用户名: 密码: 验证码:
热管砂轮高效磨削加工技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前强韧性材料(如钛合金、高温合金)在高效磨削加工中暴露出的主要问题之一是磨削弧区温度过高引起的工件烧伤。传统理论认为,尽可能多的将磨削液引入到磨削弧区是保证对其强化换热的有效手段,但实际上,随着砂轮线速度、磨削深度以及工件进给速度的不断提高,再加上磨削弧区又相对封闭,磨削液越来越难进入到弧区。另一方面,一旦在磨削过程中磨削弧区的热流密度输入达到成膜沸腾的临界值,由于工件表面形成汽膜层的阻挡,磨削液更是无法在磨削弧区起到正常的换热作用。
     本文提出利用热管技术实现强韧性难加工材料高效磨削的构想,并设计制作出基体中带有热管的新型磨具——热管砂轮,使积累在磨削弧区的热量能够经砂轮自身热管作用迅速的疏导出去,从而达到降低磨削弧区温度的目的。基于上述构想,本文主要完成了以下几个方面的工作:
     1、设计制作了一种热管砂轮结构,并对热管砂轮结构的密封性与结构强度进行了检测,结果表明,砂轮结构的密封效果能够保证热管后续的使用寿命,且砂轮结构强度可以满足高效磨削加工时的使用要求。利用建立的热管砂轮制作平台,制作出能够用于磨削的电镀CBN热管砂轮。
     2、建立了热管砂轮传热性能评价系统平台,并在该平台上进行热管砂轮与无热管砂轮的传热能力对比试验,证实了热管砂轮具有的传热优势。同时还进一步掌握了不同因素对热管砂轮传热能力与启动时间的影响规律,并对热管砂轮在工作状态时的传热机理进行了分析。此外,通过比较热管砂轮和普通实心砂轮的等效热阻,结果表明,由于热管的传热作用可以将砂轮传热能力提高一个量级的水平,这也进一步验证了热管砂轮具有对磨削弧区热量进行迅速疏导的潜力。
     3、利用FLUENT仿真软件建立了热管砂轮在平面磨削中的三维传热模型,并分析了砂轮转速、冷凝端冷却条件以及热端热流输入条件三个因素对磨削弧区温度的影响。仿真结果表明,热管砂轮在磨削中能够起到有效降低磨削弧区温度的作用。
     4、使用电镀CBN热管砂轮和无热管电镀CBN砂轮进行了钛合金和高温合金材料的磨削对比试验。试验结果表明,在相同试验条件下,热管砂轮在缓磨和高效深磨过程中能够有效疏导磨削弧区的热量,从而将磨削温度始终维持在较低水平,并防止工件烧伤。
At present, one of the most problems exposed in the high efficiency grinding of strength andtoughness difficult-to-cut materials such as titanium alloy and superalloy is the workpiece burn causedby high grinding temperature in the grinding contact zone. The traditional theory considers thatmaking a large quantity of coolant into the grinding contact zone is an effective method to ensure itseffect of heat transfer enhancement. But actually, with the continuously increase of the grinding speed,grinding depth and workpiece feed-speed in the grinding, and superadd the grinding contact zone is arelatively closed area, it will be much more difficult to make coolant into the grinding contact zone.On the other hand, once the condition of heat flux input in the grinding contact zone exceeds thecritical value whose the coolant will occur to film boiling state, the coolant will loss the function ofheat exchange with the contact zone due to the obstruct of formed vapor film on the workpiecesurface.
