用户名: 密码: 验证码:
煤矿瓦斯爆炸灾害风险模式识别与预警研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:煤炭开采是中国最危险行业,尤以瓦斯爆炸灾害以其破坏性强、经济损失大、人员伤亡多等显著特点对煤矿安全生产造成严重危害。论文针对瓦斯爆炸灾害预控中存在的薄弱环节,运用安全科学、系统科学、风险管理科学、信息科学、计算机科学与工程以及矿山安全等相关理论,采用理论研究、数值分析、现场观测和计算机应用相结合的方法,研究瓦斯爆炸灾害风险识别与预警体系,对实现煤矿安全生产系统风险“早期识别”和事故“事先预防”、提高煤矿本质安全化水平、促进煤矿安全生产及煤炭工业的安全可持续发展等具有重要的意义。
     (1)针对现有煤矿瓦斯爆炸灾害预控管理理论与方法体系尚不完善等问题,提出了从风险辨识、监控、分级、评估、预测、预警、对策等一体化视角建立瓦斯爆炸灾害风险识别与预警对策的灾害预控体系。
     (2)对大量瓦斯灾害事故案例进行了统计分析,获得了事故特征与统计规律及时序分形特性;针对瓦斯爆炸灾害中瓦斯涌出与积聚和引爆火源产生等核心问题,对瓦斯涌出与积聚、引爆火源、引爆地点等典型特征进行了分类研究,通过大量瓦斯爆炸事故案例分析获得了瓦斯爆炸灾害典型特征规律与耦合规律,并提出了有效减少瓦斯爆炸事故发生的有关建议和措施。
     (3)系统探讨了风险管理理论、技术与方法,将风险管理理论引入到煤矿瓦斯爆炸灾害事故预控中,建立了瓦斯爆炸事故演化的因果链和风险分析模型,构建了瓦斯爆炸灾害风险识别与预警的体系框架,并对风险识别与预警体系构建的内容和程序进行了系统论述。
     (4)针对煤矿瓦斯爆炸灾害风险源的多样性与复杂性以及监测信源与信息的多样性和复杂性,对风险信息源进行了系统研究和分类;建立了信息采集、多源信息耦合、风险评估与预警、预控对策与响应等的风险识别与预警信息平台架构。
     (5)针对煤矿安全生产系统具有的非线性动力学特性,对矿井瓦斯爆炸灾害风险因素进行了系统辨识并划分了逻辑单元,建立了完善的层次结构风险指标体系和风险分级体系;提出了区间线性化方法对指标信息无量纲化方法的改进;阐述了风险识别与预警关键指标“一票否决制”的独立指标变权评估与预警机制。
     (6)将模式识别理论、技术与方法引入到煤矿瓦斯爆炸灾害风险管理中,系统研究了瓦斯爆炸灾害风险模式识别的基本原理、内容、技术与方法,构建了瓦斯爆炸灾害风险模式识别系统;提出了单项指标分段功效函数对EMC进行改进,建立了基于IAHP-ECM的瓦斯爆炸灾害风险模式识别模型,同时还应用DTW模板匹配技术、小样本学习SVM理论和PSO算法等构建基于DTW和基于PSO-SVM的瓦斯爆炸灾害风险模式识别模型,并对上述模型进行了性能检验与应用。
     (7)系统研究了瓦斯爆炸灾害风险预测的基本原理和过程、预测的内容和预测技术与方法,建立了煤矿瓦斯爆炸灾害单项风险预测和综合风险预测的基础数学模型;构建了瓦斯涌出量预测的GM(1,1)模型、残差GM(1,1)模型、等维信息GM(1,1)模型、AP(p)模型、以及与SVM结合的组合预测模型等,并对上述模型分别进行了性能检验与应用。
     (8)系统研究了瓦斯爆炸灾害风险预警的程序与内容和风险预警等级与预警阀值设置,提出了风险因素观测值和风险水平的时间梯度是风险预警的重要组成部分;研究了瓦斯浓度超限报警机制与技术和瓦斯浓度梯度报警机制与技术,建立了基于Elman的瓦斯浓度预警模型和基于PNN的瓦斯爆炸灾害风险综合预警模型,并分别进行了模型性能检验与应用。
     论文针对煤矿瓦斯爆炸灾害风险预控中存在的薄弱环节,在国家自然科学基金资助项目(51274100)等资助下,运用多学科交叉理论进行了瓦斯爆炸灾害风险识别与预警体系的构建与应用研究,有较高的学术研究价值和推广应用前景。
Abstract:Coal mining is the most dangerous industries in China, especially, the gas explosion disasters in coal mines, with its significant characteristics of strong destructive, big economic loss and most casualties and others, have caused serious hazard to safety production. For the weak links existing in the gas explosion disaster prevention and control through theoretical research, numerical analysis, field observation, computer application and relevant theories about safety science, system science, risk management science, information science, computer science and engineering and mine safety, gas explosion disaster risk identification and early warning system are researched in this article, which is of great importance to the implementation of early risk recognition and accident prevention in advance in the coal mine safety production system, the improvement of the coal mine intrinsically safe level, and the promotion of the sustainable development in coal mine safety.
