用户名: 密码: 验证码:
急倾斜突出煤层群煤与瓦斯共采理论及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
急倾斜突出煤层群开采由于其倾角较大,带来了“三小五大”问题,即井型小、矿山压力小、回采率小和瓦斯防治难度大、巷道掘进率大、倾斜上向影响范围大、吨煤消耗大、工人劳动强度大等。如何进行这类煤层的煤与瓦斯共采,是一个技术难题。根据《防治煤与瓦斯突出规定》的要求,在开采此类煤层时首先必须解决开采前后的瓦斯问题,再进行煤层开采,这是对单一突出煤层开采的要求;对于煤层群开采还需进行采后邻近层瓦斯的治理;瓦斯作为一种清洁能源,不能单纯进行抽放治理,必须积极进行瓦斯的抽采利用。为此,在“急倾斜突出煤层群煤与瓦斯共采”课题中,通过实验研究、理论分析、数值模拟和现场测试,对急倾斜突出煤层群的矿山压力及其对瓦斯影响,瓦斯卸压消突理论,煤与瓦斯共采的协同开采方法,保护层选择及开采过程中的瓦斯运移规律与治理技术进行了系统的研究,取得了一系列成果,确保了急倾斜突出煤层群煤与瓦斯共采过程中的高产、高效、安全。
     1)瓦斯卸压消突理论研究。突出煤层透气性系数低,但若煤层松动,其透气性系数会成百倍的增大,使瓦斯压力降低和瓦斯流量增大,降低甚至消除了煤与瓦斯突出。根据瓦斯运移与围岩破碎规律,提出了“切-抽-掘-采”的瓦斯卸压消突理论:在突出煤层开采前先进行煤层切割,使煤层开裂松动,促进煤层瓦斯由吸附态向流离态的转变,再进行瓦斯抽采,使未开采突出煤层瓦斯在巷道施工前卸压消突;在巷道掘进和煤层开采过程中,利用矿山压力重新分布规律,使保护层开采范围的被保护层瓦斯应力得到释放,促进高位瓦斯抽采,实现突出煤层开采过程和开采后的卸压消突。
     2)瓦斯运移理论研究。对煤岩体孔隙、裂隙在瓦斯运移过程中作用进行细观分析,提出了考虑裂隙作用的裂隙煤岩体流固耦合模型,建立其本构关系,并进行了裂隙煤岩体的固流耦合实验,结果表明,在有贯通裂隙的煤岩体中,瓦斯运移较快;孔隙煤岩体瓦斯运移滞后于裂隙煤岩体瓦斯运移的;揭示了孔隙单元有效体积应力、裂隙单元有效法向应力随渗流发展的时效演化规律。
     3)急倾斜突出煤层群开采中煤层顶板冒落带与裂隙带理论研究。
     基于卸压理论,进行了回采工作面竖向“三带”的实测和模拟。采用注水法测试了回采工作面冒落带和裂隙带的高度,冒落带高度为回采工作面采高的4-8倍,裂隙带高度为回采工作面采高的6-10倍;冒落带和裂隙带均有向工作面回风巷上方偏移的趋势。急倾斜煤层群的垂直“三带”有别于缓倾斜煤层,为急倾斜突出煤层群开采提供了个理论依据。
     4)新的回采工作面瓦斯涌出量预测方法研究。基于未确知测度理论,建立了回采工作面瓦斯涌出量的均值属性测度聚类预测模型。模型以样本均值为聚类中心,以熵权确定评价指标测度的权重,通过计算样本熵权综合测度与所属类别目标均值乘积之和获得瓦斯涌出量的预测值。实例分析表明,模型的预测值与实测值的误差较小,建模过程简单,便于实际工程应用。
     5)急倾斜突出煤层群保护层开采技术研究。急倾斜突出煤层群煤的开采首先是保护层的开采。以蛇形山煤矿为例,通过理论分析和技术经济比较,选取下保护层进行开采。现场实测和数值分析结果表明,下保护层开采后采场上部开采移动角减小,采场下部开采移动角增大,采场沿走向左右边界开采移动角分别减少,为矿井今后保护层开采提供了理论依据。
     6)煤与瓦斯共采的协同开采理论研究。在高位巷抽采瓦斯研究的基础上,首次提出了高位钻孔群煤与瓦斯协同开采理论与技术,并进行了现场实验。研究表明,该技术施工简单、快捷、易于掌握,且抽采的瓦斯浓度和瓦斯纯量等均得到显著的提高,既解决了保护层工作面回采过程中瓦斯超限问题,又为工作面采后被保护层瓦斯抽采提供新的思路。
     7)保护层开采时被保护层瓦斯作用机理研究。被保护层的瓦斯压力大小关系到保护层开采的成败。通过FLAC3D对不同被保护层瓦斯压力下的保护层开采进行了数值分析。结果表明,瓦斯压力增大可以加速致裂保护层顶板岩层,特别是被保护层瓦斯压力在大于2MPa时,加剧了保护层顶板岩层致裂,甚至造成突出。这就要求在保护层开采过程中,加强被保护层瓦斯的抽采,减少较高压力的瓦斯对保护层开采的危害。图118幅,表16个,公式42个,参考文献
Due to the large inclination, there are problems called as "three small five big" in the steeply inclining outburst coal seam group mining, such as small coal mine, low mine pressure, low recovery rate, gas control difficulty, high drivage rate of roadway, large influenced range, high consumption for every tons of coal and high labor intensity. How to carry out extracting coal and gas in this kind of coal seam is a difficult technical problem. According to the requirements of "coal and gas outburst prevention regulations", in the exploitation of such coal, what should be solved is the problem of gas before and after the coal seam is mined, and after that the coal can be mined. This is requirement for single outburst coal seam mining. As for the mining of coal seam, the gas in adjacent seams should be treated additionally. As a clean energy, gas can not be simply extracted and it should be actively utilized. Therefore, in the project of " Study on the Common Mining Theory of Steeply Coal Seams and Gas", through experiments, theoretical analysis, numerical simulation and field tests, systematic studies have been done on the mining pressure of steep coal seam group and its influence to gas, the theory on gas pressure relief and outburst elimination, collaborative mining method of coal and gas, the selection of protection lay, the migration law of gas in the mining process and its control technology, and a series of achievements have been made, which ensure high yield, efficiency and safety in the mining process of steep coal and gas outburst coal seams.