     To solve the above trouble, one novel conceive about utilization of heat pipe technology to achievethe high efficiency grinding for strength and toughness difficult-to-cut materials is proposed in thispaper. Moreover, A new grinding wheel——heat pipe grinding wheel (HPGW) which owns a loopheat pipe in the wheel matrix is designed and manufactured. That new grinding wheel can rapidly takethe heat accumulating in the grinding contact zone away by means of its loop heat pipe in the grinding,and thus realize the purpose to further strengthen the heat transfer in the grinding contact zone as wellas reduce the grinding temperature. Based on the above mentioned conceive, some works have beencompleted in this paper:
     (1) Designed and manufactured one HPGW structure and then the sealing and structural strength ofHPGW were detected. The test results show that the sealing performance can guarantee HPGWhaving a long service life in future and the structural strength of HPGW is also able to satisfy the userequirements in the high efficiency grinding. After that, an electroplated CBN HPGW applied in thehigh efficiency grinding was developed through an established heat pipe making platform.
     (2) A heat transfer performance evaluation system platform for HPGW was developed. The heattransfer superiority of HPGW was verified obviously by comparing with the conventional grindingwheel without heat pipe and the influence of some factors on heat transfer capacity and start-up timeof HPGW were analyzed by the heat transfer experiments. According to the experiment results, heattransfer mechanism of HPGW in working condition was probed. Furthermore, the equivalent thermal resistances of HPGW and conventional grinding wheel without heat pipe were compared. The resultsprove that the heat transfer capacity of HPGW relative to conventional grinding wheel can beimproved by an order of magnitude due to the heat transfer effect of heat pipe, and thus further verifythe heat transfer potential of HPGW to take grinding heat away from the contact zone in the grinding.
     (3) Based on the Computational Fluid Dynamics software, a three-dimensional heat transfer modelof HPGW in the grinding was developed to analyze the influence of different parameters of thegrinding speed, cooling condition and heat flux input on the grinding temperature. The simulationresults show that the grinding temperature can be dramatically reduced by using HPGW in thegrinding.
     (4) Grinding contrast experiments using the electroplated CBN HPGW and conventionalelectroplated CBN grinding wheel without heat pipe were carried out in the grinding of Titaniumalloy Ti-6A1-6V and Inconel718under the same condition. Results suggest that using HPGW in thecreep feed grinding and high efficiency deep grinding can further take the grinding heat away fromthe grinding contact zone, and thus maintain the grinding temperature at a low level as well as preventthe burnout.
引文
[1]张幼桢.金属切削理论.北京:航空工业出版社,1988
    [2]蔡光起,赵恒华等.高速高效磨削加工及其关键技术.制造技术与机床,2004,24(11):20~24
    [3]李长河,蔡光起等.高效率磨粒加工技术发展及关键技术.金刚石与磨料磨具工程,2006(5):25~32
    [4] Andrew C., Howes T.D., Pearce, T.R.A..Creep-feed Grinding, Holt, Rinehart, and Winston,London,1985