     (1) In view of the imperfection of the theory and methods on coal mine gas explosion disasters pre-control management, the establishment of gas explosion hazard identification and disaster pre-control countermeasure system are put forward from the integration perspective including risk identification, monitoring, classification, evaluation, prediction, early warning, and countermeasures.
     (2) After statistical analysis on a large number of gas disaster accidents, the gas accident characteristics and statistical rule and fractal characteristics are obtained. As for the core problem of gas emission and accumulation, and the generation of spark origin in gas explosion disasters, the classification of typical characteristics such as gas emission and accumulation, spark origin, accident site are studied. The gas explosion characteristics and coupling rule are obtained and relevant effective suggestions and measures are put forward for decreasing gas explosion accident through a lot of gas explosion accident analysis.
     (3) The risk management theory, technology and methods are systematically discussed, and the risk management theory is introduced into the accident prevention and control of gas explosion disasters in coal mine. The gas explosion accident causal chain and risk analysis model are established; the gas explosion disaster risk identification and early warning system framework are built, and the content and procedure of this system are systematically discussed as well.
     (4) In view of the diversity and complexity of gas explosion hazard risk source and the diversity and complexity of information monitoring source in coal mine, the risk information sources are classified. The risk identification and early warning information platform architecture are established, including information gathering, multi-source information coupling, disaster risk assessment and early warning, control counter measures and response based on multi-source information coupling.
     (5) Based on the characteristics of non-leaner dynamics in coal mine safety production system, the risk factors of gas explosion disaster in coal mines are systematically identified, the production system are divided into some logic units, and a perfect hierarchy risk index system and risk classification system are established for risk assessment and early warning of gas explosion disaster. The interval linearization method is proposed to improve the index information of dimensionless method. The key risk identification and early-warning index "one vote veto" independent index system of the variable weight evaluation and early warning mechanism are also put forward.
     (6) The pattern recognition theory, method and technology are introduced into the gas explosion disaster risk management in coal mine; the fundamentals, the content, the technology and the methods of gas explosion risk pattern recognition are studied systematically; gas explosion risk pattern recognition are established; the single index piecewise efficacy function is proposed for improving efficacy function method(EMC); the risk pattern recognition model is established for gas explosion disaster based on IAHP-ECM; and at the same time, the other two risk pattern recognition models are established based on the DTW (dynamic time warping) template matching technology, and small sample learning SVM theory and PSO. Besides, all the models mentioned above are tested in application.
     (7) The fundamentals and process, the content and technology of risk prediction are studied systematically; the basic mathematics models of prediction are established for individual risk prediction and comprehensive risk prediction of gas explosion disaster in coal mines; the gas emission prediction models such as GM(1,1), residual error GM(1,1), equal-dimension metabolism GM(1,1), the AR(p) model and the combination forecast model by combining SVM are established. All these prediction models are anplied and pass performance test.
     (8) The process, the content, the grade and the threshold setting of early warning system for gas explosion in coal mines are studied systematically. It is also put forward that the observation value of risk factors and the time gradient of risk level are important parts of the early warning system. The transfinite alarm mechanism and technical of gas concentration are researched. The early warning model of gas concentration based on Elman and the comprehensive risk early warning model of gas explosion disaster based on PNN are established, and all the models mentioned above have been tested and applied respectively.
     In view of weak links of risk pre-control of gas explosion disaster in the coal mine, with funding from the project5127410of National Natural Science Foundation of China, the risk identification and the application of early warning system of gas explosion in coal mines are studied by using multidisciplinary theories in this research, which will be very valuable both in academic development and potential application.
