用户名: 密码: 验证码:
基于气固两相流的控尘理论及其在选煤厂应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会迅速发展,人们对粉尘污染的重视程度越来越高,粉尘治理的理论成为当今学者们研究的热点,其中粉尘颗粒逸散规律和不同控尘方法的降尘机理成为研究中的重点和难点。
     为模拟不同粉尘逸散规律和控尘机理,通过气固两相流理论结合粉尘颗粒特性,构建了粉尘浓度扩散二流体三维数值计算模型以及颗粒轨道三维数值计算模型。并结合实践经验修正了计算模型方程,对不同曳力模型进行深入考察检验,选取了适用于粉尘颗粒运动的曳力模型,并考虑了颗粒和壁面间碰撞作用。
     通过数值模拟和理论分析,结合在选煤厂皮带受料处的应用,分别研究了密封负压控尘机理和微雾控尘机理。对各粒级粉尘颗粒分别受气流变化和雾滴捕捉后的运移轨迹进行了数值模拟,得出了粉尘颗粒运动轨迹,并通过数值模拟和现场应用验证了两种控尘方法的高效性。
     针对粉尘颗粒在皮带受料处的运移规律,创新性地提出了闭环回旋控尘方法,基于气固两相流理论和颗粒碰撞理论,对闭环回旋控尘机理进行了三维数值模拟及理论研究。研究表明,在普遍存在的管式落料系统中,由于落料的重力加速强制诱导,管下方气流能量大于上方气流能量,通过设置闭环实现了气流的回旋流动,回旋作用有效地耗散了气流的能量,进而达到降尘目的。现场应用验证了闭环回旋气流在大落差落料系统粉尘治理中的高效性,同时,该方法无需任何动力,是未来节能型除尘产品的发展方向。
     结合在破碎站和落煤塔的应用,分别研究了“外阻内抑”(外围设抑尘网内部尘源点喷雾抑尘)和“内吸外抑”(塔内负压抽尘塔外喷雾抑尘)两种控尘机理。采用数值模拟、理论分析和现场实测相结合的手段,研究了风流影响下破碎站和落煤塔发尘机理、抑尘网对风流强度的抑制机理以及塔内高压气流的消除机理。通过数值模拟和现场应用,论证了“外阻内抑”和“内吸外抑”控尘方法对多粒级粉尘的控尘效果。
     研究结果说明,经过对不同控尘方法的理论研究,应用其控尘机理,能够有效治理不同区域粉尘污染,并且结合两种或者两种以上的综合控尘,对大型污染源有良好的治理效果。本文应用气固两相流理论对控尘理论开展深入研究,旨在为丰富控尘理论和有效降低粉尘污染等发挥有效作用。
With the rapid development of society, dust pollution has been attracting much attention from people. Today, dust control theory is becoming a research hotspot, in which dust particles movement law and dust control mechanism have already become an emphasis and difficulty.
     Firstly, through gas-solid two-phase flow theory combining with the properties of dust particles, two-fluid model is constructed with3D that can simulate dust concentration diffusion. Besides that, particle-trajectory model is constructed with3D by DEM method that can simulate movement trajectory of dust particles.
     And then, dust control mechanisms of negative pressure and micro fog are studied by numerical simulation, theoretical analysis and application in coal preparation plant. Movement trajectories of various graded dust particles after airflow change and droplets capturing are simulated respectively. Dust control efficiencies about the two methods are verified by numerical simulations and field measurement.
     Based on movement law of dust particles in material-receiving point of belt, dust control closed-loop method is proposed innovatively. and it is discussed by numerical simulation of3D through gas-solid two-phase flow theory and particle collision theory. The results show that movement trajectory of dust particles is controlled effectively and kinetic energy of particles is reduced obviously by the closed-loop dust control. Therefore, the method of closed-loop dust control has a broad prospect for practical application.
     Dust control methods of "resistance outside and suppression inside" and "absorption inside and suppression outside" are tested respectively through put two theories into practice in crushing station and coal drop tower. By theoretical analysis, numerical simulation and field measurement, effectiveness of theirs dust control methods are tested and verified.
     The results show that theoretical analysis,3D numerical simulation and practical application of the dust control mechanism have significantly increase dust removal efficiency.
引文
[1]Soon-Ung Park, Anna Choe, Soo Park, Asian dust depositions over the Asian region during March 2010 estimated by ADAM2[J], Theoretical & Applied Climatology,2011 (105) 129-142.
    [2]吉鹂.PM2.5-你的肺还能撑多久[J].现代职业安全,2012,32(2):91-93.
    [3]董良杰,沈海滨.美国PM2.5监测和治理——科学、法律和行政的变奏曲[J].世界环境,2010,36(5):139-141.
    [4]刘宏斌,佘启元.我国尘毒职业危害现状解析[J].安全,2012,26(3):88-91.
