用户名: 密码: 验证码:
厚硬砂岩顶板破断规律及深孔超前爆破弱化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矿综采工作面煤层上覆岩层为厚硬顶板时,采面向前推进的同时,由于厚硬顶板的力学性能及采场布置等特点,易形成采空区悬顶面积增大,常常会出现综采工作面顶板难以自然垮落,并使得瓦斯在采空区积聚。大面积采空区顶板长时间不垮落,将导致工作面控顶区内压力高度集中,造成综采面支护结构破坏,给安全生产带来极大的威胁。同时,大面积悬顶出现突然垮落时会产生强烈动载荷,损坏或推倒工作面的支架,造成工作面垮冒事故;另外极易形成破坏性巨大的飓风和冲击地压,在飓风气浪所经过之处,其强烈的冲击动压时常会摧毁采面及其邻近巷道中的支架、风门和砖墙密闭等设施,甚至翻倒矿车,造成严重的设备损坏和人员伤亡,易造成老塘内的瓦斯瞬间涌出,引起瓦斯超限甚至造成瓦斯爆炸等重大安全事故,给国家和企业造成重大经济损失,是煤矿安全生产顶板事故中极为严重的事故之一
     在查阅大量国内外相关文献的基础上,论文通过理论分析、模型试验和数值模拟及现场试验相结合的研究方法,对综采工作面厚硬砂岩顶板断裂规律和深孔爆破超前弱化进行了深入的研究。建立顶板来压步距的岩板计算模型,分析了开采过程中顶板垮落过程,得到了厚硬砂岩顶板破断规律以及破断过程中围岩的应力、位移分布特征。在炮孔不耦合装药孔壁压力计算的基础上,从柱状装药结构爆破破岩机理和爆破断裂成缝机理两个方面,分析柱状装药爆炸后岩体内应力传播、裂纹扩展规律。在此基础上,结合爆破振动测试,计算顶板超前深孔爆破岩体损伤范围。基于ABAQUS动力有限元软件,建立了砂岩顶板深孔爆破岩体力学模型,研究不同地应力时岩体内爆炸应力场分布和裂纹扩展特征,分析了初始地应力对爆炸应力场与裂纹扩展的影响。根据试验工作面地质特征和现场条件,进行厚硬砂岩顶板深孔爆破超前弱化现场试验,形成一套合理可行的顶板超前弱化爆破施工工艺。论文的主要研究工作及成果如下:
     根据综采面采煤过程中,支架后空顶的厚硬顶板的特点,建立了四边固支的薄板力学模型,推导出顶板初次垮落步距公式,得到顶板初次垮落步距。厚硬顶板初次断裂后,随着工作面的推进,建立了厚硬顶板的悬臂岩梁力学模型,将简化后的厚硬顶板不同上覆岩层的载荷带入后,可得到工作面顶板初次垮落步距与周期来压步距。
     以新集二矿210108工作面地质特征、工程地质特征和开采技术条件为基础,根据相似原理,建立了相似模型,进行了相似模型材料实验,确定了相似材料的配比,研究了开采过程中顶板垮落特征、断裂岩梁波及范围及运动发展规律、岩体内应力分布规律。得出了顶板最大位移发生在工作面中部,工作面两端位移小于中部,出现了明显的垮落滞后,因此会造成工作面中部支架压力大于上下部。
     采用ABAQUS有限元软件,对不同初始地应力条件下单孔和双孔深孔爆破时炮孔周围应力分布特征和裂纹扩展进行了数值模拟分析,结果表明:裂隙区半径随着初始地应力的增大而减小,意味着高应力条件下岩石相对难爆;爆生裂纹的扩展方向与侧压系数的大小有关,较大初始应力方向上的裂纹长度相对较短;双炮孔爆破时,由于初始地应力对裂纹扩展起削弱作用,有地应力作用的两个炮孔间裂纹扩展长度比无地应力作用时短。因此,在进行深部岩体爆破参数设计时,宜适当减小炮孔间距以利于裂纹在炮孔间贯通。
     结合新集二矿210108综采工作面工程实际,根据现有工作条件和地质条件,确定顶板深孔爆破超前弱化合理的循环步距为30.0mm;确定了超前深孔预裂爆破方案及合理参数,提出了顶板深孔爆破超前弱化的工艺流程。为评价深孔爆破效果,为以后支架工作阻力确定、爆破参数优化提供基础,根据综采工作面现场情况,进行矿山压力的现场测试和分析。测试结果表明:老顶的周期垮落步距平均为19.08m,而未采用松动爆破时工作面周期来压步距平均为24.6m。矿压观测期间,工作面支架工作阻力基本处于正常范围。工作面支架支护强度较均匀,没有出现大的应力来压现象。工作面煤壁完整,基本无片帮冒顶现象。工作面周期来压压力偏小,工作面有部分位置基本没有明显的来压现象,验证了该技术的有效性。
Fully mechanized working face roof often be difficult to caving naturally, during longwall mining under the hard rock roof; with working face propelling, goaf roof hanging area increases gradually, cause gas accumulation in goaf. Large aceage goaf roof does not collapse during a long time also will make stress concentration in working face roof area, causes supporting structure damage, bring huge threat to production. At the same time, if the large overhang roof suddenly caving, strong dynamic load caused by rock broken can make a large number of supporting damage or knocking down, cause catastrophic collapse accidents of mining face; it also can easy to form damaging hurricanes and huge impact ground pressure, the hurricane wave often destroy facilities of working face and its adjacent roadway, such as supporting, air door and brick wall, even make the car overturned, orbital bending, caused serious damage and heavy casualties of personnel, and easy to make the gas accumulated in goaf instantaneous emission, cause serious accident.
     On the basis of a large number of domestic and foreign related research literatures, this article through theoretical analysis, model testing, numerical simulation and field testing, roof rupture law and deep hole advance blasting for thick and hard sandrock of full mechanized working face was researched. Through establishment of rock plate calculation model for roof weighting interval, mining roof caving process was researched, analyse roof breaking laws and stress and displacement distribution characteristics of rock. On basis of hole wall pressure calculation of decouple charge, with two aspects of column charge blasting mechanism and rock fracture blasting mechanism, stress propagation and law of crack propagation