     1) Study on the theory about gas pressure relief and outburst elimination. Although the permeability coefficient of outburst coal is low, once the coal seam is loose, the permeability coefficient will be increased hundreds times, as a result, the gas pressure will be reduced while its emergence rate is increased, and the danger of coal and gas outburst will also be reduces and even eliminated. According to the law of gas migration and surrounding rock broken, the theory " Cutting-Pumping-Digging-Mining" for gas pressure relief and outburst elimination has been put forward:making the coal cracking and loose by cutting the coal seam to promote the transformation of gas from adsorption state to flow state, and then to extract gas to meet the requirement of relieving gas pressure and eliminating the danger of gas outburst before the roadway is constructed. In the process of tunneling and mining, the law of mine pressure redistribution is used to release the gas pressure of protected seam in the area of protective layer mining so that the gas in high place is drained and the gas pressure relief and coal outburst elimination in the process of mining and after mining has been achieved.
     2) Study on the theory of gas migration. Careful analysis on the role of coal rock pore, fissure in gas transportation process has been made., and a fluid-solid coupling model of considering the effect of coal rock and its constitutive relation has been put forward, and the solid-liquid coupling tests of coal mass have been conducted. The results show that in the coal and rock mass through cracks, gas migration is fast; gas migration in pore of coal and rock lags behind that in fissure coal and rock. The time evolution law that the pore unit effective volume stress and fracture unit effective normal stress develop with the seepage has been revealed.
     3) Study on the theory of roof caving zone and fractured zone in steeply inclining outburst coal seam group mining. Based on the pressure relief theory, the "three vertical mining face" has been tested and simulated. Through water injection test, the height of caving zone and fractured zone in working face has been measured. It is showed that the height of caving zone is4~8times of the height of working face, the height of fracture zone is6-10times of that. The caving zone and fractured zone have a tendency of shifting to the return airflow roadway above. The vertical three-zone in inclined coal seams is different from that of gently inclined seam, which provides a theoretical basis for the mining of outburst coal seam group.
     4) Study on the new forecasting techniques of the gas emission quantity from working face. Based on the uncertainty measurement theory, the mean attribute measure clustering model for coal face gas emission prediction is established. In this model, the sample mean is set as the cluster center, the weight index of evaluation parameters are determine by the mean of entropy. Through calculating the sum of the product of sample entropy weight comprehensive measure and target mean of classification that the sample belonged, the gas emission prediction value is obtained. The analysis of examples indicates that the error between predicted values and the measured values is small. As the modeling process is simple, the model is practical in engineering.
