in bulk metallic glasses[J]. Journal of applied physics,2006,99(9):093506.
    [147]Thornton J A, Hoffman D W. Stress-related effects in thin films[J]. Thin solid films,1989, 171(1):5-31.
    [148]Zhang Y, Wang W H, Greer A L. Making metallic glasses plastic by control of residual stress[J]. Nature materials,2006,5(11):857-860.
    [149]Raghavan R, Ayer R, Jin H W, et al. Effect of shot peening on the fatigue life of a Zr-based bulk metallic glass[J]. Scripta Materialia,2008,59(2):167-170.
    [150]Chen L Y, Ge Q, Qu S, et al. Stress-induced softening and hardening in a bulk metallic glass[J]. Scripta Materialia,2008,59(11):1210-1213.
    [151]Zhu Z, Zhang H, Pan D, et al. Fabrication of Binary Ni-Nb Bulk Metallic Glass with High Strength and Compressive Plasticity[J]. Advanced Engineering Materials,2006, 8(10):953-957.
    [152]Gao H, Ji B, Jager I L, et al. Materials become insensitive to flaws at nanoscale:lessons from nature[J]. Proceedings of the national Academy of Sciences,2003,100(10): 5597-5600.
    [153]Qi J, Lai K H, Lee C S, et al. Mechanical properties of aC:H multilayer films[J]. Diamond and related materials,2001,10(9):1833-1838.
    [154]Schuh C, Nieh T G. A survey of instrumented indentation studies on metallic glasses[J]. Journal of Materials Research,2004,19(1):46-57.
    [155]Hajlaoui K, Benameur T, Vaughan G, et al. Thermal expansion and indentation-induced free volume in Zr-based metallic glasses measured by real-time diffraction using synchrotron radiation[J]. Scripta materialia,2004,51(9):843-848.
    [156]Spaepen F. Metallic glasses:Must shear bands be hot. Nature Materials,2006,5(1):7-8.
    [157]Zhang Z F, Zhang H, Pan X F, et al. Effect of aspect ratio on the compressive deformation and fracture behaviour of Zr-based bulk metallic glass[J]. Philosophical magazine letters, 2005,85(10):513-521.
    [158]Lewandowski J J, Lowhaphandu P. Effects of hydrostatic pressure on mechanical behaviour and deformation processing of materials[J]. International Materials Reviews, 1998,43(4):145-187.
    [159]Lund A C, Schuh C A. Yield surface of a simulated metallic glass[J]. Acta materialia, 2003,51(18):5399-5411.
    [160]Schuh C A, Lund A C. Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation[J]. Journal of Materials research,2004,19(7): 2152-2158.
    [161]Bei H, Xie S, George E P. Softening caused by profuse shear banding in a bulk metallic glass[J]. Physical review letters,2006,96(10):105503.
    [162]Moser B, Kuebler J, Meinhard H, et al. Observation of Instabilities during Plastic Deformation by in-situ SEM Indentation Experiments[J]. Advanced Engineering Materials,2005,7(5):388-392.
    [163]Conner R D, Johnson W L, Paton N E, et al. Shear bands and cracking of metallic glass plates in bending[J]. Journal of applied physics,2003,94(2):904-911.
    [164]Kumar G, Rector D, Conner R D, et al. Embrittlement of Zr-based bulk metallic glasses[J]. Acta Materialia,2009,57(12):3572-3583.
    [165]Lu J, Ravichandran G, Johnson W L. Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures[J]. Acta Materialia,2003,51(12):3429-3443.
    [166]Jiang W H, Atzmon M. Rate dependence of serrated flow in a metallic glass[J]. Journal of materials research,2003,18(04):755-757.
    [167]Kuzmin O V, Pei Y T, Chen C Q, et al. Intrinsic and extrinsic size effects in the deformation of metallic glass nanopillars[J]. Acta Materialia,2012,60(3):889-898.
    [168]Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses[J]. Progress in Materials Science,2012,57(3):487-656.
    [169]Wang C C, Ding J, Cheng Y Q, et al. Sample size matters for Al88Fe7Gd5 metallic glass: Smaller is stronger[J]. Acta Materialia,2012,60(13):5370-5379.
    [170]Mukai T, Nieh T G, Kawamura Y, et al. Dynamic response of a Pd40Ni40P20 bulk metallic glass in tension[J]. Scripta materialia,2002,46(1):43-47.
    [171]Rouxel T. Elastic Properties and Short-to Medium-Range Order in Glasses. Journal of the American Ceramic Society,2007,90(10):3019-3039.
    [172]Yu P, Bai H Y. Poisson's ratio and plasticity in CuZrAl bulk metallic glasses. Materials Science and Engineering:A,2008,485(1):1-4.
    [173]Zhang Y, Pan M X, Zhao D Q, et al. Formation of Zr-based bulk metallic glasses from low purity of materials by yttrium addition. Materials transactions-JIM,2000,41(11): 1410-1414.
    [174]Yavari A R, Georgarakis K, Botta W J, et al. Homogenization of plastic deformation in metallic glass foils less than one micrometer thick[J]. Physical Review B,2010,82(17): 172202.