    [5] Werner P.G., Schlingensiepen R..Creep Feed-an Effective Method to Reduce WorkSurface Temperature in High Efficiency Grinding Proceedings. ManufacturingEngineering Transactions,1980, p312~331
    [6] Salje, E..Creep Feed Grinding.Proceedings of the5thInternational Conference onProduction Engineering, JSPE Tokyo,1984
    [7]艾兴.高速切削加工技术.北京:国防工业出版社,2003
    [8]盛晓敏.超高速磨削技术.北京:机械工业出版社,2010
    [9]冯宝富,赵恒华,蔡光起等.高速单颗粒磨削机理的研究.东北大学学报(自然科学版),2002,23(5):470~473
    [10] Matsuo T., Toyoura S., Oshima E., et al.Effect of grain shape on cutting force insuperabrasive single-grit tests.Annals of CIRP,1989,38:323~326
    [11] Jackson M.J., Davis C.J., Hitchiner M.P., et al.High-speed grinding with CBN grindingwheels-applications and future technology.Journal of Materials Processing Technology,2001,111(1):78~88
    [12] Kloeke F., Brinksmeief E., Evans C..High-speed Grinding Fundamentals and State of theArt in Europe.Japan and the USA.Annals of CIRP,1997,46(2):715~724
    [13]黄根林.欧洲的CBN超高速磨削加工技术.磨床与磨削,2002,(4):7~10
    [14] Hwang T.W., Evans C.J., Whitenton, et al.High-speed Grinding of silicon Nitride withElectroplated Diamond Wheels Part2: Wheels Topography and Grinding Mechanisms.ASME, MED,1999,10:443~452
    [15]庄司克雄等.超高速平面研削盘の开发.精密工学会志,1997,63(4):560~564
    [16] Werner G., TaWakoli T..High efficiency deep grinding with CBN.IDR,1988,(3):124~128
    [17] Tawakoli T..Requirements for high efficiency deep grinding.Industrial Diamond Review,1990,50(539):177~182
    [18] Stephenson D.J., Jin T., Corbett J.. High efficiency deep grindingof a low-alloy steelwith plated CBN wheels.Annals of the CIRP,2002,51(1):94~97
    [19]徐鸿钧,浦学峰等.缓进深磨时弧区温度分布及工件烧伤机理.机械工程学报,1990,26(6):74~79
    [20] Xun H.J., Fu Y.C., et al.The Workpiece Temperature Distritbution in Contact Zone andBurn Mechanism during Creep Feed Grinding. Chinese Journal of MechanicalEngineering,1990.3(1):58~63
    [21]徐鸿钧,徐西鹏等.缓磨时工件烧伤过程计算机仿真研究.南京航空航天大学学报,1994,26(5):642~650
    [22]徐鸿钧,徐西鹏等.缓磨时工件表层温度分布的计算机仿真研究.应用科学学报,1996,14(2):199~207
    [23]徐鸿钧,李迎等.缓磨烧伤过程的计算机仿真研究.航空学报,1996,17(4):503~507
    [24] Wang S.B., Kou H.S..Selections of working conditions for creep feed grinding. Part(II):Workpiece temperature and critical grinding energy for burning.International Journal ofAdvanced Manufacturing Technology,2006,28(1-2):38~44
    [25] Ebbrell S., Woolley N.H., Tridimas Y.D., et al.The effects of cutting fluid application methodson the grinding process.International Journal of Machine Tools&Manufacture,2000,40(2):209~223
    [26] Malkin S., Anderson R.B..Thermal Aspects of Grinding:Part2:Surface temperature andWorkpiece Bum.ASME Journal of Engineering for lndustry,1974,(96):1184~1191
    [27] Lavine A.S., Jen T.C.. Coupled Heat Transfer to Workpiece, Wheel, and Fluid inGrinding,and the Occurrence of Workpiece Burn.International Journal of Heat and MassTransfer,1991,34(4-5):983~992
    [28] Lavine A.S., Jen T.C..Thermal aspects of grinding:Heat transfer to workpiece,wheel,and fluid.Journal of Heat transfer.1991,113(2):296~303
    [29]傅玉灿.关于进一步开发高效磨削潜力的基础研究,[博士学位论文],南京:南京航空航天大学,1999
    [30]徐鸿钧,傅玉灿,孙方宏.高效磨削时弧区热作用机理与强化弧区换热的基础研究.中国科学(E辑),2002,32(3):296~306
    [31]李伯民,赵波.现代磨削技术.北京:机械工业出版社,2003
    [32] Kopalinsky E.M..A new approach to calculating the workpiece temperature distributionsin grinding.Wear,1984,94(3):295~32
