用户名: 密码: 验证码:
激光熔覆INCONEL 718合金涂层的成分偏聚与强化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光熔覆技术以其高的能量密度和加工精度、宽泛的材料选择及良好的冶金结合界面等特点成为再制造工程的关键技术之一。再制造工程是以延长具有高附加价值零件使用寿命为出发点,同时以提升废旧零件表面性能为目的,契合构建循环经济的国家战略需求。激光熔覆层晶粒生长取向良好,优于铸锻合金力学性能,在发动机和发电机涡轮叶片等零件的修复再制造等方面具有广阔应用前景。
     本文面向再制造工程,以激光熔覆镍基高温合金涂层为研究对象,主要研究内容有:激光熔覆涂层的制备及组织分析,冷却速度对熔覆层组织形态和成分偏聚的影响规律;多层堆积过程中的组织定向生长行为及多层堆积熔覆层中裂纹形态及裂纹敏感性因素分析;热处理对熔覆层组织、成分偏聚和力学性能的影响,揭示成分偏聚行为与熔覆层强韧化机制的关系。主要的研究结果有:
     采用优化工艺参数可制备成形良好、稀释率低、无缺陷且与基体冶金结合良好的激光熔覆INCONEL718合金涂层。在熔覆过程中,最大温度梯度方向从熔覆层底部的垂直于基材表面转变为熔覆层顶部的趋近平行于激光行走方向。熔覆层横截面从底部到顶部依次形成平面晶、胞状晶、树枝晶和等轴晶形态组织。熔覆涂层的析出相Laves相内偏聚大量Nb和Mo,碳化物和氮化物中偏聚大量Nb和Ti。
     通过提高冷却速度,可减小熔池中成分过冷Cs和增大温度梯度Gm,使熔覆层中树枝晶间Laves相细化且含量减少,可抑制Nb偏聚程度并提高熔覆层中Nb的固溶强化作用。液氮强制冷却涂层中Laves相含量约为3.5vol.%,Laves相中Nb含量约为8.5~14mass.%,均显著低于空冷涂层,而奥氏体中Nb含量约为3.5~7.5mass.%,明显高于空冷涂层,显著改善了熔覆层中Nb的偏聚程度。
     激光重熔涂层中有尺寸约0.2~0.9μm的颗粒状Nb(Al, Ti)复合相在Laves相处于999℃析出。颗粒相析出是由于过饱和的Laves相在凝固冷却过程中连续自发地分解后粗化长大形成,Laves相中的Al和Ti上坡扩散到颗粒相中,使Al和Ti偏聚于颗粒相中。熔覆层中颗粒状碳化物(Nb0.12Ti0.88)C1.5和四方状氮化物(Nb0.88Ti0.12)N1.5的形成是由于极大过冷度和温度梯度使过饱和合金元素在碳化物/氮化物和Laves相中相互扩散和再分布,使富集Ti和Nb的碳化物和氮化物在Laves相处析出。碳化物和氮化物的平均硬度和弹性模量均远高于奥氏体,因切割机制引起的第二相强化作用为134.34MPa。
     通过EBSD分析发现堆积熔覆层底部横截面树枝晶组织具有沿堆积方向较强的织构取向,堆积过程中树枝晶粗化且枝晶间距增大;在底部水平截面,晶粒受循环热作用形成了较弱织构特征的组织,大部分晶粒的生长方向受最大温度梯度影响而趋近于<100>方向。熔覆层横截面中间区域组织主要为受最大温度梯度方向控制,且沿堆积方向定向生长的柱状晶,熔覆层晶粒沿<001>方向形成晶界取向差约2°的强织构组织。熔覆层组织在顶部横截面沿<001>方向生长且具有小角度晶界取向和大晶粒尺寸特征;在熔覆层顶部水平截面,晶粒受最大温度梯度影响形成强织构组织。
     堆积熔覆层中的裂纹为结晶裂纹和液化裂纹。横向拉应力可使尖端处存在应力集中的熔覆缺陷和小液化裂纹,在粗大Laves相和碳化物共晶处,沿堆积方向和激光熔覆方向扩展,液态金属来不及填充开裂的枝晶间隙,裂纹末端在熔覆层顶部和熔覆结束点愈合,而形成液化裂纹。熔覆层中低熔点粗大连续Laves相或碳化物共晶均可为液化裂纹提供扩展通道;熔覆层中随堆积层数增加而增大的横向残余应力可诱发小裂纹扩展而增加裂纹敏感性。
     熔覆层中只有少部分Nb以γ″-Ni3Nb析出,由于冷却速度不够快,熔覆层中起固溶强化作用的大部分Nb严重偏聚而形成大量Laves相。高温固溶可使Laves相中的Nb重溶到奥氏体γ中,在时效过程中以尺寸为15~25nm的γ″-Ni3Nb在晶内弥散析出,其与γ之间存在高错配度,提高熔覆层的力学性能。热处理前后熔覆层中Laves相含量及Laves相中Nb含量沿堆积方向增加,熔覆的循环热和热处理作用使部分Laves相分解,Laves相与γ间的浓度梯度、熔覆晶格缺陷和残余应力均可在高温条件下促进元素扩散和Laves相的溶解。
     标准热处理熔覆层的室温拉伸强度达1334MPa,高于熔覆态涂层的918MPa,亦高于锻造和铸造合金;熔覆层断裂方式为穿晶断裂。标准热处理熔覆层的650℃高温拉伸性能高于980STA态熔覆层和直接时效态熔覆层。织构组织的形成引起熔覆层力学性能各向异性。标准热处理态堆积熔覆层沿堆积方向在650℃拉伸强度为938MPa,与锻造合金高温拉伸性能相当,高于激光行走方向的903MPa和搭接方向的780MPa。熔覆层在激光行走方向和搭接方向高温拉伸时均为韧性断裂和脆性断裂相结合,沿堆积方向的断口完全由韧窝组成,断裂方式为韧性断裂。
Laser cladding technology is one of pivotal technologies for remanufacturing engineering dueto the superior technical characteristics such as high energy density, high processing accuracy,wide materials selection and excellent metallurgical bonding between coating and substrate.Remanufacturing engineering takes the prolonging service life of component with added value asinstruction, and takes the improvement surface properties of the waster components as the goal,which meet the demand of national strategic development for constructing cyclic economy. Thelaser cladding technology has wide application in remanufacturing field of turbine blade for powergeneration because the laser cladded coating has the advantage of favorable grain growthorientation and superior mechanical properties than wrought and as-cast alloys.