in rock mass was analyzed. Based on finite element software ABAQUS, rock mass mechanics model of deep hole blasting in sandstone roof is established, study blasting stress field distribution and crack propagation characteristics of different initial ground stress, influence of initial ground stress to crack propagation is analyzed, According to the field geological characteristics and site conditions, great thickness sandstone roof deep hole blasting advanced weakening field testing carried out, formaed a set of feasible roof advanced weaken blasting construction techniques. Main research work and achievements of paper are as follows:
     Through analysis lower and upper parts of cut drilling geological data and theoretical calculation, four edges clamped thin plate mechanics model is established, first caving space formula of roof is derived, Get first caving space of roof; after hard roof first caving, rock beam mechanics model of roof is established. First caving space and periodic caving space of roof calculated by three methods are equivalence. Model test and numerical simulation also shows that stress concentration in all parts of working face, and formed a certain degree of pressure relief in the working face overburden rockmass.Stress concentration maximum value occurrs in central part of working face, followed by upper part of working face, lower part is least. Maximum displacement of roof occurs in the middle part of working face, displacement of two-terminal is less than the central; there is an obvious caving lag,, thus causes support pressure of central part is greater than in top and bottom.
     According to the results of rock physical and mechanical performance test, stress distribution around the hole and crack propagation of single and double hole blasting under different initial geostress conditions are analyzed by finite element software ABAQUS, the results show that: with the increase of initial ground stress, fracture zone radius reducing, rock blasting is relatively difficult; direction of main crack extension is related to the size of the lateral pressure coefficient; the smaller the initial stress on the direction, crack length is relatively short; during double shot blasting, due to weaken the effect of initial ground stress, crack length with ground stress between two hole is shorter than length without ground stress.Therefore, in deep rock mass blasting parameters design, hole spacing should be reduce.
     Combination working face of210108in Xinji Coalmine, according to the current working and geological conditions, reasonable space for roof advanced caving deep hole blasting is30.0m; roof advanced caving deep hole blasting scheme and parameters are determined, put forward roof advanced caving deep hole blasting process. For evaluation of deep hole blasting effect, provides basis for support working resistance determination, blasting parameters optimization, mining pressure field testing and analysis is did according to the site conditions. The testing results show that the original roof caving average space is19.08m, which is about24.6m without loose blasting. During mineral pressure observation, working face support working resistance was basically normal range. Support intensity is relatively uniform, no large stress to compressive phenomenon. Working face of coal wall is integrity, no bond andcaving, and pressure of periodic weighting lower than average value, almost no obvious weighting phenomenon, verifies effectiveness of proposed technique.