    [33] Jin T., Rowe W.B..Heat transfer and partitioning in high efficiency deep grinding (HEDG),Abrasives Magazine,2001,16~18
    [34] Guo C., Malkin S..Analysis of Energy Partition in Grinding, Journal of Engineering forIndustry,1995,117(1):55~61
    [35] Jaeger J.C..Moving source of heat and temperature at sliding contacts.Proc. Roy. Soc. NewSouth Wales,1942,76:203~224
    [36]贝季瑶.磨削温度的分析与研究.上海交通大学学报,1964,28(3):45~49
    [37] Jin T., Rowe W.B., et al.Temperatures in Deep Grinding of Finite workpieces.InternationalJournal of Machine Tools and Manufacture,2002,42(1):53~59
    [38]张磊.单程平面磨削淬硬技术的理论分析和试验研究:[山东大学博士学位论文].济南:山东大学,2006
    [39]高航,宋振武.断续磨削温度场的研究.机械工程学报,1989,25(2):22~27
    [40] Outwater J. O., Shaw M.C..Surface temperatures in grinding.ASME,1952,74:73~78
    [41] Hahn R.S..On the nature of the grinding process.Proceedings3thMachine Tool Design andResearch Conference,1962,1:129~154
    [42] Ramanath S., Shaw M.C..Abrasive grain temperature at the beginning of a cut in fine grinding.Journal of Engineering for Industry,1988,110(1):15~18
    [43] Desruisseaux N.R., Zerkle R.D..Temperatures in semi-infinite and cylindrical bodies subject tomoving heat sources and surface cooling.Journal of Heat Transfer,1970,92:456~464
    [44] Howes T.D., Neailey K, Harrison A.J..Fluid film boiling in shallow-cut grinding.Annals of theCIRP,1987,36(1):223~226
    [45] Shafto G.R..Creep-feed grinding.[PhD: thesis of University of Bristol], Bristol:University ofBristol,1975
    [46] Rowe W.B., Pettit J.A., Boyle A., et al. Avoidance of thermal damage in grinding and predictionof the damage threshold.Annals of the CIRP,1988,37(1):327~330
    [47] Rowe W.B., Black S., Mills B., et al.Grinding temperatures and energy partitioning Proceedings.of the Royal Society,1997,453(1):1083~1104
    [48] Rowe W.B., Morgan M.N., Black S., et al.A simplified approach to thermal damage in grinding.Annals of the CIRP,1996,45(1):299~302
    [49] Rowe W.B., Black S., Mills B., et al.Analysis of grinding temperatures by energy partitioning.Proceedings of Institution of Mechanical Engineers,1996,210(B6):579~588
    [50] Guo C., Wu Y., Varghese V., et al.Temperatures and energy partition for grinding with vitrifiedCBN wheels.Annals of the CIRP,1999,48(1):247~250
    [51] Anderson D., Warkentin A., Bauer R..Experimental validation of numerical thermal models fordry grinding.Journal of Materials Processing Technology,2008,204(1-3):269~278.
    [52] Brinksmeier E., Heinzel C., Wilke T., et al.Simulation of the temperature distribution andmetallurgical transformation in grinding by using the finite-element-method. ProductionEngineering,2003,10(1):9~16.
    [53] Biermann D., Schneider M..Modeling and simulation of workpiece temperature in grinding byfinite element analysis.Machining Science and Technology,1997,1(2):173~183.
    [54] Hoffmeister H.W., Weber T..Simulation of Grinding by means of the Finite Element Analysis, in3thInternational Machining&Grinding.Cincinnati, USA,1999, p4~7
    [55] Jin T., Stephenson D.J.. Three Dimensional Finite Element Simulation of Transient HeatTransfer in High Efficiency Deep Grinding.CIRP Annals-Manufacturing Technology,2004,53(1):259~262
    [56]高航,屈力刚,兰雄侯.断续磨削温度场的计算机模拟.东北大学学报,2002,23(5):466-469
