用户名: 密码: 验证码:
高效节能的大型压铸机关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压铸技术是材料制备与零件成形一体化的先进制造技术,压铸机是压力铸造的基础设备,技术含量较高,属机、电、液一体化的精密、复杂设备。我国压铸设备尤其是大型压铸设备在设计方法、制造工艺、工作效率、能耗、可靠性等方面与发达国家相比还存在较大差距。
     针对国内压铸设备落后的现状,结合国家智能制造装备发展专项“高效智能压铸岛系统”、粤港关键领域重点突破项目,本文以25000kN大型压铸机为研究对象,以高效节能压铸机的关键技术为主要研究内容,结合目前压铸机设计和产品制造过程中存在的突出问题,采用数值模拟技术,从合模机构运动学仿真、优化设计、整机结构强度分析、整机模态、冲击响应、热传导和热-结构耦合等动态特性分析、重要结构部件轻量化设计、控制系统关键节能技术等方面进行理论研究、计算机模拟和实验研究;最终完成了样机开发,并取得以下研究成果:
     基于运动学仿真开展压铸机双曲肘合模机构优化设计与研究。系统全面地分析了双曲肘合模机构的运动特性和力学特性,建立了相应的数学模型,推导出了合模机构的各部件几何尺寸、位置与扩力系数、模板行程之间的关系,结合实际样机设计要求,选取行程比和扩力系数为目标函数,确定了适宜的设计变量和约束条件;利用ADAMS软件对双曲肘五铰点斜排列合模机构进行运动和力学特性分析,并对合模机构进行了优化设计,将扩力系数由18.93提升至23.59,提升了24.6%,达到国外同类先进水平,锁模力由25.89MN提高到了32.27MN,液压系统选用低功率的液压马达和阀在更短的建压时间输出更小的压力可满足合模力25000kN要求,动型座板行程减少了26.3%,与优化前比较发现:合模过程的冲击和振动减小,在一定程度上可以节能降耗,提升工作效率。为提高压铸件的品质和压铸机的可靠性提供了技术依据。
     基于多体动力学进行压铸机整机强度分析。对比研究了多刚体系统和多柔性体系统仿真结果,获取了合模机构关键部件速度、加速度及力学性能时间历程曲线,研究发现柔性体系统的仿真结果能真实反映机构的运动和力学特性。基于多柔性体动力学分析方法对25000kN压铸机进行强度分析和校核,并通过CAE软件对合模机构进行了强度分析,分析结果有效验证了柔性体动力学分析结果。
     进行整机综合动态特性分析。采用改进的Craig-Bampton方法计算出了包含大量高度非线性接触副的25000kN压铸机合模机构装配体的约束模态,获取了前20阶模态的共振频率和对应的阵型。识别出整机各部件对振动激励响应的敏感程度以及抗振薄弱区,避免共振,为压铸设备优化设计和压铸件生产提供了依据;对合模机构进行冲击响应分析,发现动型座板、长铰、钩铰及尾板和哥林柱受冲击载荷影响大;对“热冲击”载荷和结构载荷共同作用下的模板和模具系统进行温度场分析、热-结构耦合特性分析,动型座板和定型座板局部最大应力分别为254.1MPa和181.6MPa。校核冲击载荷、热-结构载荷耦合作用下各部件的强度,均满足要求。可以对动型座板进行适度优化,对定型座板和尾板进行轻量化设计。
     对压铸机重要结构部件进行轻量化设计研究。运用连续体结构的变密度拓扑优化方法和尺寸优化方法对压铸机重要部件—尾板、定型座板、动型座板和底座进行了优化,研究了约束体积百分数和惩罚因子对拓扑优化结果的影响,确定了适合压铸设备模板连续体结构轻量化设计的约束体积百分书和惩罚因子分别为0.7和3。经过结构拓扑和尺寸优化后整机总重量由91.10t减少至79.75t,减重率达到12.5%,其中运动部件减重率达到6.4%。轻量化设计后可以有效降低液压系统油泵负荷,节能降耗,提高工作效率。
     开展压铸机控制系统关键节能技术研究及测试。在研究压铸机耗能原理的基础上,提出采用变频控制技术结合嵌入式实时控制器的实现压铸设备节能的技术方案,即在控制系统硬件和软件设计基础上,应用双DSP专用能效系统中央处理器和无感矢量闭环转矩控制技术,配合压铸设备专用程序软件,大幅度降低循环生产过程中的小流量状态下的电力消耗。进行实验测试,发现节能效果最大达到41%,工作效率基本保持不变,实现节能降耗的目的,与国内外常规压铸机相比,可节电25%~35%。该技术在周期性变负荷运行机械设备节能研究方面具有通用性和指导意义,具备较大的推广应用空间。
Die casting is one of advanced manufacturing techniques that enables component to beformed in one piece for specific materials. The casting machine is the fundamental equipmentof pressure die casting. It is sophisticated with high technique and involves mechanical,electrical and fluid flow dynamic properties. There is a wide gap between China anddeveloped countries in the design method, manufacture technique, work efficiency, energyconsumption and reliability of die casting equipment especially in large scale.