引文
[1]钱鸣高.煤炭的科学开采[J].煤炭学报,2010,35(4):529-534.
    [2]宫世文,张荪茗,孙震,等.深孔预裂爆破强制放顶技术的应用[J].煤矿安全,2007,01:21-22.
    [3]茅献彪,缪协兴,钱呜高.采动覆岩中关键层的破断规律研究[J].中国矿业大学学报,1998,(1):39-42.
    [4]曹安业,窦林名.采场顶板破断型震源机制及其分析[J].岩石力学与工程学报,2008,27(增2):3833-3839.
    [5]崔树江.超长综放工作面顶板破断规律研究[J].煤炭工程,2010,(2):32-34.
    [6]甄亚彬,赵玉成,陆丹峰.断层下采场顶板破断规律的研究[J].煤矿安全,2013,44(4):62-64.
    [7]黄继辉,王连国,周冬磊,等.俯采采场顶板破断运动特征和矿压显现规律研究[J].矿业研究与开发,2012,32(2):22-26.
    [8]张益东,程敬义,王晓溪,等.大倾角仰(俯)采采场顶板破断的薄板模型分析[J].采矿与安全工程学报,2010,27(4):487-493.
    [9]王琦,李术才,李智,等.煤巷断层区顶板破断机制分析及支护对策研究[J].岩土力学,2012,33(10):3093-3102.
    [10]黄志增.特厚煤层采空区下综放开采顶板岩层破断规律[J].煤炭科学技术,2013,41(7):60-62.
    [11]郭建伟,赵家巍.沿空留巷下位顶板破断规律与控制机理研究[J].采矿与安全工程学报,2012,29(11):802-807.
    [12]赵毅鑫,姜耀东,吕玉凯,等.承压工作面底板破断规律双向加载相似模拟试验[J].煤炭学报,2013,38(3):384-390.
    [13]许桂良,张震.大倾角三软厚煤层综放面顶板破断规律及支架适应性研究[J].煤炭技术,2012,31(7):71-73.
    [14]张圣国,杨林,高明涛.基于2种综放支架条件下的顶板破断规律分析[J].煤炭科学技术,2013,41(增):17-18.
    [15]索永录,程书航,杨占国,等.坚硬石灰岩顶板破断及来压规律模拟实验研究[J].西安科技大学学报,2011,31(2):137-140.
    [16]刘君,董国伟.特厚松散覆岩采煤工作面顶板破断规律研究[J].山西焦煤科技,2013,(1): 10-12.
    [17]李夕兵,李地元,郭雷,等.动力扰动下深部高应力矿柱力学响应研究[J].岩石力学与工程学报,2007,26(5):922-928.
    [18]孙广忠.岩体力学原理[M].北京:科学出版社,2011.
    [19]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16),P:2803-2814.
    [20]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1994.
    [21]陈宗基.关于岩石变形的基本偏微分方程[J].岩石力学与工程学报,1984,3(1)::10-22.
    [22]康红普,王金华,林健.高预应力强力支护系统及其在深部巷道中的应用[J].煤炭学报,2007,32(12):1233-1238.
    [23]罗超文,李海波,刘亚群.煤矿深部岩体地应力特征及开挖扰动后围岩塑性区变化规律[J].岩石力学与工程学报,2011,30(8):1613-1618.
    [24]邹洋,李夕兵,周子龙,等.开挖扰动下高应力岩体的能量演化与应力重分布规律研究[J].岩土工程学报,2012,34(9):1677-1684.
    [25]宋义敏,潘一山,章梦涛,等.深部高应力载荷作用下的洞室变形破坏实验[J].辽宁工程技术大学学报,2008,27(4):489-492.
    [26]姜振泉,季梁军,左如松,等.岩石在伺服条件下的渗透性与应变、应力的关联性特征[J].岩石力学与工程学报,2002,21(10)):1442-1446.
    [27]刘殿书,王万富,杨吕俊,等.初始应力条件下爆破机理的动光弹实验研究[J].煤炭学报,1999(06):612-614
    [28]Martin C. Derek. Seventeenth Canadian Geotechnical Colloquium:The effect of cohesion loss and stress path on brittle rock strength[J]. Can. Geotech. J.1997,34:P:698-725.