    [5]向光全.粉尘的危害与防治措施[J].水利电力劳动保护,1996(3):15-16.
    [6]陈卫红.尘肺防治的研究进展与展望.中华劳动卫生职业病杂志,2006,24(9):513.
    [7]刘素香,樊梅芳.335例煤工尘肺患者肺功能结果分析[J].中国职业医学,2003,30(4):27-29.
    [8]Miller. Cause specific mortality in British coal workers and exposure to respirable dust and quartz[J]. Occup Environ Med,2009.
    [9]鲍含诚,李庆海.矿山粉尘与相关疾病[M].北京:煤炭工业出版社,2004.
    [10]Laney AS. Pctsonk EL, Attfield MD. Pneumoconiosis among underground bituminous coal miners in the United States:is silicosis becoming more frequent[J]. Occup Environ Med,2009.
    [11]齐宗利.煤尘对大鼠肺巨噬细胞分泌细胞因子的影响[J].中华劳动卫生职业病杂志,1995,13(4): 217.
    [12]王英华.三种煤尘肺巨噬细胞上清液中细胞因子的测定[J].中国公共卫生,1997,13(2)103
    [13]陈绍义.煤矿尘肺[M].北京:煤炭工业出版社,1984.
    [14]高雯,袁聚祥,范红敏.煤炭企业粉尘职业危害现状及防治进展[J].煤炭工业医学杂志,2008,(12):25-27.
    [15]Mahr Daniel. Coping with coal dust[J]. Power,2012,156(3):30-39.
    [16]Faradell. Lyell C. Report to the home secretary on the explosion at the HAS WELL Colliery on Sept 28,1844[R]. Phil. Magi,1845.
    [17]刘贞堂.瓦斯(煤尘)爆炸物证特性参数实验研究[D].徐州:中国矿业大学,2010.
    [18]程磊.受限空间煤尘爆炸冲击波传播规律研究[D].焦作:河南理工大学,2011.
    [19]张引合.煤尘爆炸性鉴定分析系统研究[J].矿山安全与环保,2012,39(6):34-36.
    [20]金龙哲,蒋仲安,潘大勇等.掘进巷道中粉尘分布规律的实验研究[J].煤炭科学技术,2001,29(3):43-44.
    [21]姚海飞,金龙哲,刘建等.矿井粉尘分散度的测定及分析[J].煤矿安全,2010,35(5):35-38.
    [22]徐薇,张文华.选煤厂输煤系统的煤尘治理[J].选煤技术,2001,12(6):46-47.
    [23]张殿印,王纯.除尘器手册[M].北京:化学工业出版社,2004,10.
    [24]宋马俊.国外煤矿粉尘控制的新技术[J].劳动保护,2001,10.
    [25]向晓东著.现代除尘理论与技术[M].北京:冶金工业出版社.2002,6.
    [26]向晓东.几种典型除尘器收集效率的扩散模型研究[J].环境科学学报,2003,23(35):657-661.
    [27]Martin C. Air pollution control theory[M]. New York:Mc Graw-Hill,1977.
    [28]唐敬麟,张禄虎.除尘装置系统及设备设计选用手册[M].化学工业出版社,2004.
    [29]谭天右.工业通风除尘技术[M].北京:中国建筑工业出版社,1984.
    [30]张艳辉,刘有智,霍红等.旋风除尘器的研究进展[J].华北工学院学报,1998,19(4):324-327.
    [31]青奎,李建国,赵伟东等.新型矿用除尘器的研究[J].矿业安全与环保,2006,33(3):33-35.
    [32]杨军瑞.袋式除尘器和静电除尘器在电厂除尘系统中运用的性能对比分析[J].工业安全与环保,2010,36(2).
    [33]P Cooperman. A new theory of precipitator efficiency[J]. Atmospheric Environment,1971(5): 541-551
    [34]蒋仲安.湿式除尘机理的研究与应用[D].北京:中国矿业大学,1994.
    [35]Brogren C, Karlsson H. Modeling the absorption of SO2 in a spray scrubber using the penetration theory[J]. Chemical Engineering Science,1997,52(18):3085-3099.
    [36]赵健植,金保升,仲兆平.烟气脱硫喷淋塔的数值模拟[J].化学工程,2007,35(8):61-64.
    [37]刘社育,蒋仲安,金龙哲.湿式除尘器除尘机理的理论分析闭.中国矿业大学学报,1998,27(1):47-50.
    [38]黄俊.水射流除尘技术[M].陕西西安:西安交通大学出版社,1993.
    [39]曹建明.雾化液滴尺寸和速度分布函数的推导[J].交通运输工程学报,2007,7(1):34-36.
    [40]郭金基,杨宗炼,浩旭.喷射雾化流体紊流混合降尘的机理研究[J].流体机械,1996,26(10):17-19.