     Since the die casting equipment developed in the country is far behind advanced, a25000kN large scale die casting machine has been studied. The project is in combination ofnational intelligent manufacture equipment development project in ‘high efficiency diecasting island system’ and breakthrough project in key area in Canton and Hong Kong. Thereport is focus on crucial technique that could provide higher work efficiency and lowerenergy consumption using numerical simulation. Final model has been developed based ontheoretical, numerical and laboratorial research have been done in dynamic properties such askinematic simulation of mould clamping device, design optimization, mechanical strengthanalysis of complete machinery, modal of the machinery, impact respond, heat and thermalconduction structural coupling, lightweight design for main structural components and controlsystem for crucial techniques of energy consumption reduction.
     Double-toggle clamping device in the die casting machine based on kinematic modellinghas been researched and optimised designed. System kinematic and dynamic properties of thejoint-double clamping device have been analysed and a mathematic model has been set up.Relations between coefficient of expanding force, distance of the dies movement andgeometries are derived and practical variables and constraints have been determined in thefunction with stroke ratio and coefficient of expanding force. By analysing the kinematic anddynamic property of joint-double, five-hinge-joint, inclined-array clamping device withADAMS and optimising the design, the coefficient of expanding force is increased by24.6%from18.93to23.59, matching the world leading level and results in growing locking force from25.89MN to32.27MN.
     The25000kN clamping force can be provided using low power hydraulic motor andvalve in the hydraulic system with less pressure and time. Working efficiency and energyconsumption are therefore improved. The driving base plate has reduced its stroke by26.3%which lessen the impact and oscillation during clamping. It also enhances the quality andperformance of the die casting machine.
     Die casting machinery strength has been researched based upon multi-body dynamicanalysis. The curves of velocity, acceleration and load property of the key components withinthe die casting machine against time have been derived. Result showed that by modellingflexible body system similar kinematic and dynamic properties with the one in reality can besimulated. Strength of the25000kN die casting machine has been analysed and modifiedbased on flexible body kinematic study as well as that of the clamping device using CAEsoftware. Results showed significantly that the flexible body analysis had given validoutcomes.
     Dynamic property analysis of the whole machine has been studied. ImprovedCraig-Bampton method has been used to calculate the constraint model of the25000kN diecasting clamping device assembly with large amount of highly non-linear contact pair.However, finite element method can hardly solve it. Resonant frequency in the first20phaseswith corresponding formations heaved also been obtained. Degree of sensitivity of theassembly responds to the vibration excitation and the weakness of vibration resistance havebeen identified to prevent resonance. It also gives evidence to improve design andmanufacture of die casting. According to the shock respond analysis of the clamping device,the main impact effcts are on the driving base plate, long hinge, hock hinge, fixed plate andthe Gelin Columns. By analysing thermal field and thermal structural coupling properties ofthe casting plates and the mould system with ‘thermal shock’ loading and mechanical loading,the maximum pressures applied to driving base plate and the fixed plate have been set to254.1MPa and181.6MPa, respectively. Work conditions of every assembly under theseconditions are acceptable. However optimization should be done to the driving base plate and should lighten the fixed plate and the transom plate.