    [175]Song S X, Jang J S C, Huang J C, et al. Inhomogeneous to homogeneous transition in an Au-based metallic glass and its deformation maps[J]. Intermetallics,2010,18(4):702-709.
    [176]Greaves G N, Greer A L, Lakes R S, et al. Poisson's ratio and modern materials[J]. Nature materials,2011,10(11):823-837.
    [177]Halperin W P. Quantum size effects in metal particles[J]. Reviews of Modern Physics, 1986,58(3):533.
    [178]Dieter G E, Bacon D. Mechanical metallurgy[M]. New York:McGraw-Hill,1986.
    [179]Schiotz J, Di Tolla F D, Jacobsen K W. Softening of nanocrystalline metals at very small grain sizes[J]. Nature,1998,391(6667):561-563.
    [180]Meyersm M A, Ash worth E. A model for the effect of grain size on the yield stress of metals. Philosophical Magazine A,1982,46(5):737-759.
    [181]Chen D Z, Jang D, Guan K M, et al. Nanometallic Glasses:Size Reduction Brings Ductility, Surface State Drives Its Extent[J]. Nano letters,2013,13(9):4462-4468.
    [182]Wright W J, Saha R, Nix W D. Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass[J]. Materials Transactions-JIM,2001,42(4):642-649.
    [183]Syed Asif S A, Pethica J B. Nanoindentation creep of single-crystal tungsten and gallium arsenide[J]. Philosophical Magazine A,1997,76(6):1105-1118.
    [184]Wang F, Li J M, Huang P, et al. Nanoscale creep deformation in Zr-based metallic glass[J]. Intermetallics,2013,38:156-160.
    [185]Choi I C, Yoo B G, Kim Y J, et al. Indentation creep revisited[J]. nanoscale,2012,5:7.
    [186]Yoo B G, Choi I C, Kim Y J, et al. Room-temperature anelasticity and viscoplasticity of Cu-Zr bulk metallic glasses evaluated using nanoindentation[J]. Materials Science and Engineering:A,2013,577:101-104.
    [187]Marques V M F, Wunderle B, Johnston C, et al. Nanomechanical characterization of Sn-Ag-Cu/Cu joints-Part 2:Nanoindentation creep and its relationship with uniaxial creep as a function of temperature[J]. Acta Materialia,2013,61(7):2471-2480.
    [188]Liu S T, Wang Z, Peng H L, et al. The activation energy and volume of flow units of metallic glasses[J]. Scripta Materialia,2012,67(1):9-12.,
    [189]Yu H B, Wang W H, Bai H Y, et al. Relating activation of shear transformation zones to β relaxations in metallic glasses[J]. Physical Review B,2010,81(22):220201.
    [190]Choi I C, Zhao Y, Kim Y J, et al. Indentation size effect and shear transformation zone size in a bulk metallic glass in two different structural states[J]. Acta materialia,2012,60(19): 6862-6868.
    [191]Dubach A, Dalla Torre F H, Loffler J F. Constitutive model for inhomogeneous flow in bulk metallic glasses[J]. Acta Materialia,2009,57(3):881-892.
    [192]Pan D, Yokoyama Y, Fujita T, et al. Correlation between structural relaxation and shear transformation zone volume of a bulk metallic glass[J]. Applied Physics Letters,2009, 95(14):141909.
    [193]Wu Y, Li H X, Chen G L, et al. Nonlinear tensile deformation behavior of small-sized metallic glasses[J]. Scripta Materialia,2009,61(6):564-567.
    [194]Woodford D A. STRAIN-RATE SENSITIVITY AS A MEASURE OF DUCTILITY[R]. General Electric Co., Schenectady, NY,1969.
    [195]Schwaiger R, Moser B, Dao M, et al. Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel[J]. Acta materialia,2003,51 (17):5159-5172.
    [196]Li R, Pang S, Men H, et al. Formation and mechanical properties of (Ce-La-Pr-Nd)-Co-Al bulk glassy alloys with superior glass-forming ability [J]. Scripta materialia,2006,54(6):1123-1126.
    [197]Wang D, Li Y, Sun B B, et al. Bulk metallic glass formation in the binary Cu-Zr system[J]. Applied Physics Letters,2004,84(20):4029-4031.
    [198]Park E S, Kim D H. Phase separation and enhancement of plasticity in Cu-Zr-Al-Y bulk metallic glasses[J]. Acta materialia,2006,54(10):2597-2604.
    [199]Sun Y J, Qu D D, Huang Y J, et al. Zr-Cu-Ni-Al bulk metallic glasses with superhigh glass-forming ability[J]. Acta materialia,2009,57(4):1290-1299.
    [200]Xia L, Li W H, Fang S S, et al. Binary Ni-Nb bulk metallic glasses[J]. Journal of applied physics,2006,99(2):026103.
    [201]Lin C Y, Tien H Y, Chin T S. Soft magnetic ternary iron-boron-based bulk metallic glasses. Applied Physics Letters,2005,86(16):162501-162501-3.
    [202]Inoue A, Shen B L, Chang C T. Fe-and Co-based bulk glassy alloys with ultrahigh strength of over 4000MPa[J]. Intermetallics,2006,14(8):936-944.