引文
[1]BP集团.BP世界能源统计年鉴2012[OL], http://www.bp.com/statisticalreview, 2013-2-20
    [2]中华人民共和国统计局.中国统计年鉴[0L],http://www.stats.gov.cn/tjsj/ndsj, 2013-4-13
    [3]张福旺,张国枢.矿井瓦斯灾害防控体系[M].北京:中国矿业大学出版社,2009
    [4]李毅中.当前安全生产工作的12个问题[0L].http://www.chinasafety.gov.cn/. 2008-2-28
    [5]国家安全生产监督管理总局[0L],http://www.chinasafety.gov.cn/newpage/, 2013-4-13
    [6]中华人民共和国统计局.全国年度统计公报[OL],http://www.stats.gov.cn/ tjgb,2013-4-13
    [7]谢东海,冯涛,李润求.矿井瓦斯运移与通风关系研究[J].煤矿安全,2008,39(1):18-21
    [8]宫运华,白福利.全国死亡百人以上事故统计分析[J].中国安全生产科学技术,2006,2(6):105-107
    [9]彭成,孔晋华,滕耘.2007年上半年全国煤矿安全状况评析[J].中国煤炭,2007,33(7):71-73
    [10]周心权,陈国新.煤矿重大瓦斯爆炸事故致因的概率分析及启示[J].煤炭学报,2008,33(1):42-46
    [11]施式亮,梁小玲.瓦斯爆炸事故的混沌特性及其控制方法初探[J].中国安全科学学报,2003,13(9):54-58
    [12]景国勋,杨玉中.矿山重大危险源辨识、评价及预警技术[M].北京:冶金工业出版社,2008
    [13]国家安全生产监督管理总局.2009年全国煤矿瓦斯防治工作会议专题[OL].http://www.chinasafety.gov.cn,2009-9-4
    [14]李润求,施式亮,彭新.煤矿瓦斯爆炸事故演化的突变模型[J].中国安全科学学报,2008,18(3):22-27
    [15]Tayer, G.I. The Formation of a Blast Wave by a Very Intense[J].Explosion British Rep. RC-210,1941.
    [16]Sedov, L.I., Similarity and Dimensional Methods in Mechanics [M]. Academic Press,New York, N.Y.,1959.
    [17]Sakurai, A.Blast Wave Theory, Basic Developments in Fluid Mechanics, Academic Press, New York, N.Y.,1959.
    [18]Whithman, GB.The Propagation of Spherical Blast [J]. Proc, Royal Society, A203,1950:571-581.
    [19]Oshima, K. On Exploding Wires[M], Vol.2. Plenum Press, New, York, N.Y, 1967.
    [20]Brode, H.I. Numerical Simulation of Spherical Blast Waves [J],J. of Applied Physics, Vol.26,1955:766-775.
    [21]Baker, W.E. Explosion in Air [M]. University of Texas Press, Austin, Texas,1973.
    [22]Courant, R.A, and Friedrichs, K.0. Suspersonic Flow and Shock Waves, Wiley, 1948.
    [23]黄翰文.爆炸三角形图解原理及其应用[J].煤矿安全,1991,(4):53-60
    [24]Proceeding of The International Mining Tech.98 Symposia, Chongging/China/ 14-16. October 1998.