     Crucial assemblies have been lightweight designed for the die casting machine.Topological and geometrical optimizations for continuum structure have been used tooptimise the crucial assemblies of the die casting machine such as fixed plate, transom plate,driving base plate and the base. The percentage of the bound volume and the penalty factor ontopological optimization are significant therefore they are determined to be0.7and3,respectively. Result after optimizations showed that total weight of the mould plates and thebase has reduced from91.10tons to79.75tons. With a12.5%drop in weight of the wholemachine and6.4%drop in weight of moving parts. Therefore, the work load of the hydraulicdriving system has reduced dramatically. As result the working efficiency of the wholemachine can be improved and energy consumption can be lowered.
     Key technique on energy saving for the die casting machine control system has beenstudied. A technique of using variable frequency control with real time monitor embedded tosave energy has been purposed. Above the hardware and software in the control system,non-inductive vector close-loop torque control technique, specific double DSP energyefficient system CPU together with specific die casting software have been introduced. Theelectricity cost during the small discharge in periodic manufacturing has been dramaticallydecreased.41%of the electricity cost can be saved using this technique and25%~35%ofelectricity can be saved when comparing with normal die casting machine. Thus the goal oftechnical innovation and energy saving can be achieved. This technique can be introduced tothe analysis of energy saving for periodical variable loading operation devices and can beused broadly in the future.
引文
[1]耿鑫明.中国压铸业发展历程与进步[J].金属加工热加工,2010,(19):10-13.
    [2]王荣峰,吴瑞瑞,郝斌斌.铝合金压铸技术的研究现状和发展[J].硅谷,2013,144(24):7-9.
    [3]孙国雄.从64届世界铸造会议看铸造业近期发展趋向[J].铸造世界报,2001,(1):151.
    [4]邹剑佳.压铸产业发展战略研究[J].特种铸造及有色合金,2012,32(12):1107-1110.
    [5]宋才飞.中国压铸五十年[J].铸造设备研究,2000,(5):1-12.
    [6]王栓强,宋敏.计算机模拟在压铸技术中的应用现状分析[J].软件导刊,2013,12(1):117-118.
    [7]陈如宁.长三角地区压铸业现状及发展趋势[J].资源再生,2011,(7):38-41.
    [8]游国强,杜娟,谭霞,等.压铸镁合金焊接气孔问题研究现状及发展[J].功能材料,2013,44(4):463-467.
    [9]宋才飞.我国压铸工业现状与发展方向[J].特种铸造及有色合金,2000,(1):1-2.
    [10]陈金城,翟春泉.快速成长中的中国压铸机制造业[J].特种铸造及有色合金,2010,30(9):813-818.
    [11]吴殿杰.国内汽车发动机缸体铸件铸造技术发展趋势[J].现代铸铁,2012,(2):23-30.
    [12]柳百成.世纪铸造技术的发展趋势[J].铸造世界报,2001,(5-6):10.
    [13]宋才飞.国际经济剧变下压铸业生存发展之道[J].铸造技术,2009,30(5):655-656.
    [14] M.R. Ghomashchi, A. Vikhrov. Squeeze casting: an overview [J]. Journal of MaterialsProcessing Technology,2000,101(1):1-9.
    [15] Masashi UCHIDA. Feature of UBE Squeeze process and UNRC process(Semi SolidCasting),第三届中国国际压铸会议论文集.沈阳:东北大学出版社,2002.
    [16]齐丕骧.挤压铸造生产技术进展[J].铸造技术,2007,28(6):13-17.
    [17]先进制造与自动化科学数据共享平台网站:http://casttech.amadata.net.cn/more/zjlt/p1.htm.
    [18]陈金城,彭余恭.压铸机的发展[J].铸造,2005,54(1):6-15.
    [19]黄晓锋,谢锐,田载友,朱凯,曹喜娟.压铸技术的发展现状与展望[J].新技术新工艺,2008,(7):50-55.
    [20]陈金城,翟春泉.快速成长中的中国压铸机制造业[J].特种铸造及有色金属,2010,30(9):813-818.
    [21]邓建新,邵明,游东东.挤压铸造设备现状及发展分析[J].2008,57(7):643-646.
    [22]邓建新.挤压铸造成形系统的研究[D].广州:华南理工大学博士学位论文,2010.
    [23]齐丕骧.挤压铸造生产技术进展[J].铸造技术,2007,(7):13-16.