     5) Study on the protective coal seam mining technology in the steeply inclining outburst coal seam group. The first step on mining inclined outburst coal seam group is the mining of protective coal seam. Taking Shexingshan Coal Mine as an example, through technical and economic comparison, the down protective layer is chosen to be exploited. The results of field tests and numerical analysis show that after the down protective layer has been mined the moving angle of upper stope decrease, while the moving angle of lower stope increase, the moving angle along the left and right boundary also decrease, which provides the theoretical basis for protection layer mining in the future.
     6) Study on the theory of together mining of coal and gas. Based on the study of gas extraction in elevated lane, the coal and gas exploitation theory and technology have been proposed firstly, and a field experiment has been conducted. The results show that the construction technology is simple, quick and easy to master for workers and the concentration and the scalar of gas has been improved significantly, which solve the overrun problem of gas in the mining process of protective layer, but also provide a new way for the gas extraction of protected layer.
     7) Study on the mechanism of gas in protective layer while the protective layer is being mined. The mining of protected layer is closely related to gas pressure. Through the FLAC3D, the numerical analysis is carried out on protected layer mining while the protected layer with different gas pressure. It is shown that the increase of gas pressure can accelerate the fracture of protection layer roof, especially when the gas pressure of protected layer is higher than2MPa, the fracture of protective layer roof is exacerbated, and even serious outburst is caused. So it is required that in the process of protective layer mining, the gas drainage of protective layer should be strengthened to reduce the harm of high gas pressure to the mining of protection layer.
引文
[1]谢东海,冯涛,赵伏军.我国急倾斜煤层开采的现状及发展趋势[J].科技信息,2007,(14):211-213.
    [2]国家安全生产监督管理总局,国家煤矿安全监察局.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009:14-16.
    [3]范维唐.21世纪的中国能源[J].煤矿现代化.1999,(5):4-6.
    [4]岳福斌.中国煤炭工业发展报告(2006-2010)[M].社会科学文献出版社,2008.
    [5]杜计平,孟宪锐.采矿学[M].徐州:中国矿业大学出版社,2009.
    [6]高召宁,石平五.急倾斜水平分段放顶煤开采岩移规律[J].西安科技学院学报,2001,21(4):316-318.
    [7]王卫军,朱川曲,谢东海,等.急倾斜煤层巷道放顶煤理论与实践[M].北京:煤炭工业出版社,2001.
    [8]于不凡.谈煤和瓦斯突出机理[J].川煤科技,1976(3):34-41.
    [9]于不凡.煤和瓦斯突出机理[M].北京:煤炭工业出版社,1985.
    [10]四川矿业学院.国外煤和瓦斯突出机理综述[J].川煤科技,1976(3):1-19.
    [11]蔚远江,杨起.我国瓦斯储层研究现状及发展趋势[J].地质科技情报,2001,20(1):56-60.
    [12]付华,邵良彬.煤矿瓦斯灾害信息特征挖掘与融合预测[M].科学出版社,2011.
    [13]郑哲敏.从数量级和量纲分析看煤与瓦斯突出的机理[C].钱伟长等编,力学与生产建设:中国力学学会第二届理事会扩大会议论文汇编[A].北京:北京大学出版社,1983.
    [14]俞善炳.恒稳推进的煤与瓦斯突出[J].力学学报,1988,20(2):97-106.
    [15]丁晓良,丁雁生,俞善炳.煤在瓦斯一维渗流作用下的初次破坏[J].力学学报,1990,22(2):154-162.
    [16]章梦涛,徐曾和,潘一山等.冲击地压和突出的统一失稳理论[J].煤炭学报,1991,16(4):48-53.
    [17]许江,尹志光,鲜学福等.煤与瓦斯突出潜在危险区预测的研究[M].重庆:重庆大学出版社,2004:27-58.
    [18]周世宁,何学秋.煤和瓦斯突出机理的流变假说[J].中国矿业大学学报,1990,19(2):1-8.
    [19]李萍丰.浅谈煤与瓦斯突出机理的假说-二相流体假说[J].煤矿安金1989,(11):29-35,19.
    [20]蒋承林,俞启香.煤与瓦斯突出机理的球壳失稳假说[J].煤矿安 全,1995(2):17-25.
    [21]梁冰,章梦涛,潘一山等.煤和瓦斯突出的固流耦合失稳理论[J].煤炭学报,1995,20(5):492-496.
    [22]梁冰,章梦涛.从煤和瓦斯的耦合作用及煤的失稳破坏看突出的机理[J].中国安全科学学报,1997,7(1):6-9.