    [25]Wagner H. G Some experiments about flame acceleration[A]. in Fuel-Air Explosion, University of Waterloo Press,1982:77-79
    [26]Williams F. A. Laminar Flame instability and turbulent flame propagation[A]. in Fuel-Air Explosion, University of Waterloo Press,1982:102-105
    [27]Moen, I.O, Lee, J. H. S. and Hjertager. B. H. Pressure Development due to Turbulent Flame Propagation in Large-Scale Methane/Air Explosion [J]. Combustion and Flame,1982, (47):31-52
    [28]Phylaktou H. The acceleration of flame propagation in a tube by an obstacle[J]. Combustion and Flame,1991:363-379
    [29]Ristu Dobashi. Experimental study on gas explosion behavior in enclosure[J]. Journal of loss prevention in the process industries,1997,10(2):83-89
    [30]Masri A. Experimental thermal and fluid science[J]. combustion and flame,2000, 21:19-26
    [31]Dunn-Rankin D. Overpressures from nondetonating baffle accelerated turbulent flames in tubes[J]. combustion and flame,2000:342-345
    [32]Furukawa J. Flame front surface characteristics in turbulent premixed propane /air combustion [J]. Combustion and Flame,2000:407-416
    [33]Gulder O. I. Flame front surface characteristics in turbulent premixed propane/air combustion[J]. combustion and flame,2000:407-416
    [34]Salzano E, Marra F S, Russo G, et al. Numerical simulation of turbulent gas flames in tubes[J]. Journal of Hazardous Materials,2002,95(3):233-247
    [35]林柏泉,菅从光,周世宁等.受限空间瓦斯爆炸反射波及对火焰传播的影响[J].中国矿业大学学报,2005,34(1):1-5
    [36]何学秋,杨艺,王恩元等.障碍物对瓦斯爆炸火焰结构及火焰传播影响的研究[J].煤炭学报.2004,29(2):186-189
    [37]徐景德.矿井瓦斯爆炸传播的尺寸效应研究[J].中国安全科学学报,2001,11(6):36-40
    [38]吴红波,张立,郭子如.点火能对瓦斯火焰传播影响的实验研究[J],煤矿爆破,2004,(1):5-7
    [39]王新,李润之,张延松.瓦斯爆炸引起沉积煤尘爆炸传播实验研究[J].中国安全科学学报,2009,19(4):73-77
    [40]侯玮,曲志明,骈龙江.瓦斯爆炸冲击波在单向转弯巷道内传播及衰减数值模拟[J].煤炭学报,2009,34(10):509-513
    [41]刘永立,陈海波.矿井瓦斯爆炸毒害气体传播规律[J].煤炭学报,2009,34(6):788-791
    [42]贾智伟,景国勋,张强.瓦斯爆炸事故有毒气体扩散及危险区域分析[J].中国安全科学学报,2007,17(1):91-95
    [43]赵超.采煤工作面瓦斯涌出量预测[J].煤炭科技,2012,(4):94-95
    [44]施式亮,伍爱友.GM(1,1)模型与线性回归组合方法在矿井瓦斯涌出量预测中的应用[J].煤炭学报,2008,33(4):415-418
    [45]郁云,陆金桂.基于灰色理论和人工神经网络的瓦斯涌出量预测[J].人工智能,2006,22(3):269-272
    [46]何利文,施式亮,宋译,等.基于支持向量机(SVM)的回采工作面瓦斯涌出混沌预测方法研究[J].中国安全科学学报,2009,19(9):42-46
    [47]邵良杉.基于粗糙集理论的煤矿瓦斯预测技术[J].煤炭学报,2009,34(3):71-375
    [48]施式亮,宋译,何利文,等.矿井掘进工作面瓦斯涌出混沌特性判别研究[J].煤炭学报,2006,31(6):58-62
    [49]曾勇,吴财芳.矿井瓦斯涌出量预测的模糊分形神经网络研究[J].煤炭科学技术,2004,32(2):62-65
    [50]于不凡,王佑安.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2000
    [51]王凯,俞启香.煤与瓦斯突出的非线性特征及预测模型[M].徐州:中国矿业 大学出版社,2005
    [52]Liu Ming-ju, He Xue-qiu. Electromagnetic response of outburst-prone[J]. International Journal of Coal Geology,2002,45(2):155-162
    [53]Shemyaki, Kurlenya, Kulakov. Classification of Rock Burst[J]. Soviet Mining Science,1997,7(22):329-336
    [54]Fu Xue-hai, Zhang Wen-Ping, Zhou Ya-nan, et al. Technology and method of coal and gas outburst prediction during coal geological exploration [C]. The 6th International Conference on Mining Science & Technology, Precede Earth and planetary Science,2009, (1):911-916.
    [55]国家煤矿安全监察局.防治煤与瓦斯突出规定[M].煤炭工业出版社,2009.
    [56]谢和平,彭苏萍,何满朝.深部开采基础理论与工程实践[M].北京:科学技术出版社,2006
    [57]孙海涛,胡千庭,梁运陪,等.煤与瓦斯突出预测的自适应神经一模糊推理系统研究[J].河南理工大学学报(自然科学版),2007,26(4):353-358.
    [58]Frid.V. Electromagnetic radiation method for rock and gas outburst forecast[J]. Journal of Applied Geophysics,1995, (38):97-104
    [59]曹树刚,刘延保,张立强.突出煤体变形破坏声发射特征的综合分析[J].岩石力学与工程学报,2007,26(增1):2794-2799.