    [24]黄红亮.基于ANSYS的压铸机关键机构的受力分析与研究[D].广州:华南理工大学硕士学位论文,2013.
    [25] Q. Shi. Prediction of thermal distortion and thermal fatigue in shot sleeves [D]. PhDDissertation, The Ohio State University,2002.
    [26]王卫荣,李晓燕,柯尊忠.压铸机合模机构的三维有限元分析[J].合肥工业大学学报(自然科学版),1999,(1):21-24.
    [27]陈就,姚彦秋.压铸机动型板的三维有限元分析[J].机床与液压,2004,(9):88-90.
    [28]李洪洋,雷丽萍,刘海军,李培杰.大型镁合金压铸机合模尾板的减重设计分析[J].机械强度,2006,28(2):276-281.
    [29]李洪洋,刘海军,曾攀等.高吨位镁合金压铸机定型板减重设计的有限元分析[J].2005,12(3):148-152.
    [30]李晓棠,潘贞周,李丹阳,等.大型压铸机合模机构的多目标模糊优化设计[J].机械设计与制造,2007,(5):6-8.
    [31]张晓峰,曾攀,雷丽萍,杨铁武.大型镁合金压铸机的有限元建模与分析[J].中国铸造装备与技术,2007,(3):38-42.
    [32]张晓峰,曾攀,杨铁武.大型镁合金压铸机尾板工作裂纹产生的原因及分析[J].机械设计与制造,2008,(4):93-95.
    [33]王卫荣,黄康.基于有限元法的压铸机整机应力应变研究[J].合肥工业大学学报(自然科学版),2005,28(9):1004-1007.
    [34]翁晓红,刘雪飞,涂书栋.压铸机锁模机构的接触非线性有限元分析[J].武汉大学学报(工学版),2005,38(5):151-154.
    [35]翁晓红,涂书栋,肖荣清.基于ADAMS的热室压铸机机铰优化设计[J].武汉大学学报(工学版),2005,38(2):106-109.
    [36]李洪洋,曾攀,雷丽萍,等.镁合金压铸机动型座板极限载荷的三维有限元分析[J].特种铸造及有色合金,2005,(3):138-141.
    [37]李洪洋,雷丽萍,刘海军,李培杰.超大型镁合金压铸机定型板极限压射过程的动力响应分析[J].机械科学与技术,2005,24(12):1487-1490.
    [38]赵韩,陈科,柯尊忠.神经网络在压铸机合模机构座板结构分析中的应用[J].中国机械工程,2001,3(7):794-796.
    [39]宋蓓莉,石端伟,朱惠华,等. RD4000冷室压铸机合模机构的设计及有限元分析[J].铸造技术,2004,3(8):631-633.
    [40]李洪洋,赵瑞海,曾攀,等.超大型镁合金压铸机定型板温度场及热应力的有限元分析[J].铸造,2006,55(1):34-37.
    [41]杨湘杰,沈波涌,饶磊.压铸机压室温度与应力分布二维模拟[J].铸造技术,2000,(2):19-21.
    [42] R. Helenius, O. Lohne, L. Arnberg, H.I. Laukli. The heat transfer during filling of ahigh-pressure die-casting shot sleeve [J]. Materials Science and Engineering,2005,(413-414):52-55.
    [43] J. Lopez, F. Faura, J. Hernandez, P. Gomez. On the Critical Plunger Speed andThree-Dimensional Effects in High-Pressure Die Casting Injection Chambers [J].Journal of manufacturing science and engineering,2003,125(3):529-537.
    [44] R. Zamora, F. Faura, J. Lopez and J. Hernandez. Experimental verification ofnumerical predictions for the optimum plunger speed in the slow phase of ahigh-pressure die casting machine [J]. The International Journal of AdvancedManufacturing Technology,2007,33(3-4):266-276.
    [45]朱维,韩志强,柳百成.挤压铸造过程热-力耦合分析的有限元模型[J].特种铸造及有色合金,2008,(S1):516-518.
    [46] A.J. Nikroo, M. Akhlaghi, M.A. Najafabadi. Simulation and analysis of flow in theinjection chamber of die casting machine during the slow shot phase [J]. TheInternational Journal of Advanced Manufacturing Technology,2009,41(1-2):31-41.