    [57]王霖,秦勇,刘镇昌等.计算机仿真技术在磨削温度场中的应用.工具技术,2001,35(10):19~21
    [58]任敬心,华定安.磨削原理.北京:电子工业出版社,2011
    [59] Webster J.A., Cui C., Mindek R.B..Grinding fluid application system design.Annals of theCIRP,1995,4(1):333~338
    [60] Brinksmeir E., Heinzel C., Wittman M..Friction, cooling and lubrication in grinding, Annals ofthe CIRP,1999,48(2):581~598
    [61] Ramesh K., Yeo S.H., Zhong Z.W., et al. Coolant shoe development for high efficiencygrinding.Journal of Materials Processing Technology,2001,114(3):240~245
    [62] Schumack M.R., Chung J.B., Schultz W.W., et al.Analyses of fluid flow under a grinding wheel.Transactions of the ASME,1991,113:190~197
    [63]蔡光起,赵恒华,高兴军.高速高效磨削加工及其关键技术.制造技术与机床,2004,(11):42~45
    [64]傅玉灿,徐鸿钧.开槽砂轮缓磨时射流冲击强化换热的研究.航空学报,2001,22(3):222~226
    [65]孙方宏,傅玉灿,徐鸿钧.断续缓磨射流冲击强化磨削弧区换热的实验研究.航空精密制造技术,1999,(1):25~27
    [66]傅玉灿,孙方宏,徐鸿钧.缓进给断续磨削时射流冲击强化磨削弧区换热的实验研究.南京航空航天大学学报,1999,31(2):151~155
    [67] Zhang H.C., Kuo T.C., Lu H.T..Environmentally conscious design and manufacturing: AState-of-the-Art Survey.Journal of Manufacturing Systems,1997,16(5):352~369
    [68] Klocke F., Eisenblatter G..Dry cutting.Annals of the CIRP,1997,46(2):519~526
    [69]王西彬.绿色切削加工技术的研究,机械工程学报,2000,36(8):6~10
    [70]武志斌,徐鸿钧,姚正军等.Ni-Cr合金钎焊单层金刚石砂轮界面结构的研究.应用科学学报,2002,20(1):10~13
    [71]肖冰,武志斌,徐鸿钧等.AgCuTi合金钎焊单层立方氮化硼砂轮.焊接学报,2002,23(2):29~33
    [72]武志斌,徐鸿钧,肖冰.钎焊单层金刚石砂轮的实验研究.中国机械工程,2001,12(12):1423~1425
    [73]李曙生,徐九华,徐鸿钧等.钛基钎料真空钎焊金刚石的试验研究.机械科学与技术,2006,(1):77~80
    [74]黄加林,傅玉灿,丁文锋等.石墨自润滑钎焊cBN砂轮节块界面微观结构.金刚石磨料与磨具工程,2011,30(1):39~42
    [75]霍文国,徐九华,傅玉灿等.自润滑金属结合剂CBN砂轮干式磨削特性分析.中国机械工程,2012,23(23):2773~2777
    [76] Silva L.R., Bianchi E.C., Fusse R.Y., et al.Analysis of surface integrity for minimum quantitylubricant-MQL in grinding.International Journal of Machine Tools and Manufacture,2007,(472):412~418
    [77] Sanchez J.A., Pombo I., Alberdi R., et al.Machining evaluation of a hybrid MQL-CO2grindingtechnology.Journal of Cleaner Production,2010,18(18):1840~1849
    [78] Tawakoli T., Hadad M.J., Sadeghi M.H..Influence of oil mist parameters on minimum quantitylubrication–MQL grinding process.International Journal of Machine Tools and Manufacture,2010,50(6):521~531
    [79] Nguyen T., Zhang L.C.. An assessment of the applicability of cold air and oil mist in surfacegrinding. Journal of Materials Processing Technology,2003,140(1-3):224~230
    [80] Choi H.Z., Lee S.W., Jeong H.D..The cooling effects of compressed cold air in cylindricalgrinding with alumina and CBN wheels.Journal of Materials Processing Technology,2002,127(2):155~158
    [81] Gaugler R.S. Heat transfer device.US Patent2350348,1944
    [82] Grover G.M..Evaporation-condensation heat transfer device.US patent3229759,1966
    [83] Cotter, T.P..Theory of Heat Pipes, USAEC Report LA-3246. Contract W7405-eng-36. LosAlamos Scientific Laboratory, University of California, Sept.,1965
    [84] Cotter T.P..Priciples and Prospects of Micro heat pipes. Proc.5thInt. Heat Pipe Conf.. Tsukuba,Japan,1984
    [85]方彬,王凤兰.镍基钎焊热管换热器的特点及其应用.节能技术,2004,22(5):63~64
    [86]王兴春,施明恒.热管喷射式制冷的研究.东南大学学报(自然科学版),2002,32(4):634~637
    [87]张加迅,侯增祺.CPL技术在空间飞行器上的应用.工程热物理学报,2001,22(3):340~343
    [88]陆金南,郭宏新.热管技术在烧结余热回收中的应用.烧结球团,1994,(3):25~28
    [89]庄琛,顾平道,李英娜.热管换热器在宾馆排风能量回收中的经济性分析.制冷与空调,2004(3):79~82.