     In the paper, the remanufacturing engineering is taken as the research background, and thelaser cladded Ni-based superalloy coating is taken as the research object. The laser claddedNi-based superalloy was fabricated using high power diode laser cladding system. The researchcontent mainly includes the optimize process parameters for laser cladding and the microstructureof the coating, effect of cooling rate on the microstructure and segregation, the oriented growthbehavior and the crack morphology and crack sensitivity factors, effect of heat treatment on themicrostructure, segregation and mechanical properties. The studies provide scientific andtheoretical bases for the remanufacturing engineering of laser cladding on Ni-based superalloy.Some of main experimental results and conclusions are listed as follows.
     The microstructure of the epitaxial deposited coating was studied. The cladded coating withgood shape, low dilution rate, without defect and good metallurgical bonding with the substratewas fabricated with optimized process parameters. The direction of maximum temperaturegradient in the cross section of the coating varied from perpendicular to substrate surface in thedown region of the coating to paralleling to the direction of laser beam. The planar crystal, cellularcrystal, columnar dendrite and equiaxied crystal were formed from down region and up region ofthe coating. The precipitation phases in the cladded coating were dendritic (Nb, Mo)-rich Lavesphase and a small amount (Nb, Ti)-rich carbide and nitride.
     The effect of cooling rate on the microstructure and segregation in the cladded coating wasinvestigated. The constitutional supercooling Csand the temperature gradient Gmwere improvedby increasing cooling speed, and then the Laves was refined, and the concentration of dendriticLaves a was decreased, indicating that Nb segregation in the coating was restrained, and more Nbatom played the solution strengthening on the matrix. The Laves concentration in the liquid nitridecooled coating was reduced to3.5vol.%, and Nb concentration in Laves was reduced to8.5~14mass.%, which were both lower than the air-cooled coating. The Nb concentration in the austenitewas increased to3.5~7.5mass.%that was higher than the air cooled coating. The Nb segregationwas alleviated by the rapid cooling rate provided by liquid nitride.
     The granule complex phase Nb(Al, Ti) with0.2~0.9μm was precipitated at about999℃during the laser remelted coating. Al and Ti atoms were redistributed between Laves and thegranule complex phase via the uphill diffusion, and the intermetallic was precipitated from thesupersaturated Laves phase when the temperature was decreased to the spontaneous decompositiontemperature. Carbide (Nb0.12Ti0.88)C1.5and nitride (Nb0.88Ti0.12)N1.5were formed due to alloyingelements interdiffuse and redistribute between MC/MN and supersaturated Laves under the largerthe degree of supercooling and temperature gradient. The carbide and nitride were segregated withNb and Ti and were precipitated along the Laves. The average hardness and the average elasticitymodulus of (Nb0.12Ti0.88)C1.5and (Nb0.88Ti0.12)N1.5were much higher than the austenite, and thestrengthening effects of second-phase particles carbide and nitride are134.34MPa.
     The grain growth behavior of the epitaxial deposited coating was studied. EBSD analysisresults showed that strong texture with various growth directions was formed in the down regionof the cross section of the coating. Most grains was formed as texture with grain misorientationangle about2°and growth direction towards to <100> in the horizontal cross-section, while thegrain was coarsened due to the thermal cycle. In the middle region of the deposition coating, thedirectional dendrite was formed as the strong texture along <001> with misorientation angle about2°under the controlling of direction of maximum temperature gradient. In the top region of thecoating, the texture in the cross section was formed with large grain size, and strong texture in thehorizontal cross section with small misorientation angle about2°.
     The tips of small solidification crack with stress concentration was activated by the transversetensile stress, and the crack was propagated with the coarsening Laves and carbide along thedirection of deposition and laser beam. The liquation crack was form before the liquid alloy fillingthe dendrite clearance, and was healed at the topmost the deposition coating and the ending of thelaser beam. The propagation path of the crack was provided by the coarsening Laves and carbide eutectic with the effect of transverse residual stress that was increased with increasing the numberof deposition layers.
     The effect of heat treatment on the microstructure and composition segregation in the coatingwas studied, and the mechanical properties of the coating were test. Only a small portion of Nb inIN718alloy coating was precipitated as the constituent of the strengthening phase. The rest of Nbplayed the role of solution strengthening and segregated in the form of Laves in the laser-claddingprocess due to the slow cooling rate. Laves phase in the coating was dissolved during the elevatedtemperature solid solution, and the Nb was redissoluted in the austenite and precipitateddispersedly as strengthening phase γ″-Ni3Nb with dimension of15~25nm during the double agingtreatment. The mechanical properties of the coating were improved by γ″-Ni3Nb due to the largemismatch between γ″-Ni3Nb and austenite γ. Laves concentration in the coating and Nbconcentration in Laves increase along the deposited direction. Laves concentration and Nbconcentration in Laves were increased along the deposition direction. Part of Laves was dissolvedby the thermal cycle during the successive laser deposition, concentration gradient between Lavesand austenite, lattice imperfection of the coating and residual stress.
     The tensile strength of the standard heat treated coating at ambient temperature was1334MPa that was higher than the as-deposited coating918MPa as well as the wrought alloy and castalloy. The coating was destroyed as transgranular fracture. The tensile strength of the standard heattreated coating at650℃was higher than that of980STA coating and DA coating. Theanisotropic tensile property of the coating was generated by the texture formed during the epitaxialdeposition. The tensile strength of the standard heat treated coating along the deposition directionat650℃was938MPa that was about the same to the wrought alloy and was higher than903MPa along the direction of laser scanning and780MPa along the direction of overlapping. Thefracture mode of the coating along the direction of laser scanning and the direction of overlappingwere mixed-mode of ductile fracture and brittle fracture, and was changed to ductile fracture alongthe deposition direction.
引文
[1]徐滨士.再制造工程的现状与前沿.材料热处理学报.2010,(01):10-14.
    [2]徐滨士,刘世参,史佩京,邢忠,谢建军.汽车发动机再制造效益分析及对循环经济贡献研究.中国表面工程.2005,(01):1-7.
    [3]徐滨士.绿色再制造工程的发展现状和未来展望.中国工程科学.2011,(01):4-10.
    [4]徐滨士.发展再制造工程,实现节能减排.装甲兵工程学院学报.2007,(05):1-5.
    [5]徐滨士.装备再制造工程的理论与技术.北京:国防工业出版社,2007.
    [6]徐滨士.再制造工程及其关键技术(摘录).内燃机配件.2009,(04):3-8.
    [7]张九渊.表面工程与失效分析.浙江:浙江大学出版社,2005.
    [8]周建忠.激光快速制造技术及应用.北京:化学工业出版社,2009.