    [29]Martin C.D, Christiansson R. Estimating the potential for spalling around a deep nuclear waste repositoryin crystalline rock [J]. International Journal of Rock Mechanics & Mining Sciences, 2009 (46):219-228.
    [30]Haimson B. Micromechanisms of borehole instability leading to breakouts in rocks [J]. International Journal of Rock Mechanics & Mining Sciences 2007 (44),P:157-173.
    [31]Potyondy D.O, Cundall P.A. A bonded-particle model for rock [J]. International Journal of Rock Mechanics & Mining Sciences,2004 (41):1329-1364.
    [32]SUN Jin-shan, ZHU Qi-hu, LU Wen-bo Numerical Simulation of Rock Burst in Circular Tunnels Under Unloading Conditions[J]. Journal of China University of Mining & Technology, 2007,17(4):552-556.
    [33]陈明,卢文波,周创兵.围岩应力重分布对隧洞爆生裂隙区比例半径的影响[J].爆炸与冲击,2009,125(3):328-332.
    [34]王明洋,范鹏贤,李文培.岩石的劈裂和卸载破坏机制[J].岩石力学与工程学报,2010,29(2),234-241.
    [35]肖正学,张志呈,李端明.初始应力场对爆破效果的影响[J].煤炭学报,1996(5):51-55.
    [36]Read R.S.20 years of excavation response studies at AECL's Underground Research Laboratory [J]. International Journal of Rock Mechanics & Mining Sciences,2004, P:1251-1275.
    [37]戴俊,钱七虎.高地应力条件下的巷道崩落爆破参数[J].爆炸与冲击,2007,113(03),P:272-277.
    [38]谢源.高应力条件下岩石爆破裂纹扩展规律的模拟研究[J].湖南有色金属,2002,18(4):1-3.
    [39]李廷春,刘洪强,王超.超深孔一次成井微差爆破技术研究[J].岩土力攀,2012,33(6):1742-1746.
    [40]高文乐,黄博,毕卫国,等.井下矸石仓全深度一次爆破成井技术[J].爆破,2011,28(01):40-44.
    [41]蒋复量,周科平,邓红卫,等.地下矿山深孔崩矿爆破漏斗试验研究[J].矿冶工程,2010,30(2):10-13.
    [42]郭东明,杨仁树,胡坤伦,等.高岭土矿机械化开采预先深孔松动爆破试验[J].采矿与安全工程学报,2009,26(4):428-432.
    [43]王伟,李小春,石露,等.深层岩体松动爆破中不耦合装药效应的探讨[J].岩土力学,2008,29(10):2837-2842.
    [44]张继春,宋小林,郭学彬,等.深孔爆破条件下岩体软弱夹层变形特性研究[J].中国铁道科学,2008,29(2):77-81.
    [45]刘优平,龚敏,黄刚海.深孔爆破装药结构优选数值分析方法及其应用[J].岩土力学,2012,33(6):1883-1888.
    [46]赵新涛,黄海龙.深孔松动微差控制爆破在百龙滩水电站开挖工程中的应用[J].工程爆破,2005,11(3):49-51.
    [47]高文学,杨军,肖鹏飞,等.基于精确延期的深孔控制爆破技术[J].煤炭学报,2011,36(增2):386-340.
    [48]李启月.深孔爆破破岩能量分析及其应用[D].长沙:中南大学博士学位论文,2008.
    [49]刘健,刘泽功,蔡峰.石门揭煤深孔预裂爆破增透效果试验研究[J].煤炭科学技术,2011, 39(6):30-32.
    [50]黄文尧,颜事龙,刘泽功,等.煤矿瓦斯抽采水胶药柱在煤层深孔爆破中的研究与应用[J].煤炭学报,2012,37(3):472-476.
    [51]郭德勇,宋文健,李中州,等.煤层深孔聚能爆破致裂增透工艺研究[J].煤炭学报,2009,34(8):1086-1089.
    [52]魏明尧,王恩元,刘晓斐,等.深部煤层卸压爆破防治冲击地压效果的数值模拟研究[J].岩土力学,2011,32(8):2539-2544.
    [53]索永录.坚硬顶煤弱化爆破的宏观损伤破坏程度研究[J].岩土力学,2005,26(6):893-895.
    [54]李春睿,康立军,齐庆新,等.深孔爆破数值模拟及其在煤矿顶板弱化中的应用[J].煤炭学报,2009,34(12):1632-1636.