    [23]吕绍林,何继善.关键层-应力墙瓦斯突出机理[J].重庆大学学报,1999,22(6):80-84.
    [24]郭德勇,韩德馨.煤与瓦斯突出粘滑机理研究[J].煤炭学报,2003,28(6):588-602.高雷阜.煤与瓦斯突出的混沌动力系统演化规律研究[D].阜新:辽宁工程技术大学博士论文,2006.04.
    [25]王继仁,邓存宝,邓汉忠.煤与瓦斯突出微观机理研究[J].煤炭学报,2008,33(2):131-135.
    [26]欧建春,王恩元,马国强,等.煤与瓦斯突出过程煤体破裂演化规律[J].煤炭学报,2012,37(6):978-984.
    [27]张小平.胶体界面与吸附教程[M].广州:华南理工大学出版社,2008.
    [28]近藤精一,石川达雄,安部郁夫著,李国希译.吸附科学[M].北京:化学工业出版社,2006.
    [29]顾惕人等.表面化学[M].北京:科学出版社,1994.
    [30]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005.
    [31]虞继舜.煤化学[M].北京:冶金工业出版社,2000.
    [32]孟宪明.煤孔隙结构和煤对气体吸附特性研究:硕士学位论文.泰安:山东科技大学分院,2007.
    [33]Xo(?)oT B B.煤与瓦斯突出[M].宋世钊,王佑安,译.北京:中国工业出版社,1996.
    [34]陈贞龙,汤达祯,许浩,等.黔西滇东地区瓦斯储层孔隙系统与可采性[J].煤炭学报,2010,35(S0):158-163.
    [35]中华人民共和国国家质量监督检验检疫总局,中国国家标注化管理委员会.GB/T21650.1—2008/ISO 15901-1:2005.压汞法和气体吸附法测定固体材料孔径分布和孔隙度[S].北京:中国标准出版社,2008.
    [36]Anderson R.B., Bayer J,Hofer L.J.E.Equilibrum sorption studies of methane on Pittsburgh Seam and Pocahontas No.3Seam Coal[J]. Coal Science,1966:326.
    [37]Lee Y H.Methane recovery from coalbeds:Effects of monolayer capacity and pore struture on gas content[J].NM:Univ of NM Albuquerque,May 1982.
    [38]Ruppel T C,Grein C T,bienstock D.adsorption of methane/ethane mixture on dry coal at elevate pressure[J].Fuel,1974,53:152.
    [39]Hall F E,Chun-he Zhou,Gasen K A M,et al.Adsorption of pure methane,nitrogen,and carbon dioxide and their binary mixtures on wet fuitland coal.SPE 29194,1994.
    [40]Stevenson M.D.,Adsorption/desorption of multi-component gas mixtures at in seam conditions[J]. SPE 23026,1991.
    [41]Greaves K.H.,Owen L B.Multi-component gas adsorption/desorption behavior of coal.No 9353,the Inter-nationa Coalbed Methane Symposium,The University of Alabama/Tuscloosa,1993.
    [42]Arri L E,Dan Yee.Modeling coalbed methane production with binary gas 27 sorption.SPE 24363,1992.
    [43]Harpdani S,Pariti U M.Study of coal sorption isotherms using a multicomponent gas mixture.No 9356,the 1993 Internationa Coalbed Methane Symposinm,The University of Alabama/Tuscloosa,1993.
    [44]Mavor M J,Owen L B,Pratt T J.Measure ment and ealuuation of coal sorption isotherm data[J].SPE 20728,1990.
    [45]Chaback J J,Morgan D,Yee D.Sorption irreversibilities and mixturecompositional behavior during enhanced coalbed methane recovery processes.SPE35622,1996.
    [46]Daines M E.Apparatus for the determination of methane sorption on coal high pressures by a weighing method[J].Journal of Rock Mechanics and Mining Science,1968,5:27.
    [47]Grebory J Bell,Karen C Rakop.Hysteredis of methane/coal sorption isotherms[J].SPE15454,1986.
    [48]Joubert J I,Grein C T,Bienstock D.Sorption of methane in moist coal[J].Fuel,52(3):181.
    [49]Joubert J I,Grein C T,Bienstock D.Effect of moisture on the methane capacity of American coal[J].Fuel,1974,53(3):186.
    [50]Kim A GEstimating methane content of bituminous coal beds from adsorption data[J].US Bureau of Mines Report of Investigations,No.8247,1977.
    [51]Ralph T Yang,John T Saunders.Adsorption of gases on coals and heattreated coals at elevated temperature and pressure[J].Fuel,1985,64:616-625.