    [9]邱星武. Ni基大面积激光熔覆涂层制备工艺及组织性能研究.辽宁工程技术大学,2008.
    [10]曹凤国.激光加工技术.北京:北京科技术出版社,2007.
    [11]赵文轸.材料表面工程导论.西安:西安交通大学出版社,2002.
    [12]王学让,杨占尧.快速成型理论与技术.北京:航空工业出版社,2001.
    [13]蔡礼权.表面技术在水力机械抗汽蚀防护中的应用.徐州工程学院学报(自然科学版).2009,(03):59-62.
    [14] E. Amsterdam, G. Kool. High Cycle Fatigue of Laser Beam Deposited Ti-6Al-4V andInconel718. ICAF2009, Bridging the Gap between Theory and Operational Practice.2009:1261-1274.
    [15] J. Chen, L. Xue. Process-induced microstructural characteristics of laser consolidatedIN-738superalloy. Materials Science and Engineering: A.2010,527(27-28):7318-7328.
    [16]姜银方,朱元右,戈晓岚.现代表面工程技术.北京:机械工业出版社出版,2006.
    [17]徐滨士,朱绍华.表面工程的理论与技术.北京:国防工业出版社,2010.
    [18] Y. Yang, H. Wu. Improving the wear resistance of AZ91D magnesium alloys by lasercladding with Al–Si powders. Materials Letters.2009,63(1):19-21.
    [19] W. Liu, J.N. DuPont. Direct laser deposition of a single-crystal Ni3Al-based IC221Walloy Metallurgical and Materials Transactions A.2005,36(12):3397-3406.
    [20] S. Nowotny, S. Scharek, E. Beyer, K.H. Richter. Laser beam build-up welding: precisionin repair, surface cladding, and direct3D metal deposition. Journal of Thermal SprayTechnology.2007,16(3):344-348.
    [21] M. Zhong, W. Liu, G. Ning, L. Yang, Y. Chen. Laser direct manufacturing of tungstennickel collimation component. Journal of Materials Processing Technology.2004,147(2):167-173.
    [22] Y. Li, H. Yang, X. Lin, W. Huang, J. Li, Y. Zhou. The influences of processing parameterson forming characterizations during laser rapid forming. Materials Science andEngineering: A.2003,360(1–2):18-25.
    [23] C. Kong, R. Scudamore, J. Allen. High-rate laser metal deposition of Inconel718component using low heat-input approach. Physics Procedia.2010,5:379-386.
    [24] L. Sexton, S. Lavin, G. Byrne, A. Kennedy. Laser cladding of aerospace materials. Journalof Materials Processing Technology.2002,122(1):63-68.
    [25] Y. Xie, M. Wang, D. Huang. Comparative study of microstructural characteristics ofelectrospark and Nd:YAG laser epitaxially growing coatings. Applied Surface Science.2007,253(14):6149-6156.
    [26]赵卫卫,林鑫,刘奋成,赵晓明,陈静,黄卫东.热处理对激光立体成形Inconel718高温合金组织和力学性能的影响.中国激光.2009,12:3220-3225.
    [27]张庆茂,钟敏霖,杨森,刘文今.送粉式激光熔覆层质量与工艺参数之间的关系.焊接学报.2001,(04):51-54+2.
    [28]李瑞峰.镍基非晶复合涂层的半导体激光制备及表征.上海:上海交通大学,2012.
    [29]孟庆武,耿林,祝文卉,刘佳涛.反应放热激光熔覆过程中的熔池状态分析.应用激光2009,(4):282-285.
    [30]朱蓓蒂,曾晓雁,陶曾毅,崔昆.激光工艺参数对熔覆层稀释率的影响.材料研究学报.1994,(04):315-318.
    [31] Y. Huang. Characterization of dilution action in laser-induction hybrid cladding. Optics&Laser Technology.2011,43(5):965-973.
    [32] S. Zhou, X. Dai, H. Zheng. Analytical modeling and experimental investigation of laserinduction hybrid rapid cladding for Ni-based WC composite coatings. Optics&LaserTechnology.2011,43(3):613-621.
    [33] Z. Xiong, G. Chen, X. Zeng. Effects of process variables on interfacial quality of lasercladding on aeroengine blade material GH4133. Journal of Materials ProcessingTechnology.2009,209(2):930-936.
    [34] J.-D. Kim, Y. Peng. Time-dependent FEM simulation of dilution control of laser claddingby adaptive mesh method. KSME International Journal.2000,14(2):177-187.
    [35] U. De Oliveira, V. Ocelík, J.T.M. De Hosson. Analysis of coaxial laser claddingprocessing conditions. Surface and Coatings Technology.2005,197(2-3):127-136.
    [36] E. Capello, B. Previtali. The influence of operator skills, process parameters and materialson clad shape in repair using laser cladding by wire. Journal of Materials ProcessingTechnology.2006,174(1–3):223-232.
    [37] G. Bi, A. Gasser, K. Wissenbach, A. Drenker, R. Poprawe. Identification and qualificationof temperature signal for monitoring and control in laser cladding. Optics and Lasers inEngineering.2006,44(12):1348-1359.
    [38] S. Barnes, N. Timms, B. Bryden, I. Pashby. High power diode laser cladding. Journal ofMaterials Processing Technology.2003,138(1–3):411-416.
    [39] H. Tan, J. Chen, F. Zhang, X. Lin, W. Huang. Estimation of laser solid forming processbased on temperature measurement. Optics&Laser Technology.2010,42(1):47-54.
    [40]李刚,刘政,张娜.熔覆速度对氩弧熔覆铁基合金涂层组织及性能的影响.徐州工程学院学报(自然科学版).2009,(02):77-79+84.
    [41] M. Zhong, H. Sun, W. Liu, X. Zhu, J. He. Boundary liquation and interface crackingcharacterization in laser deposition of Inconel738on directionally solidified Ni-basedsuperalloy. Scripta Materialia.2005,53(2):159-164.
    [42] O.A. Idowu, O.A. Ojo, M.C. Chaturvedi. Effect of heat input on heat affected zonecracking in laser welded ATI Allvac718Plus superalloy. Materials Science andEngineering: A.2007,454–455(0):389-397.
    [43] K. Shinozaki, H. Kuroki, X. Luo, H. Ariyoshi, M. Shirai. Comparison of hot crackingsusceptibilities of various Ni-base, heat-resistant superalloys by U-type hot cracking test.Study of laser weldability of Ni-base, heat-resistant superalloys (2nd Report). WeldingInternational.1999,13(12):952-959.
    [44]刘喜明,连建设,张庆茂.送粉激光熔覆界面特性及熔覆层稀释率.机械工程学报.2001,(4):38-43.