    [47] Shanker S, Apelian D. Die soldering-A metallurgical analysis of the molten aluminiumdie interface reactions [J]. NADCA Transactions,1997, ParperT97-085.
    [48] Matev Fazarinc, Tadej Muhi, Goran Kugler, et al. Thermal fatigue properties ofdifferently constructed functionally graded materials aimed for refurbishing ofpressure-die-casting dies [J]. Engineering Failure Analysis,2012,(25):238-249.
    [49] Xuan-xuan Yuwen, Ling Chen, Yi-jie Han. Numerical Simulation of Casting FillingProcess Based on FLUENT [J]. Energy Procedia,2012,17(B),1864-1871.
    [50] Alastair Long, David Thornhill, Cecil Armstrong, et al. Determination of the heattransfer coefficient at the metal–die interface for high pressure die cast AlSi9Cu3Fe[J]. Applied Thermal Engineering,2011,31(17-18):3996-4006.
    [51] M.L. Dennis Wong, William K.S. Pao. A genetic algorithm for optimizing gravity diecasting’s heat transfer coefficients [J]. Expert Systems with Applications,2011,38(6):7076-7080.
    [52] R. Helenius, O. Lohne, L. Arnberg, H.I. Laukli. The heat transfer during filling of ahigh-pressure die-casting shot sleeve [J]. Materials Science and Engineering,2005,(413-414):52-55.
    [53] J. Lopez, F. Faura, J. Hernandez, P. Gomez. On the Critical Plunger Speed andThree-Dimensional Effects in High-Pressure Die Casting Injection Chambers [J].Journal of manufacturing science and engineering,2003,125(3):529-537.
    [54] R. Zamora, F. Faura, J. Lopez, J. Hernandez. Experimental verification of numericalpredictions for the optimum plunger speed in the slow phase of a high-pressure diecasting machine [J]. The International Journal of Advanced Manufacturing Technology,2007,33(3-4):266-276.
    [55] K. Narayan, P. Shastri, A. Jain, J. Brevick. Computer Modeling of Shot Sleeve toPredict Distortion [C]. NADCA21st International Congress&Exposition,2001.
    [56] P. Robbins. That fateful four thou [J]. Die Casting Engineer,2002,46(5):34-39.
    [57] M.S. Dargusch, A. Hamasaiid, G. Dour. An inverse model to determine the heattransfer coefficient and its evolution with time during solidification of light alloys [J].International Journal of Nonlinear Sciences and Numerical Simulation,2008,9(3):275-282.
    [58] Z.P. Guo, S.M. Xiong, B.C. Liu, M. Li, J. Allison. Effect of Process Parameters,Casting Thickness, and Alloys on the Interfacial Heat-Transfer Coefficient in theHigh-Pressure Die-Casting Process [J]. Metallurgical and Materials TransactionsA-Physical Metallurgy and Materials Science,2008,39A (12):2896-2905.
    [59]韩志强,朱维,柳百成.挤压铸造凝固过程热-力耦合模拟Ⅰ.数学模型及求解方法[J].金属学报,2009,45(03):356-362.
    [60] Estey C M, Cockcroft S L, Maijer D M, Hermesmann C. Constitutive behaviour ofA356during the quenching operation [J]. Materials Science and Engineering,2004,A383:245-251.
    [61] Li C S, Thomas B G. Thermo-mechanical finite-element model of shell behavior incontinuous casting of steel [J]. Metallurgical and Materials Transactions,2004,35B (6):1151-1172.
    [62] Postek E W, Lewis R W, Gethin D T, Ransing R S. Influence of initial stresses on thecast behaviour during squeeze forming processes [J]. Journal of Materials ProcessingTechnology,2005,159(3):338-346.
    [63] Lee J H, Kim H S, Won C W. Effect of the gap distance on the cooling behavior andthe microstructure of indirect squeeze cast and gravity die cast5083wrought Al alloy[J]. Materials Science and Engineering,2002, A338(1-2):182-190.
    [64] Henry H, Alfred Y. Numerical simulation of squeeze cast magnesium alloy AZ91D [J].Modelling and Simulation in Materials Science and Engineering,2002,10:1-11.