    [60]郭德勇,郑茂杰,郭超,等.煤与瓦斯突出预测可拓聚类方法及应用[J].煤炭学报,2009,34(6):783-787
    [61]冯占文,刘贞堂,李忠辉,等.应用层次分析-模糊综合评判法对煤与瓦斯突出危险性的预测[J].中国安全科学学报,2009,19(3):149-154
    [62]朱玉,张虹,苏成.基于免疫遗传算法的煤与瓦斯突出预测研究[J].中国矿业大学学报,2009,38(1):125-130
    [63]罗文柯.上覆巨厚火成岩下煤与瓦斯突出灾害危险性评估与防治对策研究[D].中南大学,2010
    [64]李胜.煤与瓦斯突出区域预测的模式识别方法研究[D].辽宁工程技术大学,2004
    [65]Morris D. M. Report on the circumstance attending the explosion in section 5 and 10, Boomlager No.3, Hlobane collieries 12 September,1983, which caused the death of 68 person. GME 524,18
    [66]Thompson T. J., et al. Report of investigation, underground coal mine,#3, mine, ID NO.44-06594, Southmountain Coal Co. Inc, Norton, Wise Country, Viginia, U. S.,1993,46
    [67]Dacies A. W. Welsh explosion and the current hazzard[J]. The Mining Engineer, paper No.4868, Aprial 1982
    [68]Lowrance W.W. Of acceptable risk:science and the determination of safety (California:Kaufman,1996),180
    [69]Windrindge F. W. Report on an accident at Moura No.2 underground mine on 7 August,1994
    [70]韩玉建,陈建宏,周智勇.基于心态指标的煤矿瓦斯爆炸区间数模糊评价[J].中国安全科学学报,2010,20(2):83-88
    [71]施式亮,李润求.煤矿瓦斯爆炸事故演化危险性评价的AHP-GT模型及应用.煤炭学报,2010,35(07):1137-1141
    [72]安永林,彭立敏,张运良,等.可拓法评估煤矿瓦斯爆炸易发性[J].灾害学,2007,22(4):21-24
    [73]桂祥友,郁钟铭.基于灰色关联分析的瓦斯突出危险性风险评价[J].采矿与安全工程学报,2006,23(4):464-467
    [74]魏引尚,张俭让,常心坦.基于信息熵的矿井瓦斯积聚危险性评价探讨[J].矿业安全与环保,2005,32(2):25-47
    [75]张爱然,罗新荣,杨飞.基于模糊神经网络的瓦斯爆炸危险性评价模型[J].黑龙江科技学院学报,2008,18(1):54-57
    [76]李润求,施式亮,彭新.矿井通风系统安全评价方法及发展趋势[J].中国安全科学学报,2008,18(1):112-118
    [77]冉启平.木冲沟煤矿“9.27”特大瓦斯煤尘爆炸事故分析[J].煤矿安全,2002,33(2):33-41
    [78]孙继平.屯兰煤矿“2·22”特别重大瓦斯爆炸事故原因及教训[J].煤炭学报,2010,35(1):72-75
    [79]李润求,施式亮,罗文柯.煤矿瓦斯爆炸事故特征与耦合规律研究[J].中国安全科学学报,2010,20(2):69-74
    [80]陈红,祁慧,谭慧.中国煤矿重大瓦斯爆炸事故中的人因及度量[J].科技导报,2005,10(23):41-44
    [81]周心权,陈国新.煤矿重大瓦斯爆炸事故致因的概率分析及启示[J].煤炭学报,2008,33(1):42-46
    [82]谭国庆,周心权,曹涛,等.近年来我国重大和特别重大瓦斯爆炸事故的新特点[J].中国煤炭,2009,35(4):7-9
    [83]杨永辰,孟金锁,王同杰,等.采煤工作面特大瓦斯爆炸事故原因分析[J].煤炭学报,2007,32(7):734-736
    [84]李润求,施式亮,念其锋,等.近10年我国煤矿瓦斯灾害事故规律研究.中国安全科学学报,2011,21(9):143-151
    [85]桑海泉.煤矿安全监控系统研究[J].中国安全生产科学技术,2009,5(10):184-188
    [86]周邦全.煤矿安全监测监控系统的发展历程和趋势[J].矿业安全与环保,2007,34(1S):76-77
    [87]李树刚,徐竟天,黄金星.基于工业以太网的瓦斯监控系统设计[J].中国安全生产科学技术,2010,6(2):141-145
    [88]杨维,周嗣勇,乔华.煤矿安全监测无线传感器网络节点定位技术[J].煤炭学报,2007,32(6):652-656
    [89]李润求,施式亮,彭新.基于ZigBee技术的煤矿井下人员跟踪定位系统研究[J].煤,2009,(2):4-7
    [90]朱红平,李白雅,李润求.基于设备网(DeviceNet)总线技术的矿井瓦斯传感器的设计[J].中国安全科学学报,2007,17(10):165-171
    [91]齐敏,李大健,郝重阳.模式识别导论[M].北京:清华大学出版社,2009
    [92]肖建华.智能模式识别方法[M].广州;华南理工大学出版社,2006
    [93]张学工.模式识别(第3版)[M].北京:清华大学出版社,2010
    [94]Duda R.O., Hart P.E., Stork D.G. Pattern classification,2nd Edition[M]. New York:John Wiley & Sons Inc.,2001
    [95]Webb A. Statistical Pattern Recognition[M]. West Sussex:John Wiley & Sons Ltd.,2002