    [45] G.P. Dinda, A.K. Dasgupta, J. Mazumder. Laser aided direct metal deposition of Inconel625superalloy: Microstructural evolution and thermal stability. Materials Science andEngineering: A.2009,509(1–2):98-104.
    [46] A. Gholipour, M. Shamanian, F. Ashrafizadeh. Microstructure and wear behavior ofstellite6cladding on17-4PH stainless steel. Journal of Alloys and Compounds.2011,509(14):4905-4909.
    [47] C. Bezen on, A. Schnell, W. Kurz. Epitaxial deposition of MCrAlY coatings on a Ni-basesuperalloy by laser cladding. Scripta Materialia.2003,49(7):705-709.
    [48] R.L. Sun, Y.W. Lei, W. Niu. Laser clad TiC reinforced NiCrBSi composite coatings onTi–6Al–4V alloy using a CW CO2laser. Surface and Coatings Technology.2009,203(10–11):1395-1399.
    [49]郭建亭.高温合金材料学.应用基础学(上册).北京:科学出版社,2008.
    [50]黄乾尧,李汉康.高温合金.北京:冶金工业出版社,2000.
    [51]冶军(编).美国镍基高温合金.北京:科学出版社,1978.
    [52]徐自立.高温金属材料的性能、强度设计及工程应用.北京:化学工业出版社,2006.
    [53]高温合金相图谱编写组.高温合金相图谱.北京:冶金工业出版社,1979.
    [54]蔡珣.材料科学与工程基础.上海:上海交通大学出版社,2010.
    [55]金永元,大雕.卡内洛.铌.高温应用.北京:冶金工业出版社,2005.
    [56] Y. Rong, S. Chen, G.X. Hu, M. Gao, R.P. Wei. Prediction and characterization of variantelectron diffraction patterns for γ′and γ″precipitates in an INCONEL718alloy.Metallurgical and Materials Transactions A.1999,30(9):2297-2303.
    [57] R. Cozar, A. Pineau. Morphology of γ′and γ″precipitates and thermal stability of inconel718type alloys. Metallurgical and Materials Transactions B.1973,4(1):47-59.
    [58] S. Golmakaniyoon, R. Mahmudi. Comparison of the effects of La-and Ce-rich rare earthadditions on the microstructure, creep resistance, and high-temperature mechanicalproperties of Mg–6Zn–3Cu cast alloy. Materials Science and Engineering: A.2011,528(15):5228-5233.
    [59] G. Nayyeri, R. Mahmudi, F. Salehi. The microstructure, creep resistance, andhigh-temperature mechanical properties of Mg-5Sn alloy with Ca and Sb additions, andaging treatment. Materials Science and Engineering: A.2010,527(21–22):5353-5359.
    [60]黄卫东.激光立体成形-高性能致密金属零件的快速自由成形.西安:西北工业大学出版社,2007.
    [61] X. Zhao, J. Chen, X. Lin, W. Huang. Study on microstructure and mechanical properties oflaser rapid forming Inconel718. Materials Science and Engineering: A.2008,478(1-2):119-124.
    [62] G. Nayyeri, R. Mahmudi. Effects of Sb additions on the microstructure and impressioncreep behavior of a cast Mg–5Sn alloy. Materials Science and Engineering: A.2010,527(3):669-678.
    [63] F. Liu, X. Lin, C. Huang, M. Song, G. Yang, W. Huang. The effect of laser scanning pathon microstructures and mechanical properties of laser solid formed nickel-base superalloyInconel718Journal of Alloys and Compounds.2011,509(13):4505-4509
    [64] P.L. Blackwell. The mechanical and microstructural characteristics of laser-depositedIN718. Journal of Materials Processing Technology.2005,170(1-2):240-246.
    [65] I. Tabernero, A. Lamikiz, S. Martínez, E. Ukar, J. Figueras. Evaluation of the mechanicalproperties of Inconel718components built by laser cladding. International Journal ofMachine Tools and Manufacture.2011,51(6):465-470.
    [66] F. Liu, X. Lin, G. Yang, M. Song, J. Chen, W. Huang. Microstructure and residual stress oflaser rapid formed Inconel718nickel-base superalloy. Optics&Laser Technology.2010.
    [67] S.M. Jones, D.J. Radavich, S. Tian, Effect of composition on segregation microstructuresand mechanical properties of cast alloy718, in Speralloy718-Meatllurgy and Application,E.A. Loria, Editor1989, The Minerals, Metals&Materials Society. p.589-598.
    [68] G. Knorovsky, M. Cieslak, T. Headley, A. Romig, W. Hammetter. Inconel718: Asolidification diagram. Metallurgical and Materials Transactions A.1989,20(10):2149-2158.
    [69] X. Pang, D. Dwyer, M. Gao, P. Valerio, R. Wei. Surface enrichment and grain boundarysegregation of niobium in Inconel718single-and poly-crystals. Scripta Metallurgica etMaterialia;(United States).1994,31(3).
    [70] M. Gao, R.P. Wei. Grain boundary γ″precipitation and niobium segregation in inconel718.Scripta Metallurgica et Materialia.1995,32(7):987-990.
    [71] W. Liu, M. Yao, Z. Chen, S. Wang. Niobium segregation in Inconel718. Journal ofMaterials Science.1999,34(11):2583-2586.
    [72] J. Dong, M. Zhang, X. Xie, R. Thompson. Interfacial segregation and cosegregationbehaviour in a nickel-base alloy718. Materials Science and Engineering A.2002,328(1-2):8-13.
    [73] G.D.Smith, S.J.Patel, The role of niobium in wrought precipitation-hardened nickel-basealloys, in Superalloys718,625,706and various derivatives, E.A. Loria, Editor2005, TheMinerals, Meterials Society. p.135-154.
    [74] X. Xie, j. Dong, G. Wang, W. Dong, The effect of Nb, Ti, Al on precipitation andstrengthening behavior of718type superalloys, in Superalloys718,625,706and variousderivatives, E.A. Loria, Editor2005, The Minerals, Meterials Society. p.287-298.
    [75] D.H. Ping, Y.F. Gu, C.Y. Cui, H. Harada. Grain boundary segregation in a Ni-Fe-based(Alloy718) superalloy. Materials Science and Engineering: A.2007,456(1-2):99-102.
    [76] L. Wang, J. Dong, Y. Tian, L. Zhang. Microsegregation and Rayleigh number variationduring the solidification of superalloy Inconel718. Journal of University of Science andTechnology Beijing, Mineral, Metallurgy, Material.2008,15(5):594-599.