    [65] B. Coates, S.A. Argyropoulos. The effects of wurface roughness and metal temperatureon the heat-transfer coefficient at the metal mold interface [J]. Metallurgical andMaterials Transactions B,2007,38B (4):243-255.
    [66] Ming-Shyan Huang, Tsung-Yen Lin, Rong-Fong Fung. Key design parameters andoptimal design of a five-point double-toggle clamping mechanism [J]. AppliedMathematical Modelling.2011,(9):345-348.
    [67]申军伟.注塑机双曲肘合模机构的参数优化与仿真[D].太原:太原理工大学硕士学位论文,2013.
    [68] Lin, W. Y., Shen, C. L., and Hsiao, K. M. A case study of the five-point double-togglemould clamping mechanism [J]. Mechanical Engineering Science. Part C,2006,220(C4):527-535
    [69]熊万春.曲肘式合模机构的结构参数优化[D].北京:北京化工大学硕士学位论文,2008.
    [70]熊万春,金志明,薛平.压铸机双曲肘五铰点斜排列合模机构运动和力学特性分析[J].特种铸造及有色合金,2008,25(06):445-447.
    [71]张建功,马海宽,李培力,等.4500t压铸机合模机构的运动及强度仿真分析[J].机械工程自动化,2014,183(2):54-56.
    [72]任工昌,苗新强,郭志刚.注塑机双肘杆锁模机构的优化设计[J].机械设计与制造,2009,(01):18-19.
    [73]王诗强.注塑机曲肘式合模机构动态特性及结构参数优化研究[D].北京:北京工业大学硕士学位论文,2013.
    [74]胡蓉,欧阳资恩. REV100注塑吹塑机非对称合模机构的锁模与调模特性[J].轻工机械,2007,(10):15-22.
    [75]王诗强,谢鹏程,何雪涛,等.注塑机合模机构刚柔耦合动力学特性研究[J].塑料工业,2013,41(1):54-57.
    [76] W. Y. Lin, S. S. Wang. Dimensional synthesis of a five-point double-toggle mouldclamping mechanism using a genetic algorithm-differential evolution hybrid algorithm[J]. Proceedings of the Institution of Mechanical Engineers. Part C, Journal ofmechanical engineering science,2010,224(6):1305-1313
    [77]王国宝.注塑机双曲肘合模机构的优化设计研究[D].太原市:太原理工大学硕士学位论文,2011.
    [78]于彦龙,尤文林,蔡建平,王玉丹.双曲肘合模机构的优化设计与运动学仿真[J].机床与液压,2008,(04):293-295.
    [79]徐银.注塑机合模机构的多目标性能优化研究[D].广州:广东工业大学硕士学位论文,2013.
    [80]闰政,权龙,田惠琴.注塑机双肘杆锁模机构的建模与仿真[J].液压气动与密封,2007,(03):30-33.
    [81]戴洪光.基于ADAMS平台的柔性体仿真理论的若干研究[D].合肥:合肥工业大学硕士学位论文,2008.
    [82] G. Gatti, D. Mundo. Optimal synthesis of six-bar cammed-linkages for exact rigid-bodyguidance [J]. Mechanism and Machine Theory,2007,(42):1069-1081.
    [83]纪钰亮.注塑机双曲肘合模机构的运动分析与优化设计[D].广州:华南理工大学硕士学位论文,2013.
    [84]王国宝,程珩,李福等.注塑机双曲肘合模机构的优化设计研究[J].工程塑料应用,2011,39(5):87-90.
    [85]冯良为,岑运福.注射成型机五孔直排式合模机构的运动和力学特性分析[J].特种橡胶制品,2002,23(2):40-58.
    [86]张春伟,刘海江.肘杆式注塑机合模机构合模点配置方法研究[J].塑料工业,2008,(06):34-37.
    [87] Wen Yi Lin, Kuo Mo Hsiao. Investigation of the friction effect at pin joints for thefive-point double-toggle clamping mechanisms of injection molding machines [J].International Journal of Mechanical Sciences,2003,45:1913-1927.
    [88]袁云龙.基于遗传算法的注塑机肘杆机构优化设计[J].机电工程,2009,26(04):22-24.