    [96]A. Jain, R. Duin, J. Mao. Statistical Pattern Recognition:A Review[M]. IEEE Transactions on Pattern Analysis and Machine Intelligence.2000,22(1):4-37
    [97]S. Gunn. Support Vector Machines For Classification and Regression[R]. Technical Report. Image Speech & Intelligent Systems Group. University of Southampton,1997
    [98]J. Llados, G. Sanchez, D. Karatzas. Rotation invariant hand-drawn symbol recognition based on a dynamic time warping model[J]. International Journal on Document Analysis and Recognition,2010,13(3):229-241.
    [99]V. V. Geppener, K. K. Simonchik, A. S. Haidar. Design of speaker verification systems with the use of an algorithm of Dynamic Time Warping (DTW) [J]. Pattern Recognition and Image Analysis,2005,15(4):470-479.
    [100]陈秦生,蔡元龙.用模式识别方法预测煤矿突水[J].煤炭学报,1990,15(4):63-68
    [101]陈立文,孙定铮.煤炭自然发火危险程度模式识别.工业安全与防尘,1995,(4):28-30
    [102]樊淑趁.基于模式识别的煤岩分界辨识方法研究[J].煤矿机械,1993,(6): 9-12
    [103]程东全,顾锋.基于可拓模式识别的煤与瓦斯突出危险性分析[J].安全与环境学报,2012,12(1):241-244.
    [104]张子戌,刘高峰,吕闰生,等.基于模糊模式识别的煤与瓦斯突出区域预测[J].煤炭学报,2007,32(6):592-595.
    [105]Ana-Maria Fuertes. Optimal design of early warning systems for sovereign debt crises[J]. International Journal of Forecasting,2007,23(1):85-100
    [106]W. L. Tung. GenSo-EWS:a novel neural-fuzzy based early warning system for predicting bank failure[J]. Neural Networks,2004,17:567-587
    [107]Matthieu Bussiere and Marcel Fratzscher. Towards a new early warning system of financial crises[J]. Journal of International Money and Finance,2006,25(6): 953-973
    [108]William J. de Groot, Johann G. Goldammer, Tom Keenan, et al. Developing a global early warning system for wildland fire[J]. Forest Ecology and Management,2006,234(S1):101-110
    [109]Guido Cervone, Meanas Kafatos, Demenico Napoletani. An early warning system for coastal earthquakes [J]. Advance in Space Research,2006,37(4): 636-642
    [110]李红杰,吴荣俊,许永胜,等.采掘业灾害预警管理[M].石家庄:河北科学技术出版社,2004
    [111]肖全兴.矿井通风安全管理预警系统研究[J].矿业安全与环保,1999,(3):4-7
    [112]何国家,刘双勇,孙彦彬.煤矿事故隐患监控预警的理论与实践[J].煤炭学报,2009,34(2):212-217
    [113]李春民,王云海,张兴凯.矿山安全监测预警与综合管理信息系统[J].辽宁工程技术大学学报,2007,26(5):655-657
    [114]牛强,周勇,王志晓,夏士雄.基于自组织神经网络的煤矿安全预警系统[J].计算机工程与设计,2006,27(10):1752-1753
    [115]杨玉中,冯长根,吴立云.基于可拓理论的煤矿安全预警模型研究[J].中国安全科学学报,2008,18(1):40-45
    [116]杨勇,李树刚,郭佳,等.基于极值统计理论的矿井瓦斯浓度预警模型[J].西安科技大学学报,2009,29(6):682-685
    [117]杨禹华,钟震宇,蔡康旭.基于模糊模式识别的瓦斯含量指标异常预警技术[J].中国安全科学学报,2007,17(9):172-176
    [118]张纯如,汪勇,盯梅生.矿井瓦斯浓度异常变化危险性预警的研究[J].安徽理工大学学报(自然科学版),2011,31(3):62-67
    [119]牛聚粉,程五一.基于时间维度的煤与瓦斯突出预警指标体系的构建[J].煤炭工程,2012,59(5):96-98
    [120]曾丽君,张金锁,闫海强.基于INTEMOR的煤矿瓦斯事故智能预警系统[J].煤矿安全,2009,39(11):53-56
    [121]国家安全生产监督管理总局,国家煤矿安全监察局.煤矿安全规程[M].北京:煤炭工业出版社,2011
    [122]国家安全生产监督管理总局.政府网站事故查询系统[OL].http://media. chinasafety. gov.cn:8090/iSystem/shigumain.jsp,2013-3-20.