    [203]Ohtsuki M, Tamura R, Takeuchi S, et al. Hard metallic glass of tungsten-based alloy[J]. Applied physics letters,2004,84(24):4911-4913.
    [204]Fischer-Cripps A C. Nanoindentation of Thin Films[M]//Nanoindentation. Springer New York,2004:132-143.
    [205]Alkorta J, Martinez-Esnaola J M, Gil Sevillano J. Critical examination of strain-rate sensitivity measurement by nanoindentation methods:Application to severely deformed niobium[J]. Acta Materialia,2008,56(4):884-893.
    [206]Li H, Ngan A H W. Indentation size effects on the strain rate sensitivity of nanocrystalline Ni-25at.% A1 thin films[J]. Scripta materialia,2005,52(9):827-831.
    [207]Peykov D, Martin E, Chromik R R, et al. Evaluation of strain rate sensitivity by constant load nanoindentation[J]. Journal of Materials Science,2012,47(20):7189-7200.
    [208]Wang F, Huang P, Xu K W. Time dependent plasticity at real nanoscale deformation[J]. Applied physics letters,2007,90(16):161921-161921-3.
    [209]Li W H, Shin K, Lee C G, et al. The characterization of creep and time-dependent properties of bulk metallic glasses using nanoindentation[J]. Materials Science and Engineering:A,2008,478(1):371-375.
    [210]Li H, Ngan A H W. Size effects of nanoindentation creep[J]. Journal of materials research, 2004,19(02):513-522.
    [211]Ma Z, Long S, Pan Y, et al. Loading rate sensitivity of nanoindentation creep in polycrystalline Ni films[J]. Journal of Materials Science,2008,43(17):5952-5955.
    [212]Fei W, Kewei X. An investigation of nanoindentation creep in polycrystalline Cu thin film. Materials Letters,2004,58(19):2345-2349.
    [213]Wang C L, Lai Y H, Huang J C, et al. Creep of nanocrystalline nickel:A direct comparison between uniaxial and nanoindentation creep[J]. Scripta Materialia,2010,62(4):175-178.
    [214]Bernal J D. A geometrical approach to the structure of liquids[J].1959.
    [215]Egami T, Waseda Y. Atomic size effect on the formability of metallic glasses[J]. Journal of non-crystalline solids,1984,64(1):113-134.
    [216]Schuh C, Nieh T G. A survey of instrumented indentation studies on metallic glasses [J]. Journal of Materials Research,2004,19(1):46-57.
    [217]Wei B, Zhang T, Li W, et al. Indentation creep behavior in Ce-based bulk metallic glasses at room temperature[J]. Materials transactions,2005,46(12):2959-2962.
    [218]Huang Y J, Shen J, Chiu Y L, et al. Indentation creep of an Fe-based bulk metallic glass[J]. Intermetallics,2009,17(4):190-194.
    [219]Fatay D, Gubicza J, Lendvai J. Indentation creep behavior of a Zr-based bulk metallic glass[J]. Journal of alloys and compounds,2007,434:75-78.
    [220]Huang Y J, Chiu Y L, Shen J, et al. Indentation creep of a Ti-based metallic glass[J]. J. Mater. Res,2009,24(3):993-997.
    [221]Zhang Y, Greer A L. Thickness of shear bands in metallic glasses[J]. Applied Physics Letters,2006,89(7):071907-071907-3.
    [222]Perriere L, Nowak S, Brossard S, et al. Nanoindentation study of chemical effects on the activation volume controlling shear band initiation in metallic glasses[J]. Scripta Materialia, 2013,68(3):183-186.
    [223]Heilmaier M, Eckert J. Elevated Temperature Deformation Behavior of Zr-Based Bulk Metallic Glasses[J]. Advanced Engineering Materials,2005,7(9):833-841.
    [224]Schuh C A, Lund A C. Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation[J]. Journal of Materials research,2004,19(7): 2152-2158.
    [225]Cao Q P, Wang C, Bu K J, et al. Glass transition temperature influence on critical size for deformation mode transition in metallic glassy films[J]. Scripta Materialia,2014.
    [226]Magagnosc D J, Ehrbar R, Kumar G, et al. Tunable Tensile Ductility in Metallic GlassesfJ]. Scientific reports,2013,3.
    [227]Maloney C, Lemaitre A. Subextensive scaling in the athermal, quasistatic limit of amorphous matter in plastic shear flow[J]. Physical review letters,2004,93(1):016001.
    [228]Yoo B G, Oh J H, Kim Y J, et al. Nanoindentation analysis of time-dependent deformation in as-cast and annealed Cu-Zr bulk metallic glass[J]. Intermetallics,2010,18(10): 1898-1901.
    [229]Park K W, Lee C M, Wakeda M, et al. Elastostatically induced structural disordering in amorphous alloys[J]. Acta Materialia,2008,56(19):5440-5450.
    [230]Albano F, Falk M L. Shear softening and structure in a simulated three-dimensional binary glass[J]. The Journal of chemical physics,2005,122(15):154508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700