    [89]朱成实,吴琼,李铁军,等.注射机五孔斜排双曲肘合模机构的运动及力学模型的建立[J].沈阳化工学院学报,2004,18(2):133-137.
    [90]钟士培.基于ADAMS的注塑机合模机构动力学仿真研究[J].装备制造技术,2010,(04):9-11.
    [91] Ming Shyan Huang, Tsung Yen Lin, Rong Fong Fung. Key design parameters andoptimal design of a five-point double-toggle clamping mechanism [J]. AppliedMathematical Modelling,2011,35(9):4304-4320.
    [92] MSC. Software Corporation. MSC.ADAMS2012, ADAMS/View [CP/DK]. U.S.A:MSC. Software Corporation,2012.
    [93] MSC. Software Corporation. MSC.ADAMS2012, ADAMS/PostProcessor [CP/DK].U.S.A: MSC. Software Corporation,2012.
    [94]多体系统动力学基本理论,互联网文档资源: http://wenku.baidu.com/view/34c1a9a4b0717fd5360cdc40.html,2012-08-26.
    [95]朱春霞,朱立达,刘永贤,蔡光起.并联机器人多柔性体系统协同建模与动力学仿真[J].东北大学学报(自然科学版),2008,29(03):366-370.
    [96]李蕊.计及多重柔性的轮式悬架移动机械手动力学分析[D].天津:河北工业大学博士学位论文,2013.
    [97]戴洪光.基于ADAMS平台的柔性体仿真理论的若干研究[D].合肥:合肥工业大学硕士学位论文,2008.
    [98]李增刚. ADAMS入门详解与实例[M].北京:国防工业出版社,2008.
    [99]陆忠华,张争艳,陈定方.基于有限元法的柔性体变形实时模拟[J].武汉理工大学学报(交通科学与工程版),2012,36(3):700-707.
    [100] Huston. Multibody dynamics: Modeling and analysis methods [J]. Appl Mech. Rev,1991,44(03):109-117.
    [101]刘俊,林砺宗,刘小平. ADAMS柔性体运动仿真分析研究及运用[J].现代制造工程,2004,(5):53-55.
    [102]姜自伟.机械系统动力学仿真柔性体建模技术研究[D].武汉:华中科技大学硕士学位论文,2007.
    [103]刘铸永.刚-柔耦合系统动力学建模理论[D].上海:上海交通大学博士学位论文,2008.
    [104] I.M. Khan, M. Poursina, K.S. Anderson. Model transitions and optimization problem inmulti-flexible-body systems: Application to modeling molecular systems [J]. ComputerPhysics Communications,2013,184(7):1717-1728.
    [105] Henrik Hesse, Rafael Palacios. Consistent structural linearization in flexible-bodydynamics with large rigid-body motion [J]. Computers&Structures,2012,(110-111):1-14.
    [106] Juhwan Choi, Sungsoo Rhim, Jin Hwan Choi. A general purpose contact algorithmusing a compliance contact force model for rigid and flexible bodies of complexgeometry [J]. International Journal of Non-Linear Mechanics,2013,(53):13-23.
    [107]王学林,徐岷胡,于进.机床模态特性的有限元分析[J].机床与液压,2005,(02):48-50.
    [108]覃文洁,左正兴,刘玉桐,文占科,丁庆新.机床整机的动态特性分析[J].机械设计,2000,(10):24-27.
    [109]杨明亚,杨涛,阴红,杨颖洁.有限元分析软件在机床床身模态分析中的应用[J].机电工程技术,2007,36(01):25-28.
    [110]倪振华.振动力学[M].西安:西安交通大学出版社,1990.
    [111]廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用[M].北京:机械工业出版社,2003.
    [112]高星斗,毕世华,陈阵.基于改进Craig-Bampton法的导弹发射过程多柔性体动力学研究[J].固体火箭技术,2011,34(05):559-561.
    [113]王缅,郑钢铁.一种改进的固定界面模态综合法[J].宇航学报,2012,33(03):291-293.
    [114]邓峰岩,和兴锁,张娟,等.修正的Craig-Bampton方法在多体系统动力学建模中的应用[J].机械设计,2004,21(03):41-43.
    [115] Niu F, Xu S L, Cheng G D. A general formulation of structural topology optimizationfor maximizing structural stiffhess [J]. Structural and Multidisciplinary ptimization,2011,43(4):561-572.