    [90]徐先满,虞斌.热管技术在金属模具均温散热上的应用.低温与超导,2009,37(10):76~80
    [91]马辉,刘建坤等.青藏铁路建设中的冻土工程问题及其应对措施.土木工程学报,2006,39(2):85~92,106
    [92] Judd R.L., MacKenzie H.S., Eibestawi M.A..Investigation of a heat pipe cooling system for usein turning on a lathe.International Journal of Advanced Manufacturing Technology,1995,10(6):357~366
    [93] Judd R.L., Aftab K., Elbestawi M.A..Investigation of the use of heat pipes for machine toolspindle bearing cooling.International Journal of Machine Tools&Manufacture,1994,34(7):1031~1042
    [94] Chiou R.Y., Chen S.J., Lin L., et al.The Effect of An Embedded Heat Pipe In A Cutting Tool OnTemperature And Wear.American Society of Mechanical Engineers, Heat Transfer Division,(Publication) HTD,2003,374(3):369~376
    [95] Jen T.C., Gutierrez G., Eapen S., et al.Investigation of heat pipe cooling in drilling applications.Part I: preliminary numerical analysis and verification et al.International Journal of MachineTools&Manufacture,2002,(42):643~652
    [96] Gutierrez J.G..Investigation of heat pipes for drilling applications (A Dissertation Submitted inPartial Fulfillment of the Requirements for the degree of PHD). The University ofWisconsin-Milwaukee,2002
    [97] SATO JUNICHI.研削砥石,Japan Patent60-016366,1985
    [98]梁良,全燕鸣.热管刀具的设计及散热性能测试.华南理工大学学报(自然科学版),2012,40(5):13~17
    [99] Liang L., Quan Y.M., Ke Z.Y..Investigation of tool-chip interface temperature in dry turningassisted by heat pipe cooling.International Journal of Advanced Manufacturing Technology,2011,54(1/2/3/4):35~43
    [100]马可.基于热管技术的磨削弧区强化换热基础研究,[博士学位论文].南京:南京航空航天大学,2011
    [101]陈旭.热管式金刚石磨头的研制,[硕士学位论文].南京:南京航空航天大学,2008.