    [55]Grady D E, Kipp M E. Continuum modelling of explosive fracture in oil shale[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1980,17(3): 147-157.
    [56]Taylor L M, Chen E P, Kuszmaul J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading[J]. Computer Methods in Applied Mechanics and Engineering,1986, 55(3):301-320.
    [57]Kuszmaul J S. A new constitutive model for fragmentation of rock under dynamic loading. 1987, Sandia National Labs., Albuquerque, NM (USA).
    [58]Yang R, Bawden W F, Katsabanis P D. A new constitutive model for blast damage[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1996, 33(3):245-254.
    [59]LIU L, Katsabanis P D. Development of a continuum damage model for blasting analysis[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(2):217-231.
    [60]楼晓明.爆破振动作用下巷道围岩微裂纹扩展研究[J].福州大学学报(自然科学版),2011,39(4):589-593.
    [61]陈云祥,邓红卫,潘东.井下大直径深孔爆破震动影响分析及对策[J].矿业研究与开发,2012,32(3):107-110.
    [62]杨小林,侯爱军,梁为民,余永强.隧道掘进爆破的损伤机理与振动危害[J].煤炭学报,2008,33(4):400-404.
    [63]Fernando Garcia Bastantea, Leandro Alejano, Jose Gonzalez-Cao. Predicting the extent of blast-induced damage in rock masses[J]. International Journal of Rock Mechanics & Mining Sciences,2012,56:44-53.
    [64]Saiang D, Nordlund E. Numerical analyses of the influence of blast-induced rock around shallow tunnels in brittle rock. Rock Mechanics Rock Eng,2009,42:421-48.
    [65]左双英,肖明,续建科,史文兵.隧道爆破开挖围岩动力损伤效应数值模拟[J].岩土力学,2011,32(10):3171-3178.
    [66]李夕兵,陶明,宫凤强,等.冲击载荷作用下硬岩层裂破坏的理论和试验研究[J].岩石力学与工程学报,2011,30(6):1081-1088.
    [67]尹土兵,李夕兵,王斌,殷志强,杜坤.高温后砂岩动态压缩条件下力学特性研究[J].岩土工程学报,2011,33(5):777-784.
    [68]邹洋,李夕兵,周子龙,尹土兵,殷志强.开挖扰动下高应力岩体的能量演化与应力重分布规律研究[J].岩土工程学报,2012,34(9):1677-1684.
    [69]李夕兵,姚金蕊,宫凤强.硬岩金属矿山深部开采中的动力学问题[J].中国有色金属学报,2011,21(10):2551-2563.
    [70]朱和玲,周科平,张亚民,田坤,李杰林.基于核磁共振技术的岩体爆破损伤试验研究[J].岩石力学与工程学报,2013,32(7):1410-1416.
    [71]鲍罡武,廖承立,廖爱华,张志呈.不同装药结构深孔爆破岩石累积损伤试验研究[J].爆破,2011,28(4):37-39.
    [72]陈明,朱洋洋,郑炳旭,宋锦泉,李江国,宁淑元.基于声波检测的空气间隔装药预裂爆破损伤特性研究[J].爆破,2013,30(3):14.
    [73]徐莉丽,蒲传金,肖正学,苏有文.探地雷达和超声波相结合的爆破损伤实验研究[J].金属矿山,2013,(5):14-18.
    [74]Cai-Ping Lu, Lin-Ming Dou, Xing-Rong Wu, Yao-She Xie. Case study of blast-induced shock wave propagation in coal and rock[J]. International Journal of Rock Mechanics & Mining Sciences,2010,47:1046-1054.
    [75]宗琦,汪海波,徐颖,傅菊根.基于HHT方法的煤矿巷道掘进爆破地震波信号分析[J].振动与冲击,2013,32(15):116-120.
    [76]杨国梁,杨仁树,车玉龙.周期性爆破振动下围岩的损伤累积效应[J].煤炭学报,2013,38(S1):25-29.
    [77]韩博,马芹永.煤矿岩巷毫秒延期爆破振动测试与控制技术研究[J].煤炭学报,2013,38(2):209-214.
    [78]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社,2005.
    [79]谢文兵,陈晓祥,郑百生.采矿工程问题数值模拟研究与分析[M].徐州:中国矿业大学出版社,2005:165-176.