    [116] G.L.N.Rozany. Aims, scope, method, history and unified terminology of computer-aided topology optimization in structure mechanics [J]. Structural and MultidisciplinaryOptimization,2001,21(2):90-108.
    [117] Amstutz S, Novotny A A. Topological optimization of structures subject to Von Misesstress constraints [J]. Structural and Multidisciplinary Optimization,2010,41(3):407-420.
    [118] T. Soko, G.I.N. Rozvany. New analytical benchmarks for topology optimization andtheir implications. Part I: bi-symmetric trusses with two point loads between supports[J]. Structural and Multidisciplinary Optimization,2012,46(4):477-486.
    [119] Rozvany G I N. A critical review of established methods of structural topologyoptimization [J]. Structural and Multidisciplinary Optimization,2009,37(3):217-237.
    [120]焦洪宇,周奇才,李文军,等.基于变密度法的周期性拓扑优化[J].机械工程学报,2013,49(13):132-138.
    [121]杨德庆.连续变量化的结构形状及拓扑优化设计理论和方法研究[D].大连:大连理工大学博士论文,1998.
    [122]左孔天.连续体结构拓扑优化理论与应用研究[D].武汉:华中理工大学博士论文,2004.
    [123]黄振晖,马纪军,杨玉森,等.连续体结构拓扑优化探讨与应用[J].大连理工大学学报,2013,34(2):57-59.
    [124]孙博宇.拓扑优化方法在机械产品设计中的若干关键问题研究[D].合肥:合肥工业大学硕士学位论文,2012.
    [125]王健.具有形状和应力约束的连续体结构拓扑优化及其在框架结构设计中的应用[J].工程力学,2002,19(4):99-103.
    [126]张琦,张帅,万水平,等.大型卧式压铸机中板的结构轻量化研究[J].机床与液压,2013,41(5):9-14.
    [127] Zhou M, Shyy Y K, Thomas H L. Checkerboard and minimum member size control intopology optimization [J]. Structural and Multidisciplinary Optimization,2001,21:152-158.
    [128] Chau Le, Julian Norato, Tyler Bruns, et al. Stress-based topology optimization forcontinua [J]. Structural and Multidisciplinary Optimization,2010,41:605-620.
    [129] J. Paris, F. Navarrina, I. Colominas, et al. Topology optimization of continuumstructures with local and global stress constraints [J]. Structural and MultidisciplinaryOptimization,2009,(39):419-437.
    [130]杜春江.连续体结构拓扑优化理论及其在炮塔结构设计中的应用研究[D].南京:南京理工大学博士论文,2008.
    [131] Z. Luo, L. Chen, J. Yang, Y. Zhang, K. Abdel-Malek. Compliant mechanism designusing multi-objective topology optimization scheme of continuum structures [J].Structural and Multidisciplinary Optimization,2005,30(2):142-154.
    [132]郑洪波,孙友松,何炎光,等.压铸机节能化再制造[J].锻压技术,2013,38(2):123-129.
    [133]四方变频器在注塑机节能改造中的应用,互联网文档资源: http://wenku.baidu.com/link?url=1Ty2VZEU5l74p6NxzBK1yW_ML6Sb8j16IB_X5AeIkZF8yM76k6H1rDtyBWRPaJJkseCnBN5D1vKMfXYp5IhdX6LHX_zHIaFEU5n5ij88TUS,2013-06-30.
    [134]刘晓雪.基于ARM的压铸机实时控制系统的研究.辽宁阜新:辽宁工程技术大学硕士学位论文,2010.
    [135]陈伟华,闫孝姮,彭继慎,等.基于ARM的大型压铸机压射实时控制系统设计[J].铸造,2014,63(3):252-256.
    [136]韩亮波,赵树忠. PLC在压铸机控制系统改造中的应用[J],自动化应用,2012,(8):10-14.
    [137]彭继慎,任宝栋.基于PLC和触摸屏技术的压铸机控制系统研究[J].机械制造,2005,44(3):38-42.
    [138]陈伟华,彭继慎,赵忠建.压铸机多变量压射过程非线性预测控制[J].铸造,2013,62(6):529-533.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700