    [52]Anbarci K, Ertekin T.Asiplified for in-situ characterization of desorption properties of coal seams[J].SPE 21808,1991.
    [53]Hawkins J M, Schraufnagel R A, Qlszewski A J.Estimating coal bed gas content and sorption isotherm using well log data[J]. SPE 24909,1992.
    [54]Beamish B.B.,O'Donnell G. Microbalance applications to sorption testing of coal[J]. Proceedings of Symposium on Coal bed Methane and Development in Australia,Townsvill,Queensland,1992.
    [55]H.F.雅纳斯.煤样的瓦斯解吸过程[J].煤炭工程师,1992(2):11-12.
    [56]何学秋,刘明举.含瓦斯煤岩破坏电磁动力学[J].徐州:中国矿业大学出版社,1995.
    [57]何学秋.交变电磁场对煤吸附瓦斯特性的影响[J].煤炭学报,1996,21(1):63-67.
    [58]王恩元,何学秋.瓦斯气体在煤体中的吸附过程及其动力学机理[J].江苏煤炭,1996(3):17-19.
    [59]王恩元,张力,何学秋等.煤体瓦斯渗透性的电场响应研究[J].中国矿业大学学报,2004,33(1):62-65.
    [60]聂百胜,段三明.煤吸附瓦斯的本质[J].太原理工大学学报,1998.29(4):417-421.
    [61]聂百胜,何学秋,王恩元等.电磁场影响煤层瓦斯吸附的机理研究[J].天然气工业,2004,24(10):32-34.
    [62]钱凯,赵庆波,汪泽成等.煤层瓦斯气勘探开发理论与实验测试技术[J].北京:石油工业出版社,1997.
    [63]张力,邢平伟.煤体瓦斯吸附和解吸特性的研究[J].江苏煤炭,2000(4):18-20.
    [64]周胜国,郭淑敏.煤储层吸附/解吸等温线测试技术[J].石油实验地质,1999,21(1):76-80.
    [65]崔永君.煤等温吸附特性测试中体积校正方法探讨[J].煤田地质与勘探,1999,27(5):29-32.
    [66]辜敏,陈昌国,鲜学福.混合气体的吸附特征[J].天然气工业,2001,21(4):91-94.
    [67]陆卫东,煤与瓦斯突出微观机理的基础研究[D].辽宁工程技术大学,2009.
    [68]陈昌国,辜敏,鲜学福.煤的原子分子结构及吸附瓦斯机理研究进展[J].煤炭转化,2003,26(4):5-9.
    [69]陈昌国,张代钧,鲜晓红等.煤的微晶结构与煤化度[J].煤炭转化,1997,19(1):45-47.
    [70]陈昌国,魏锡文,鲜学福.用从头计算研究煤表面与瓦斯分子的相互作用[J].重庆大学学报(自然科学版),2000,23(3):77-80.
    [71]蔺金太,郭勇义,吴世跃.瓦斯注气开采中煤对不同气体的吸附作用[J].太原理工大学报,2001,32(1):18-20.
    [72]谢建林,郭勇义,吴世跃.常温下煤吸附瓦斯的研究[J].太原理工大学学报,2004,35(5):562-564.
    [73]唐巨鹏.瓦斯赋存运移的核磁共振成像理论和实验研究[D].阜新:辽宁工程技术大学博士论文,2006.
    [74]唐巨鹏,潘一山,李成全等.三维应力作用下瓦斯吸附解吸特性实验[J].天然气工业,2007,27(7):35-38.
    [75]马东民,韦波,蔡忠勇.瓦斯解吸特征的实验研究.地质学报,2008,82(10):1432-1436.
    [76]马占存,马丕梁.水分对不同煤种瓦斯吸附特性影响的实验研究[J].煤炭学报,2008,33(2):144-147.
    [77]冯涛,谢雄刚,刘河清.石门揭露突出煤层冻结温度场的实验研究[J].煤炭学报,2011,36(11):1884-1889.
    [78]漆涛,石平五,王拴存,等.急斜近距煤层联合开采矿压显现规律[J].矿山压力与顶板管理,2004,(3):62-65.
    [79]石平五,高召宁.急斜特厚煤层开采围岩与覆盖层破坏规律研究[J].煤炭学报,2003,28(1):13-16.
    [80]石平五,张幼振.急斜煤层放顶煤开采“跨层拱”结构分析[J].岩石力学与工程学报,2006,25(1):79-82.