    [123]中国煤炭工业网[OL],http://www.chinacoal.gov.cn,2013-3-22
    [124]中国安全网[OL].http://www.safety.com.cn,2013-4-2
    [125]施式亮,王海桥.矿井安全非线性动力学评价[M].北京:煤炭工业出版社,2001
    [126]谢和平,薛秀谦.分形应用中的数学基础与方法[M].北京:科学出版社,1997
    [127]李水根,吴纪桃.分形与小波[M].北京:科学出版社,2002
    [128]施式亮,李润求,何利文,等.基于分形学的瓦斯爆炸事故时序数据分析模型及应用[J].中国安全科学学报,2011,21(10):10-15
    [129]黄登仕,李后强.分形几何学、R/S分析与分式布朗运动[J].自然杂志,1990,13(8):477-482
    [130]施式亮,何利文,李润求.基于R/S分析方法的煤矿瓦斯涌出时序特征分析[A].中国职业安全健康协会2010年学术年会论文集,2010:292-296
    [131]施式亮,李润求,念其锋.煤矿安全状况关键指标变化特征的R/S分析.中国安全科学学报.2012,22(9):79-84
    [132]王捷帆,李文俊.中国煤矿事故暨专家点评集[M].北京:煤炭工业出版社,2002
    [133]国家安全生产监督管理总局矿山救援指挥中心.矿山事故急救战例及分析[M].北京:煤炭工业出版社,2006
    [134]王纪国.最新全国270例典型矿难剖析[M].合肥:安徽文化音像出版社,2004
    [135]国家煤矿安全监察局人事司.全国煤矿特大事故案例选编[M].北京:煤炭工业出版社,2000
    [136]国家煤矿安全监察局.全国小型煤矿特大事故案例选编(2000-2003)[M].北京:煤炭上业出版社,2004
    [137]王毫编著.全国特重大伤亡事故典型案例汇编(上)[M].北京:中国劳动社会保障出版社,2004
    [138]国家安全生产监管局.特大事故案例选编(2000-2001)M].北京:煤炭工业出版社,2003
    [139]来永宝,吴传始,鲍道亮.小煤矿法律法规及事故案例分析[M].北京:煤炭工业出版社,2003
    [140]Frank H. Knight. Risks, Uncertainties and Profits[M]. Press of Peoples University of China,2005.
    [141]顾镜清.风险管理理论与实务[M].北京:中国国际广播出版社,1993.
    [142]Wei cheng Cui, D.I.Blockley. On the bound for Structural system reliability[J], Structural Safety.1991,(9):247-259.
    [143]国家安全生产监督管理总局安全生产协调司.现代安全理念和创新实践[M].北京:经济科学出版社,2006.
    [144]罗云.风险分析与安全评价[M].北京:化学工业出版社,2011
    [145]罗云.现代安全管理[M].北京:化学工业出版社,2010
    [146]范道津,陈伟珂.风险管理理论与工具[M].天津:天津大学出版社,2010
    [147]林柏泉.安全学原理[M].北京:煤炭工业出版社,2002
    [148]许蔓舒.国际危机预警研究综述[J].国际论坛,2006,(8):75-78.
    [149]佘丛国,席酉民.我国企业预警研究理论综述[J].预测,2003(2):23-29.
    [150]佘廉.企业预警管理理论[M].石家庄:河北科学技术出版社,1999.