    [77] R. Vincent. Precipitation around welds in the nickel-base superalloy, Inconel718. ActaMetallurgica.1985,33(7):1205-1216.
    [78] K. Sivaprasad, S. Ganesh Sundara Raman. Influence of Weld Cooling Rate onMicrostructure and Mechanical Properties of Alloy718Weldments. Metallurgical andMaterials Transactions A.2008,39(9):2115-2127.
    [79] A.K.A. Jawwad, M. Strangwood, C.L. Davis. Microstructural modification in fullpenetration and partial penetration electron beam welds in INCONEL-718(IN-718) and itseffect on fatigue crack initiation Metallurgical and Materials Transactions A.2005,36:1237-1247.
    [80] C. Radhakrishna, K.P. Rao, S. Srinivas. Laves phase in superalloy718weld metals.Journal of Materials Science Letters.1995,14(24):1810-1812.
    [81] K. Vishwakarma, N. Richards, M. Chaturvedi. Microstructural analysis of fusion and heataffected zones in electron beam welded ALLVAC(R)718PLUS (TM) superalloy. MaterialsScience and Engineering: A.2008,480(1-2):517-528.
    [82] J.F. Radavich, The physical metallurgy of cast and wrought alloy718, in Speralloy718-Meatllurgy and Application, E.A. Loria, Editor1989, The Minerals, Metals&MaterialsSociety. p.229-240.
    [83] W. Chen, M. Chaturvedi, N. Richards, G. McMahon. Grain boundary segregation of boronin INCONEL718. Metallurgical and Materials Transactions A.1998,29(7):1947-1954.
    [84] S. Benhadad, N. Richards, M. Chaturvedi. The influence of minor elements on theweldability of an INCONEL718-type superalloy. Metallurgical and MaterialsTransactions A.2002,33(7):2005-2017.
    [85]宋洪伟,郭守仁,卢德忠,徐岩,王玉兰,胡壮麒.硼、硫和铝对磷在IN718合金中作用的影响.材料研究学报.2000,(02):183-187.
    [86] J.F. Muller, M.J. Donachie. The effects of solution and intermediate heat treatments on thenotch-rupture behavior of Inconel718. Metallurgical and Materials Transactions A.1975,6(12):2221-2227.
    [87]宁秀珍,张天相,佟英杰,朱耀霄. GH169合金的均匀化热处理.金属学报.1989,(03):40-44.
    [88] Y. Wang, W.Z. Shao, L. Zhen, X.M. Zhang. Microstructure evolution during dynamicrecrystallization of hot deformed superalloy718. Materials Science and Engineering: A.2008,486(1–2):321-332.
    [89] F.C. Liu, X. Lin, W.W. Zhao, X.M. Zhao, J. Chen, W.D. Huang. Effects of SolutionTreatment Temperature on Microstructures and Properties of Laser Solid FormingGH4169Superalloy. Rare Metal Materials and Engineering.2010,39(9):1519-1524.
    [90] G.A. Rao, M. Kumar, M. Srinivas, D. Sarma. Effect of standard heat treatment on themicrostructure and mechanical properties of hot isostatically pressed superalloy inconel718. Materials Science and Engineering A.2003,355(1-2):114-125.
    [91] G.D. Janaki Ram, A. Venugopal Reddy, K. Prasad Rao, G.M. Reddy, J.K. Sarin Sundar.Microstructure and tensile properties of Inconel718pulsed Nd-YAG laser welds. Journalof Materials Processing Technology.2005,167(1):73-82.
    [92]李爱兰,汤鑫,盖其东,曹腊梅,刘发信.热处理工艺对K4169合金微观组织的影响.航空材料学报.2006,(03):311-312.
    [93] J.H. Du, X.D. Lu, Q. Deng, J.L. Qu, J.Y. Zhuang, Z.Y. Zhong. High-temperature structurestability and mechanical properties of novel718superalloy. Materials Science andEngineering: A.2007,452–453(0):584-591.
    [94]陈伟,李长春,李辉,陈光,楼琅洪.热处理工艺对Inconel718C改型合金组织和性能的影响.金属热处理.2007,358(6):81-87.
    [95] X. Liu, J. Xu, E. Barbero, W.-D. Cao, R.L. Kennedy. Effect of thermal treatment on thefatigue crack propagation behavior of a new Ni-base superalloy. Materials Science andEngineering: A.2008,474(1–2):30-38.
    [96] G. Madhusudhana Reddy, C. Srinivasa Murthy, K. Srinivasa Rao, K. Prasad Rao.Improvement of mechanical properties of Inconel718electron beam welds ainfluence ofwelding techniques and postweld heat treatment. The International Journal of AdvancedManufacturing Technology.2009,43(7):671-680.
    [97] H. Qi, M. Azer, A. Ritter. Studies of standard heat treatment effects on microstructure andmechanical properties of laser net shape manufactured INCONEL718. Metallurgical andMaterials Transactions A.2009,40A(10):2410-2422.
    [98] M. Sundararaman, R. Kishore, P. Mukhopadhyay. Strain hardening in underagedINCONEL718. Metallurgical and Materials Transactions A.1994,25(3):653-656.
    [99] C. Slama, C. Servant, G. Cizeron. Aging of the Inconel718alloy between500and750{degree}C. Journal Name: Journal of Materials Research; Journal Volume:12; JournalIssue:9; Other Information: PBD: Sep1997.1997: Medium: X; Size: pp.2298-2316.
    [100] C. Slama, M. Abdellaoui. Structural characterization of the aged Inconel718. Journal ofAlloys and Compounds.2000,306(1–2):277-284.
    [101]白秉哲,杨鲁义,赵耀峰. GH4169合金“等温锻造+直接时效”工艺探讨.稀有金属.2002,(01):7-11.
    [102] C.Z. Wang, R.B. Li. Effect of double aging treatment on structure in Inconel718alloy.Journal of Materials Science.2004,39(7):2593-2595.
    [103] C.M. Kuo, Y.T. Yang, H.Y. Bor, C.N. Wei, C.C. Tai. Aging effects on the microstructureand creep behavior of Inconel718superalloy. Materials Science and Engineering: A.2009,510–511(0):289-294.
    [104] J.F. Radavich, Effect of Alpha Chromium on long time behaivor, in Superalloys718,625,706and various derivatives, E.A. Loria, Editor1997, The Minerals, Meterials Society. p.409-415.
    [105] M. Qian, J.C. Lippold. The effect of rejuvenation heat treatments on the repair weldabilityof wrought Alloy718. Materials Science and Engineering A.2003,340(1-2):225-231.