    [81]高召宁,石平五.急倾斜水平分段放顶煤开采岩移规律[J].西安科技学院学
    [82]伍永平,王红伟,解盘石.大倾角煤层长壁开采围岩宏观应力拱壳分析[J].煤炭学报,2012,37(4):559-564.
    [83]梁冰,盖迪,孙维吉.长沟峪煤矿急倾斜煤层群裂隙演化及渗流规律[J].水资源与水工程学报,2012,23(2):16-19.
    [84]王永秀,齐庆新,徐刚.华丰矿保护层开采数值模拟研究[J].煤矿开采,2003,8(4):4-7.
    [85]石必明,俞启香,周世宁.保护层开采远距离煤岩破裂变形数值模拟[J].中国矿业大学学报,2004,33(3):259-263.
    [86]郝志勇,林柏泉,张家山,等.基于UDEC的保护层开采中覆岩移动规律的数值模拟与分析[J].中国矿业,2007,16(7):81-84.
    [87]刘林.开采保护层保护效果及范围的数值模拟研究[J].矿业安全与环保,2005,32(6):6-9.
    [88]胡国忠,王宏图,范晓刚,等.急倾斜俯伪斜上保护层保护范围的三维数值模拟[J]岩石力学与工程学报,2009,28(增1):2845-2852.
    [89]袁志刚,王宏图,胡国忠,等.急倾斜多煤层上保护层保护范围的数值模拟[J].煤炭学报,2009,34(5):594-598.
    [90]李树清,龙祖根,罗卫东,等.煤层群下保护层开采保护范围的数值模拟[J].中国安全科学学报,2012,22(6):34-40.
    [91]邱贤德,庄乾城,吴刚.采场应力和煤结构对煤与瓦斯突出的影响[J].重庆大学学报,1992,15(3):134-140.
    [92]赵和松.采场支承压力对煤与瓦斯突出的控制作用[J].煤炭科学技术,1990(3):40-43.
    [93]申宝宏,刘见中.我国煤矿瓦斯治理的技术对策[J].煤炭学报,2007,32(7):673-679.
    [94]于不凡.开采保护层的认识与实践[M].北京:煤炭工业出版社,1986:86-107.
    [95]国家安全生产监督管理总局.保护层开采技术规范(AQ1050—2008)[S].北京:煤炭工业出版社,2008.
    [96]余海龙,尹光志,鲜学福.俯伪斜采煤法防治急斜煤层煤与瓦斯突出的研究[J].重庆大学学报(自然科学版),1999,22(3):107-111.
    [97]汪东生,杨胜强.近距离保护层开采瓦斯涌出规律及治理研究[J].中国煤炭.2009,(02):57-58.
    [98]吴正水,谢东海,胡和峰.高压水射流切缝技术在低透气性突出煤层抽采瓦斯中的应用[C].创新推动新型煤炭工业体系建设和安全健康发展—2010年湘赣皖闽苏等多省(市)煤炭学会学术交流暨湖南省煤炭科技论坛论文集[A],2010:26-28.
    [99]谢东海,吴正水,曾新文.高压水割缝增透防突技术在石门揭煤中的应用[C].创新推动新型煤炭工业体系建设和安全健康发展—2010年湘赣皖闽苏等多省(市)煤炭学会学术交流暨湖南省煤炭科技论坛论文集[A],2010:45-47.
    [100]邢昭芳,阎永利,李会良.深孔控制卸压爆破防突机理和效果考察[J].煤炭学报,1991,16(2):1-9.
    [101]林柏泉.深孔控制卸压爆破及其防突作用机理的实验研究[J].阜新矿业学院学报(自然科学版).1995,14(03):16-21.
    [102]罗勇,沈兆武.深孔控制卸压爆破机理和防突试验研究[J].力学季刊,2006,27(3):469-475.
    [103]Paine A S, Please C P. An improved model of fracture propagation by gas during rock blast in some analytical results [J]. International Journal of Rock Mechanics of Mining and Science,1994,31(6):699-706.
    [104]Zhang Y Q, Hao H, Lu Y. Anisotropic dynamic damage and fragmentation of rock materials under explosive loading [J]. Int. J. Engng.Sci.,2003,41(9):917-929.
    [105]Tsu Dasa Ohba, Hiromit Su Taniguchi. Effect of explosion energy and depth on the nature of explosion cloud a field experimental study [J] Journal of Volcanology and Geothermal Research,2002,11(5):33-42.