    [80]王家臣,潘卫东,李诚.葛泉矿坚硬顶板综放开采三维数值模拟[J].采矿与安全工程学报,2008,25(3):272-276.
    [81]伍永平,李开放,张艳丽.坚硬顶板综放工作面超前弱化模拟研究[J].采矿与安全工程学报,2009,26(3):273-27.
    [82]曹胜根,钱鸣高,缪协兴.综放开采端面顶板稳定性的数值模拟研究[J].岩石力学与工程学报,2000,19(4):472-475.
    [83]吴洪词.长壁工作面硬板结构模型及来压规律[J].煤炭学报,1997,22(3):259-264.
    [84]高木福.坚硬顶板处理步距的数值模拟[J].辽宁工程技术大学学报,2006,25(5):649-651.
    [85]徐颖,宗琦.地下工程爆破理论与应用[M].徐州:中国矿业大学出版社,2001,3-5.
    [86]高金石,张奇.爆破理论与爆破优化[M].西安:西安地图出版社,1993,32-33.
    [87]J.亨利奇.熊建国等(译).北京:科学出版社,1987,63-64.
    [88]朱瑞赓,王雪峰.不耦合装药爆破孔壁压力计算[J].爆破,1990,7(3):1-3.
    [89]王文龙.钻眼爆破[M].北京:煤炭工业出版社,1989:167-169,196-198.
    [90]洪启超.工程断裂力学基础[M].上海:上海交通大学出版社,1987:58-60.
    [91]徐颖,孟益平,宗琦,等.断层带爆炸裂隙区范围及裂纹扩展长度的研究[J].岩土力学,2002,23(1):81-84.
    [92]水工建筑物岩石基础开挖工程施工技术规范(DL/T5389-2007)[S].
    [93]朱传云,喻胜春.爆破引起岩体损伤的判别方法研究[J].工程爆破,2001,7(2):12-16
    [94]Holmberg R, Persson P A. The Swedish approach to contour blasting [A]. Proceedings of the 4th conference on Explosive and Blasting Technique[C].1978.
    [95]Bauer A, Calder P N. Open Pit and Blast Seminar. Course No.63221 [M]. Ontario:Queens University,1978.
    [96]卢文波,Hustrulid W质点峰值振动速度衰减公式的改进[J].工程爆破,2002,8(3):1-4.
    [97]蒋伯杰,邹奕芳.大坝基础开挖中爆破损伤的度量与控制[J].爆破,2004,21(1):1-4.
    [98]卢文波,Hustrulid W临近岩石边坡开挖轮廓面的爆破设计方法[J].岩石力学与工程学报,2003,22 (12):2052-2056.
    [99]Bauer A, Calder P N. Open pit and blast seminar [Z].Course No.63221,1978. Mining Engineering Department, Queens University, Kingston, Ontario, Canada.
    [100]1142Mo jit abai N, Beatti S G. 1996. Empirical approach to prediction of damage in bench blasting [Z]. Trans.Inst. Min. and Metall. Sect. A 105:A75-A80.
    [101]Savely J P. Designing a final blast to improve stability[Z]. Preprint No.86-50. Presented at the SME Annual Meeting.1986, Ma r 2-6. New Orleans, Louis-iana, U. S. A.. pp19.
    [102]魏炯,朱万成,魏晨慧,等.导向孔对两爆破孔间成缝过程影响的数值模拟[J].工程力学,2013,30(5):335-339.
    [103]赵国彦,赵井清,李启月.9孔桶形掏槽一次成井技术[J].科技导报,2013,31(16):21-25.
    [104]王长柏,李海波,谢冰,等.岩体爆破裂纹扩展影响因素分析[J].煤炭科学技术,2010,(10):31-34+61.
    [105]王国法.放顶煤液压支架与综采放顶煤技术[M].北京:煤炭工业出版社,2010.
    [106]史元伟.采煤工作面围岩控制原理和技术[M].徐州:中国矿业大学出版社,2003.
    [107]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [108]林青,王晓振,许家林,等.顶板预裂爆破技术在防止压架事故中的应用[J].煤炭科学技术,2011,39(1):40-43.
    [109]冯胜利.坚硬顶板综放工作面强制放顶方案优化与施工[J].煤矿支护,2012,(1):6-14.
    [110]郭德勇,商登莹,吕鹏飞,等.深孔聚能爆破坚硬顶板弱化试验研究[J].煤炭学报,2013,38(7):1149-1153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700