    [102]钱坤.环形热管砂轮设计及其传热性能分析,[硕士学位论文].南京:南京航空航天大学,2010
    [103]庄骏,张红.热管技术及其工程应用.北京:化学工业出版社,2000
    [104]马同泽,侯增祺,吴文铣.热管.北京:科学出版社,1985
    [105]秦明聪,陈远国.热管及热管换热器.重庆:重庆大学出版社,1986
    [106]到达安.真空设计手册(第三版).北京:国防工业出版社,2004
    [107]夏建芳,叶南海.有限元原理与Ansys应用.北京:国防工业出版社,2011
    [108]唐昆,尚振涛,盛晓敏等.40Cr钢高效深磨磨削力试验研究.制造技术与机床,2007,(3):56~60
    [109]任敬心,康仁科,史兴宽.难加工材料的磨削.北京:国防工业出版社,1999
    [110]中国机械工程学会塑性工程学会.焊接手册:材料的焊接(第3版).北京:机械工业出版社,2008
    [111]潘天明.现代感应加热装置.北京:冶金工业出版社,1996
    [112]梁文林,沈庆通.现代感应热处理技术.北京:机械工程出版社,2008
    [113]沈庆通,张宗杰.强力感应器与导磁体的发展.金属热处理,2001,26(8):47~49
    [114]晏敏,彭楚武,颜永红等.红外测温原理及误差分析.湖南大学学报(自然科学版),2004,31(5):110~112
    [115]彭焕良.热成像技术发展综述.激光与红外,1997,27(3):131~136
    [116]黄译铣.热电偶原理及其检定.北京:中国计量出版社,1993
    [117]杨荣福.金属切削原理.北京:机械工业出版社,1988
    [118]徐正亚.高频感应钎焊金刚石砂轮的基础研究,[博士学位论文].南京:南京航空航天大学,2011
    [119]刘光启,马连湘,刘杰主.化学化工物性数据手册.北京:化学工业出版社,2002
    [120]杨世铭,陶文铨.传热学(第四版).北京:高等教育出版社,2006
    [121]吴存真,刘光译.热管在热能工程中的应用.北京:水力电力出版社,1993
    [122]赵蔚琳,庄骏,张红.蒸发段长度与充液量对高温钠热管启动过程的影响.化工机械,2003,30(5):259~262
    [123]徐荣吉,王瑞祥,丛伟等.脉动热管启动过程的实验研究.西安交通大学学报,2007,41(5):530~533
    [124] Vasiliev L., Khrolenok V., Centrifugal coaxial heat pipes. Proc.2thInt. Heat Pipe Conf.. Bologna:1976,193~302
    [125] Dakin J..Vaporization of water films in rotating radial pipes.International Journal Heat MassTransfer,1978,21(10):1325~1332
    [126]黄素逸,刘伟.高等工程传热学.北京:中国电力出版社,2006
    [127]过增元,黄素逸等.场协同原理与强化传热新技术.北京:中国电力出版社,2004
    [128]王补宣.工程传热传质学,下册.北京:科学出版社,2002
    [129] Daniels T.C., Williams R.J..Experimental temperature distribution and heat load characteristicsof rotating heat pipes. International Journal of Heat and Mass Transfer,1978,21(2):193~201
    [130] Ling J., Cao Y.D.. Closed-form analytical solutions for radically rotating miniature hightemperature heat pipes including non-condensable gas effects. Heat and Mass Transfer,2000,43:3661~3671
    [131] Lin L., Aghri A.F..Heat transfer in micro region of a rotating miniature heat pipe. InternationalJournal of Heat and Mass Transfer,1999,42(8):1363~1369.
    [132]石文卿,林兰潮.旋转热管内部传热机理研究与分析.江苏化工学院学报,1989,1(3):6~23
    [133] Rose J.W..Dorpwise condensation theory.International Journal of Heat Mass Transfer,1981,24(1):191~194
    [134] Ma X.H., Rose J.W., Xu D.Q., et al. Advances in dropwise condensation heat transfer: Chineseresearch. International Journal of Heat Mass Transfer,2000,38(1):87~93
    [135]王福军.计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版社,2004
    [136]温正,石良臣,任毅如.FLUENT流体计算应用教程.北京:清华大学出版社,2009
    [137]商跃进.有限元原理与Ansys实践.北京:清华大学出版社,2012
    [138]张薇.典型换热单元流动与传热问题的数值仿真研究,[硕士学位论文].浙江:浙江大学,2007.
    [139]《中国航空材料手册》编辑委员会.中国航空材料手册,第二卷.北京:中国标准委员会,2001
    [140]《中国航空材料手册》编辑委员会.中国航空材料手册,第四卷.北京:中国标准委员会,2001
    [141]杨长勇.单层钎焊立方氮化硼砂轮缓进深切磨削钛合金的基础研究,[博士学位论文].南京:南京航空航天大学,2010
    [142] Song F., Ewing D., Ching C.Y.. Experimental investigation on the heat transfer characteristics ofaxial rotating heat pipes. International Journal of Heat and Mass Transfer,2004,47(22):4721~4731

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700