    [106] Y.-H. Zhao, M.E. Zimmerman, D.L. Kohlstedt. Effect of iron content on the creepbehavior of olivine:1. Anhydrous conditions. Earth and Planetary Science Letters.2009,287(1–2):229-240.
    [107] M. Morris, E. Sauvain, D. Morris. Post-compaction heat-treatment response ofdynamically-compacted Inconel718powder. Journal of Materials Science.1987,22(4):1509-1516.
    [108]刘六法,卢晨,翟春泉,丁文江, AkioHirose, KojiroF.Kobayashi.激光退火对Inconel718微观组织和硬度的影响.稀有金属材料与工程.2005,(03):501-504.
    [109] E.F. Wachtel, H.J. Rack, Phase stability and aging response of TiC reinforced alloy718, inSperalloy718-Meatllurgy and Application, E.A. Loria, Editor1989, Speralloy718-Meatllurgy and Application. p.599-610.
    [110] M. Clavel, A. Pineau. Frequency and wave-form effects on the fatigue crack growthbehavior of alloy718at298K and823K. Metallurgical and Materials Transactions A.1978,9(4):471-480.
    [111] L. James. The effect of product form upon fatigue-crack growth behavior in Alloy718.Journal of Engineering Materials and Technology.1981,103:234.
    [112] H. Smith, D. Michel. Effect of environment on fatigue crack propagation behavior of alloy718at elevated temperatures. Metallurgical and Materials Transactions A.1986,17(2):370-374.
    [113] T. Weerasooriya, Effect of frequency on fatigue crack growth rate of Inconel718at hightemperature,1987, AIR FORCE WRIGHT AERONAUTICAL LABSWRIGHT-PATTERSON AFB OH.
    [114] R. Molins, G. Hochstetter, J. Chassaigne, E. Andrieu. Oxidation effects on the fatiguecrack growth behaviour of alloy718at high temperature. Acta Materialia.1997,45(2):663-674.
    [115] C. Mercer, A. Soboyejo, W. Soboyejo. Micromechanisms of fatigue crack growth in asingle crystal Inconel718nickel-based superalloy. Acta Materialia.1999,47(9):2727-2740.
    [116] C. Mercer, A. Soboyejo, W. Soboyejo. Micromechanisms of fatigue crack growth in aforged Inconel718nickel-based superalloy. Materials Science and Engineering A.1999,270(2):308-322.
    [117] G. Osinkolu, G. Onofrio, M. Marchionni. Fatigue crack growth in polycrystalline IN718superalloy. Materials Science and Engineering A.2003,356(1-2):425-433.
    [118] L.W. Tsay, H.H. Lin, R.K. Shiue. Fatigue crack growth behavior of laser-annealed IN718alloy in hydrogen. Corrosion Science.2004,46(11):2651-2662.
    [119] D. Leo Prakash, M. Walsh, D. Maclachlan, A. Korsunsky. Crack growthmicro-mechanisms in the IN718alloy under the combined influence of fatigue, creep andoxidation. International Journal of Fatigue.2009,31(11-12):1966-1977.
    [120] A. Pineau, S.D. Antolovich. High temperature fatigue of nickel-base superalloys-Areview with special emphasis on deformation modes and oxidation. Engineering FailureAnalysis.2009,16(8):2668-2697.
    [121] D. Gustafsson, J. Moverare, S. Johansson, M. H rnqvist, K. Simonsson, S. Sj str m, B.Sharifimajda. Fatigue crack growth behaviour of Inconel718with high temperature holdtimes. Procedia Engineering.2010,2(1):1095-1104.
    [122] L. Viskari, Y. Cao, M. Norell, G. Sj berg, K. Stiller. Grain boundary microstructure andfatigue crack growth in Allvac718Plus superalloy. Materials Science and Engineering: A.2011,528(6):2570-2580.
    [123]宋晓国. GH4169合金高温低周疲劳及蠕变性能研究.哈尔滨工业大学,2007.
    [124] N.L. Richards, X. Huang, M.C. Chaturvedi. Heat affected zone cracking in cast inconel718. Materials Characterization.1992,28(4):179-187.
    [125] X. Cao, B. Rivaux, M. Jahazi, J. Cuddy, A. Birur. Effect of pre-and post-weld heattreatment on metallurgical and tensile properties of Inconel718alloy butt joints weldedusing4kW Nd:YAG laser. Journal of Materials Science.2009,44(17):4557-4571.
    [126] K. Sadamanda, P. Shahinian. High-Temperature Crack-Growth Behaviour in Nimonic PE16and Alloy718. Met. Technol.1982,9(1):18-25.
    [127] D.A. Woodford. Gas phase embrittlement and time dependent cracking of nickel basedsuperalloys. Energy Materials: Materials Science and Engineering for Energy Systems.2006,1(1):59-79.
    [128] W.R. Sun, S.R. Guo, J.H. Lee, N.K. Park, Y.S. Yoo, S.J. Choe, Z.Q. Hu. Effects ofphosphorus on the δ-Ni3Nb phase precipitation and the stress rupture properties in alloy718. Materials Science and Engineering: A.1998,247(1–2):173-179.
    [129] W. Chen, M. Chaturvedi, N. Richards. Effect of boron segregation at grain boundaries onheat-affected zone cracking in wrought INCONEL718. Metallurgical and MaterialsTransactions A.2001,32(4):931-939.
    [130] C.F. Miller, G.W. Simmons, R.P. Wei. Mechanism for oxygen enhanced crack growth ininconel718. Scripta Materialia.2001,44(10):2405-2410.
    [131] W. Gailian, W. Cuiwei, Z. Maicang, D. Jianxin, X. Xishan, J. Radavich, B.A. Lindsley, G.Shen. The microstructural changes and their effect on CCGR after long time thermalexposure in DA718and STD718. Materials Science and Engineering: A.2003,358(1–2):71-75.
    [132]黄尚猛.激光熔覆技术防开裂对策探讨.装备制造技术.2007,155(11):126-127.
    [133]毛怀东,张大卫.激光熔覆过程中裂纹在线研究.应用激光.2007,(03):186-191.
    [134]石世宏.基体对激光熔覆层开裂的影响.金属热处理.1998,(04):32-33.
    [135] Z.-q. Huang, S.-r. Yu, M.-q. Li. Microstructures and compressive properties ofAZ91D/fly-ash cenospheres composites. Transactions of Nonferrous Metals Society ofChina.2010,20, Supplement2(0): s458-s462.
    [136]孙鸿卿,钟敏霖,刘文今,何金江,李晓莉,朱晓峰.定向凝固镍基高温合金上激光熔覆Inconel738的裂纹敏感性研究.航空材料学报.2005,(02):26-31.