    [106]张明杰,滑俊杰,华敬涛.单一煤层底板巷穿层钻孔预抽煤巷瓦斯条带区域防突技术[J].煤矿安全,2011,42(6):30-32.
    [107]马永庆.提高底板岩巷穿层钻孔瓦斯抽放效果的技术措施[J].煤矿安全,2011,42(5):34-36.
    [108]Li Gang,Qi Qingxin,Li Hongyan,Fan Xisheng. Variation in gas drainage rate from a coal seam during mining[J]. International Journal of Mining Science and Technology.2012,(06):849-852.
    [109]Liang Bing,Sun Weiji,Qi Qingxin,Li Hongyan. Technical evaluation system of co-extraction of coal and gas[J]. International Journal of Mining Science and Technology.2012,(06):891-894.
    [110]Wang Haifeng,Cheng Yuanping,Wang Lei. Regional gas drainage techniques in Chinese coal mines[J]. International Journal of Mining Science and Technology. 2012,(06):873-878.
    [111]李栖凤.急倾斜煤层开采[M].北京:煤炭工业出版社,1984.
    [112]杨帆,麻凤海.急倾斜煤层采动覆岩移动模式及其应用[M].科学出版社,2007.
    [113]刘德贵.急倾斜近距离复杂煤层保护层开采的实践[J].矿业安全环保,2005,32(1):66-67.
    [114]罗勇,沈兆武.煤层群内多重保护层开采的防突试验研究[J].地质灾害与环境保护,2005,16(3):315-319.
    [115]张正林.覆岩采动裂隙带瓦斯运移规律及其抽取与利用研究(D).西安科技大学学位论文,2001.
    [116]屈先朝.瓦斯抽采孔孔距及煤层透气性的测定方法[J].煤炭学报.2009,34(11):1470-1475.
    [117]马跃龙,林柏泉.煤层透气性系数的测定及其分析[J].辽宁工程技术大学学报(自然科学版),1998,17(3):240-243.
    [118]周世宁.从钻孔瓦斯压力上升曲线计算煤层透气系数的方法[J].中国矿业学院学报,982,(3):8-15.
    [119]McKee,C. R, A. C. Bumb and R. A. Koenig, Stress Dependent Permeability and Porosity of Coal (M),Rockey Mountain Association of Geologist, 1988:143-153.
    [120]王兆丰.用颗粒煤渗透率确定煤层透气性系数的方法研究[J].煤矿安全,1998,(6):3-5.
    [121]樊少武.提高煤层透气性的理论研究[J].煤炭工程,2005,(9:)61-63.
    [122]石银斌.突出煤层卸压瓦斯抽采消突技术[J].矿业安全与环保,2010,37(s):46-47.
    [123]汪东生,石坚胜,杨胜强.近距离煤层开采煤与瓦斯突出防治研究[J].煤炭技术,2009,28(3):77-78.
    [124]赵延林,曹平,汪亦显,等.裂隙煤岩体渗流-损伤—断裂耦合模型及应用[J].岩石力学与工程学报,2008,27(8):1634-1643.
    [125]朱珍德,徐卫亚.裂隙煤岩体渗流场与损伤场耦合模型研究[J].河海大学学报(自然科学版).2003,31(2):156-160.
    [126]赵阳升.多孔隙介质多场耦合作用及其工程响应[M].科学出版社,2010.
    [127]何翔,冯夏庭,张东晓.煤岩体渗流-应力耦合有限元计算的精细积分方法[J].岩石力学与工程学报,2006,25(10):2003-2008.
    [128]Oda M. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses[J]. Water Resources Research,1986,22(13): 1845-1856.
    [129]王媛,刘杰.裂隙煤岩体非恒定渗流场与弹性应力场动态全耦合分析[J].岩石力学与工程学报,2007,26(6):1150-1157.
    [130]宋晓晨 徐卫亚.裂隙煤岩体渗流模拟的三维离散裂隙网络数值模型(Ⅰ):裂隙网络的随机生成[J].岩石力学与工程学报,2004,23(12):2015-2020.
    [131]罗平平,陈蕾,邹正盛.空间煤岩体裂隙网络灌浆数值模拟研究[M].岩土工程学报,2007,29(12):1844-1848.
    [132]柴军瑞.大坝及其周围地质体中渗流场与应力场耦合分析[D].西安:西安理工大学,2000:54-87.
    [133]Jing Lan-ru, Yue Ma, Zu lie-Fang. Modeling of fluid flow and solid deformation for fractured rocks with discontinuous deformation analysis(DDA) method[J]. Int. J. Rock Mech. Min.Sci.,2001,38(3):343-355.