    [151]伍爱友,李润求.安全工程学[M].徐州:中国矿业大学出版社,2012
    [152]吴宗之.危险评价方法及其应用[M].北京:冶金工业出版社,2004
    [153]田水承,李红霞,王莉,等.从三类危险源理论看煤矿事故的频发[J].中国安全科学学报,2007,17(1):10-15
    [154]杨勇,冯志斌.安全评价工作若干问题探讨[J].中国安全科学学报,2010,20(4):106-109
    [155]陈国宏,李美娟,陈衍泰.组合评价及其计算机集成系统研究[M].北京:清华大学出版社,2007
    [156]李润求,施式亮,念其锋,等.基于PSO-SVM的瓦斯爆炸灾害风险模式识别.中国安全科学学报,2013,23(5):38-43
    [157]李润求,施式亮,念其锋.基于IAHP-ECM的瓦斯爆炸灾害风险评估.中国安全科学学报,2013,23(3):62-67
    [158]高雷,王升.财务风险预警的功效系数法实例研究[J].南京财经大学学报,2005,23(1):93-97.
    [159]王迎超,孙红月,尚岳全,等.功效系数法在隧道围岩失稳风险预警中的应用[J].岩石力学与工程学报,2010,29(2):3679-3684.
    [160]周毅,赵晓刚.基于区间层次分析法的石油库防火防爆安全评价[J].中国安 全科学学报,2011,21(12):58-63.
    [161]田宝林,刘长有.基于区间数层次分析法的机场应急能力评价模型[J].中国安全科学学报,2011,21(3):170-176.
    [162]肖峻,罗凤章,王成山,等.区间层次分析法的权重求解方法比较研究[J].电力系统及其自动化学报,2004,21(4):12-16.
    [163]林遂芳,张海英,潘永湘.基于DTW和LVQ网络混合模型的语音识别方法[J].系统仿真学报,2005,17(8):1959-1965.
    [164]傅惠,徐建闵.基于动态时间弯曲的多模板匹配车型分类[J].控制理论与应用,2008,25(3):529-532.
    [165]牛征,牛玉广,刘吉臻.基于动态时间归整技术的电站过程故障诊断方法[J].动力工程,2006,26(3):396-399.
    [166]汪可,杨丽君,廖瑞金.动态时间规整算法在局部放电模式识别中的应用[J].重庆大学学报,2011,34(12):54-60.
    [167]V.Vapnik(著),张学工(译).统计学习理论的本质[M].北京:清华大学出版社,2000
    [168]孙玉峰,李中才.支持向量机法在煤与瓦斯突出分析中的应用研究.中国安全科学学报,2010,20(1):25-30.
    [169]孟倩,王洪权,王永胜,等.煤自燃极限参数的支持向量机预测模型[J].煤炭学报,2009,34(11):1489-1493.
    [170]潘玉民,邓永红,张全柱.基于QPSO-RBF的瓦斯涌出量预测模型[J].中国安全科学学报,2012,22(12):29-34
    [171]汪同三,张涛.组合预测[M].北京:社会科学文献出版社,2008
    [172]陈友华.组合预测方法有效性理论及其应用[M].北京:科学出版社,2010
    [173]李润求,施式亮,念其锋,等.基于灰色系统理论的煤矿安全生产形势预测.矿业工程研究,2010,25(3):54-58
    [174]罗文柯,施式亮,李润求,等.灰色预测模型在能源消费需求预测中的应用.中国安全科学学报,2010,20(4):32-37
    [175]刘思峰.灰色系统理论及其应用[M].北京:科学出版社,2008
    [176]沈建荣,杨林泉,陈琳.经济系统中AR建模预测的可信度分析[J].预测,1998,14(4):49-50
    [177]姚志飞,姜万录,朱勇.AR模型的功率谱估计方法及在故障检测中的应用[J].机床与液压,2013,40(05):177-179
    [178]王雪松,程玉虎,易建强.基于Elman网络的非线性系统增强式学习控制[J].中国矿业大学学报,2006,50(5):653-657
    [179]吴微,徐东坡,李正雪.Elman网络梯度学习法的收敛性[J].应用数学和力学, 2008,28(9):1117-1123
    [180]D.F. Specht. Probabilistic neural network for classification, or associative memory. ICNN,1988, (1):525-532
    [181]李润求,施式亮,念其锋.基于概率神经网络的巷道围岩稳定性分类研究.矿业工程研究,2013,28(3):
    [182]孙继平,陈伟,王福增,等.概率神经网络在矿井红外监控图像识别中的应用[J].煤炭学报,2007,32(11):1206-1210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700