    [137]李安敏,许伯藩.激光熔覆碳化物/金属基复合涂层裂纹的产生与控制.材料导报.2002,(08):27-29.
    [138]余廷,邓琦林,董刚,杨建国,张伟.钽对激光熔覆镍基涂层的裂纹敏感性及力学性能的影响.机械工程学报.2011,47(22):25-30.
    [139]任会芳,任家隆,王青仙.柴油机曲轴裂纹激光熔覆修复材料选择的仿真研究.徐州工程学院学报(自然科学版).2013,(03):69-72.
    [1]吴健.影响激光熔覆层品质的主要因素分析.机械制造与自动化.2004,(04):52-56.
    [2]孙宽,姚继蔚,徐忠锦,林树忠.影响激光熔覆质量的主要因素.农业装备与车辆工程.2007,(03):36-37+42.
    [3]黄卫东.激光立体成形-高性能致密金属零件的快速自由成形.西安:西北工业大学出版社,2007.
    [4]郭建亭.高温合金材料学.应用基础学(上册).北京:科学出版社,2008.
    [5] O.A. Idowu, O.A. Ojo, M.C. Chaturvedi. Effect of heat input on heat affected zonecracking in laser welded ATI Allvac718Plus superalloy. Materials Science andEngineering: A.2007,454–455:389-397.
    [6] M. Gaumann, S. Henry, F. Cleton, J.D. Wagniere, W. Kurz. Epitaxial laser metal forming:analysis of microstructure formation. Materials Science and Engineering: A.1999,271(1-2):232-241.
    [7] G.E. Totten. Steel heat treatment: Metallurgy and Technologies. CRC Press,2006.
    [8] J.D. Hunt. Steady state columnar and equiaxed growth of dendrites and eutectic. MaterialsScience and Engineering.1984,65(1):75-83.
    [9] G. Knorovsky, M. Cieslak, T. Headley, A. Romig, W. Hammetter. Inconel718: Asolidification diagram. Metallurgical and Materials Transactions A.1989,20(10):2149-2158.
    [10] A. Strondl, R. Fischer, G. Frommeyer, A. Schneider. Investigations of MX and γ'/γ''precipitates in the nickel-based superalloy718produced by electron beam melting.Materials Science and Engineering: A.2008,480(1-2):138-147.
    [11] M.J. Cieslak, G.A. Knorovsky, T.J. Headley, J. A.D. Romig, The solidification metallrugyof alloy718and other Nb-containing superalloy, in Speralloy718-Meatllurgy andApplication, E.A. Loria, Editor1989, The Minerals, Metals&Materials Society. p.59-68.
    [1]蔡珣.材料科学与工程基础.上海:上海交通大学出版社,2010.
    [2] K. Vishwakarma, N. Richards, M. Chaturvedi. Microstructural analysis of fusion and heataffected zones in electron beam welded ALLVAC(R)718PLUS (TM) superalloy. MaterialsScience and Engineering: A.2008,480(1-2):517-528.
    [3] K. Hajmrle, R. Angers, G. Dufour. Phase analysis of sintered and heat treated alloy718Metallurgical and Materials Transactions A.1982,13(1):5-12.
    [4] R. Maldonado, E. Nembach. The formation of precipitate free zones and the growth ofgrain boundary carbides in the nickel-base superalloy NIMONIC PE16. Acta Materialia.1997,45(1):213-224.
    [5] S.S. Hosseini, S. Nategh, A.-A. Ekrami. Microstructural evolution in damaged IN738LCalloy during various steps of rejuvenation heat treatments. Journal of Alloys andCompounds.2012,512(1):340-350.
    [6] H. Yan, H. Bi, X. Li, Z. Xu. Microstructure and texture of Nb+Ti stabilized ferriticstainless steel. Materials Characterization.2008,59(12):1741-1746.
    [7] E. Pippel, J. Woltersdorf, G. P ckl, G. Lichtenegger. Microstructure and Nanochemistry ofCarbide Precipitates in High-Speed Steel S6-5-2-5. Materials Characterization.1999,43(1):41-55.
    [8] M.J. Starink, H. Cama, R.C. Thomson. MC Carbides in the Hf Containing Ni BasedSuperalloy MarM002. Scripta Materialia.1997,38(1):73-80.
    [9] M.-H. Ham, S. Yoon, Y. Park, J.-M. Myoung. MFM and Raman studies in PEMBE-grown(Ga,Mn)N thin films showing room-temperature ferromagnetism. Applied Surface Science.2006,252(18):6289-6293.
    [10] W.C. Oliver, G.M. Pharr. Improved technique for determining hardness and elasticmodulus using load and displacement sensing indentation experiments. Journal ofMaterials Research.1992,7(6):1564-1580.
    [11] R. Bartali, V. Micheli, G. Gottardi, A. Vaccari, N. Laidani. Nanoindentation:Unload-to-load work ratio analysis in amorphous carbon films for mechanical properties.Surface and Coatings Technology.2010,204(12–13):2073-2076.
    [12] B.-K. Jang. Influence of low indentation load on Young's modulus and hardness of4mol%Y2O3–ZrO2by nanoindentation. Journal of Alloys and Compounds.2006,426(1–2):312-315.
    [13] L.I.S. M. Hillert. The regular solution model for stoichiometric phases and ionic melts.Acta Chemica Scandinavica.1970,24(10):3618-3626.
    [14] Q. Zheng, L.-C. Lim. Thermodynamics of TiC-and Ti(C,N)-based cermet processing priorto liquid phase sintering stage. International Journal of Refractory Metals and HardMaterials.2011,29(5):561-565.
    [15] M.V. Sudarikov, V.M. Zhikharev, A.A. Lykasov. Gibbs Energy of Formation of CubicNbCxNy. Inorganic Materials.2001,37(3):243-247.
    [16] M. Cieslak, T. Headley, A. Romig, T. Kollie. A melting and solidification study of alloy625. Metallurgical and Materials Transactions A.1988,19(9):2319-2331.
    [17] J. He, J.M. Zeng, A. Yan. Effects of Solidification Parameters on SDAS of A357Alloy.Advanced Materials Research.2008,51:85-91.
    [18] M. Gaumann, S. Henry, F. Cleton, J.D. Wagniere, W. Kurz. Epitaxial laser metal forming:analysis of microstructure formation. Materials Science and Engineering: A.1999,271(1-2):232-241.
    [19] D.A. Porter, K.E. Easterling, M.Y. Sherif,陈冷,余永宁,译.金属和合金中的相变.北京:高等教育出版社,2011.