    [134]王恩志,王洪涛.双重裂隙系统渗流模型研究[J].岩石力学与工程学报,1998,17(4):400-406.
    [135]杜广林,周维垣,赵吉东.裂隙介质中的多重裂隙网络流模型[J].岩石力学与工程学报,2000,19(6):1014-1018.
    [136]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [137]赵延林,曹平,王卫军.裂隙煤岩体渗流—损伤—断裂耦合个理论与工程应用[M].徐州:中国矿业大学出版社,2012.
    [138]赵延林,王卫军,赵伏军,等.渗透压-应力作用下煤岩体翼形裂纹模型与数 值验证[J].采矿与安全工程学报,2010,27(3):370-376.
    [139]施式亮,伍爱友.GM(1,1)模型与线性回归组合方法在矿井瓦斯涌出量预测中的应用[J].煤炭学报,2008,33(4):415-418.
    [140]题正义,杨艳国,丁涛.瓦斯涌出量的模糊数学与灰色系统理论的预测[J].辽宁工程技术大学学报,2000,19(2):126-129.
    [141]朱红青,常文杰,张彬.回采工作面瓦斯涌出BP神经网络分源预测模型及应用[J].2007,煤炭学报,32(5):504-507.
    [142]WU Chao,Li Zijun.A simple method for predicting the spontaneous combustion potential of sulfide ores at ambient temperature. Transactions of the Institutions of Mining and Metallurgy, Section A.2005:124-132.
    [143]Harikrishnan KP,Misra R,Ambika G.Combined use of correlation dimension and entropy as discriminating measures for time series analysis. Commun Nonl Sci Numer Simulat.2009:158-162.
    [144]施式亮,宋译,何利文等.矿井掘进工作面瓦斯涌出混沌特性判别研究[J].煤炭学报,2006,31(06):701-705.
    [145]Frid V.Electromagnetic radiation method for rock and gas outburst forecast. Journal of Applied Geophysics.1997:28-34
    [146]孙林,杨世元.基于LS-SVM的回采工作面瓦斯涌出量预测[J].煤炭学报,2008,33(12):1378-1380.
    [147]王晓路,刘健,卢建军.基于虚拟状态变量的卡尔曼滤波瓦斯涌出量预测[J].煤炭学报,2011,36(1):80-85.
    [148]林柏泉,崔恒信.矿井瓦斯防治理论与技术[M].徐州:中国矿业大学出版,1998:56-82.
    [149]崔鸿伟.长壁采煤工作面瓦斯涌出量影响因素实测研究[J].煤炭科学技术,2011,39(11):70-72.
    [150]刘开第,吴和琴,庞彦军,等.不确定信息数学处理及应用[M].北京:科学出版社,1999:20-89.
    [151]李树刚,马超,王国旗.基于未确知测度理论的矿井通风安全评价[J].北京科技大学学报,2006,28(2):101-103.
    [152]董陇军,李夕兵,宫凤强.膨胀土胀缩等级分类的未确知均值聚类方法及应用[J].中南大学学报(自然科学版)2008,39(5):1075-1080.
    [153]宫凤强,李夕兵,董陇军等.基于未确知测度理论的采空区危险性评价研究[J].岩石力学与工程学报.2008,27(02):323-330.
    [154]彭康,李夕兵,王世鸣等.基于未确知测度模型的尾矿库溃坝风险评价[J]. 中南大学学报(自然科学版)2012,43(4):1447-1452.
    [155]王光远.论未确知性信息及其数学处理[J].哈尔滨建筑工程学院学报,1990,23(4):52-58.
    [156]DONG Dong-jun, PENG Gang-jian, FU Yu-hua, et al. Unascertained measurement classifying model of goaf collapse prediction[J]. Journal of Coal Science & Engineering:English Edition,2008,12(2):221-224.
    [157]王巍,刘德胜.基于支持向量机理论的煤矿瓦斯涌出量预测研究[J].煤矿机械,2011,32(2):75-77.
    [158]梁运培,文光才.顶板岩层“三带”划分的综合分析法[J].煤炭科学技术,2000,28(5):39-42.
    [159]周卫金,方小伟.高位钻孔抽放的瓦斯渗流研究[J].煤炭科学技术,2006,34(1):76-78.
    [160]李霄尖,姚精明,何富连,等.高位钻孔瓦斯抽放技术理论与实践[J].煤炭科学技术,2007,35(4):16-21.
    [161]国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[S].煤炭工业出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700