    [20] K.S. Cruz, J.E. Spinelli, I.L. Ferreira, N. Cheung, A. Garcia. Microstructural developmentin Al–Sn alloys directionally solidified under transient heat flow conditions. MaterialsChemistry and Physics.2008,109(1):87-98.
    [21] J.N. DuPont, A.R. Marder, M.R. Notis, C.V. Robino. Solidification of Nb-bearingsuperalloys: Part II. Pseudoternary solidification surfaces. Metallurgical and MaterialsTransactions A.1998,29(11):2797-2806.
    [1] O.A. Idowu, O.A. Ojo, M.C. Chaturvedi. Effect of heat input on heat affected zonecracking in laser welded ATI Allvac718Plus superalloy. Materials Science andEngineering: A.2007,454–455:389-397.
    [2] K. Vishwakarma, N. Richards, M. Chaturvedi. Microstructural analysis of fusion and heataffected zones in electron beam welded ALLVAC(R)718PLUS (TM) superalloy. MaterialsScience and Engineering: A.2008,480(1-2):517-528.
    [3] M. Zhong, H. Sun, W. Liu, X. Zhu, J. He. Boundary liquation and interface crackingcharacterization in laser deposition of Inconel738on directionally solidified Ni-basedsuperalloy. Scripta Materialia.2005,53(2):159-164.
    [4] C.F. Miller, G.W. Simmons, R.P. Wei. Mechanism for oxygen enhanced crack growth ininconel718. Scripta Materialia.2001,44(10):2405-2410.
    [5] J.N. DuPont, J.C. Lippold, S.D. Kiser. Welding metallurgy and weldability of Nickel-basealloys. JOHN WILEY&SONS, INC.,2009.
    [6]黄卫东.激光立体成形-高性能致密金属零件的快速自由成形.西安:西北工业大学出版社,2007.
    [7] M. G umann, C. Bezen on, P. Canalis, W. Kurz. Single-crystal laser deposition ofsuperalloys: processing-microstructure maps. Acta Materialia.2001,49(6):1051-1062.
    [8] M. Rappaz, S.A. David, J.M. Vitek, L.A. Boatner. Analysis of solidificationmicrostructures in Fe-Ni-Cr single-crystal welds. Metallurgical and Materials TransactionsA.1990,21(6):1767-1782.
    [9] M. Rappaz, J. Vitek, S. David, L. Boatner. Microstructural formation in longitudinalbicrystal welds. Metallurgical and Materials Transactions A.1993,24(6):1433-1446.
    [10] S. Hong, W. Chen, T. Wang. A diffraction study of the γ" phase in INCONEL718superalloy. Metallurgical and Materials Transactions A.2001,32(8):1887-1901.
    [11] A. Frenk, C.F. Marsden, J.D. Wagnie`re, A.B. Vannes, M. Laracine, M.Y. Lormand.Influence of an intermediate layer on the residual stress field in a laser clad. Surface andCoatings Technology.1991,45(1-3):435–441.
    [12]姚成武.铁基激光熔覆涂层的合金系设计、组织特征及强韧性研究.上海:上海交通大学,2010.
    [13]亓尚明,郑国学,史乃立.碳含量对合金钢锭轴心晶间裂纹的影响.金属学报.1986,22(2):163-168.
    [1] G. Knorovsky, M. Cieslak, T. Headley, A. Romig, W. Hammetter. Inconel718: Asolidification diagram. Metallurgical and Materials Transactions A.1989,20(10):2149-2158.
    [2] M. G umann, C. Bezen on, P. Canalis, W. Kurz. Single-crystal laser deposition ofsuperalloys: processing–microstructure maps. Acta Materialia.2001,49(6):1051-1062.
    [3] H. Qi, M. Azer, A. Ritter. Studies of standard heat treatment effects on microstructure andmechanical properties of laser net shape manufactured INCONEL718. Metallurgical andMaterials Transactions A.2009,40A(10):2410-2422.
    [4]赵卫卫,林鑫,刘奋成,赵晓明,陈静,黄卫东.热处理对激光立体成形Inconel718高温合金组织和力学性能的影响.中国激光.2009,12:3220-3225.
    [5]黄乾尧,李汉康.高温合金.北京:冶金工业出版社,2000.
    [6] R. Cozar, A. Pineau. Morphology of γ′and γ″precipitates and thermal stability of inconel718type alloys. Metallurgical and Materials Transactions B.1973,4(1):47-59.
    [7] G. Bi, A. Gasser, K. Wissenbach, A. Drenker, R. Poprawe. Identification and qualificationof temperature signal for monitoring and control in laser cladding. Optics and Lasers inEngineering.2006,44(12):1348-1359.
    [8] S.J. Bull, E.G. Berasetegui. An overview of the potential of quantitative coating adhesionmeasurement by scratch testing. Tribology International.2006,39(2):99-114.
    [9] M. Antonov, I. Hussainova, R. Veinthal, J. Pirso. Effect of temperature and load onthree-body abrasion of cermets and steel. Tribology International.2012,46(1):261-268.
    [10]王庆良,张磊,董建东,孙彦敏.锻造和铸造CoCrMo合金的摩擦学性能研究.徐州工程学院学报(自然科学版).2010,(03):7-12.
    [11] U. Engel. Tribology in microforming. Wear.2006,260(3):265-273.
    [12] W. Zhong, J.J. Hu, P. Shen, C.Y. Wang, Q.Y. Lius. Experimental investigation betweenrolling contact fatigue and wear of high-speed and heavy-haul railway and selection of railmaterial. Wear.2011,271(9–10):2485-2493.
    [13] A. Avanzini, G. Donzella, A. Mazzù, C. Petrogalli. Wear and rolling contact fatigue ofPEEK and PEEK composites. Tribology International.2013,57(0):22-30.
    [14]陈崇亮,刘利国,田野,李庆忠. Q235钢冲击与耦合摩擦磨损行为研究.徐州工程学院学报(自然科学版).2010,(01):48-50.
    [15] F.C. Liu, X. Lin, W.W. Zhao, X.M. Zhao, J. Chen, W.D. Huang. Effects of SolutionTreatment Temperature on Microstructures and Properties of Laser Solid FormingGH4169Superalloy. Rare Metal Materials and Engineering.2010,39(9):1519-1524.
    [16] J.F. Archard. The temperature of rubbing surfaces. Wear.1959,2(6):438-455.
    [17] R.L. Kennedy, W.D. Cao, T.D. Bayha, R. Jeniski. Developments in wrought Nbcontaining superalloys (718+100°F). Niobium: High Temperature Applications,Proceedings.2003:11-21.
    [18]《高温合金金相图谱》编写组.高温合金金相图谱.北京:冶金工业出版社,1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700