    [41]张安明,郭社科.高压喷雾的原理及其应用[J].煤矿安全,1998,(4):2-5.
    [42]曹绍龙.高压喷雾除尘技术及其应用[J].陕西煤炭,2008,(1):96-97.
    [43]马素平,寇子明.喷雾降尘机理的研究[J].煤炭学报,2005,30(3):297-300.
    [44]周力行.多相湍流反应流体力学[M].北京:国防工业出版社,2002.
    [45]张兆顺.湍流[M].北京:国防工业出版社,2002.
    [46]是勋刚.湍流[M].天津:天津大学出版社,1994.
    [47]任凯锋,张会强,王希麟.获得空间发展槽道流动大涡模拟入口条件的最不稳定波方法[J].清华大学学报(自然科学版),2006,46(8):1470-1472.
    [48]刘欢鹏,王淑彦,陆慧林等.DSMC-LES方法研究循环流化床内颗粒团聚物的流动特性[J].化工学报,2005,56(7):1197-1205.
    [49]张健,何国威,陆利蓬等.大涡模拟中条件滤波耗散和扩散的统计特性[J].力学学报,2006,38(4):433-437.
    [50]陈斌,郭烈锦,杨晓刚.管束间复杂区域流场的离散涡数值模拟[J].自然科学进展,2003,13(1):74-78.
    [51]Fan J R, Luo K, Ha M Y, Cen K F. Direct numerical simulation of a near-field particle-laden plane turbulent jet[J]. Physical Review E,2006,70(2):303.
    [52]贺铸.非等温气固两相各向同性湍流的直接数值模拟[D].华中科技大学,2006.
    [53]郭照立,郑楚光,李青等.流体动力学的格子Boltzmann方法[M].武汉:湖北科学技术出版社,2002.
    [54]鲁钟琪.两相流与沸腾传热[M].北京:清华大学出版社,2002.
    [55]周力行.湍流气粒两相流动和燃烧的理论与数值模拟[M].北京:科学出版社,1994.
    [56]周力行.离散型湍流多相流的研究进展和需求[J].力学进展,2008,2008,38(5):610-622.
    [57]Yonemura S, Yamamoto M. Proposal of a multiple-time-scale Rrynolds stress mode for turbulent boundary layers[C]. Symposium on Mathematical Modeling of Turbulent Flow, Tokyo,1995.
    [58]曾卓雄,胡春波,姜培正等.密相、湍流、可压、气固两相流理论及在管道中的应用[J],空气动力学学报,2001,19(1):109-118.
    [59]沈志恒.循环流化床颗粒团聚作用的气固两相流动数值模拟[D].哈尔滨:哈尔滨工业大学,2010.
    [60]贺靖峰.基于欧拉-欧拉模型的空气重介质流化床多相流体动力学的数值模拟[D].徐州:中国矿业大学,2012.
    [61]李静海,欧阳洁,高士秋等.颗粒流体复杂系统的多尺度模拟[M].北京:科学出版社,2005.
    [62]樊建人,岑可法.工程气固多相流动的理论及计算[M].杭州:浙江大学出版社,1990.
    [63]Sinclair J L, Jackson R. Gas-particle flow in a vertical pipe with particle-particle interaction[J]. AIChE Journal,2007,35(5):1473-1486.
    [64]Nieuwland J J, Annaland M V, Kuipers J A M, et al. Hydrodynamic modeling of gas/particle flows in riser reactors[J]. AIChE Journal,1996,42(6):1569-1582.
    [65]周芳,祁海鹰,由长福等.有限空间风沙流动数值模拟及边界条件问题[J].清华大学学报(自然科学版),2004,44(8):1079-1082.
    [66]万晓涛,郑雨,魏飞等.循环流化床提升管气固湍流的计算流体力学模拟—k-ε-kp-εp-05参数双流体模型[J].化工学报,2002,53(5):461-468.
    [67]Crowe C T. Review-numerical models for dilute gas-particle flows[J].Journal of Fluids Engineering, Trans. ASME,1982,104(3):297-303.
    [68]Smoot L D, Smith P J. Coal combustion and gasification[M]. Plenum Press,1985.
    [69]Balzer G. Gas-solid flow modeling based on the kinetic theory of granular media:validation, applications and limitations[J]. Powder Technology,2008,113(3):299-309.
    [70]曾卓雄,周力行,张健.用颗粒相双尺度二阶矩湍流模型模拟突扩两相流动[J].西安交通大学学报,2006,40(1):97-100.
    [71]车得福,李会雄.多相流及其应用[M].西安:西安交通大学出版社,2007.
    [72]Zhang X, Zhou L. A second-order moment particle-wall collision model accounting for the wall roughness[J]. Powder Technology,2005,159(2):111-120.
    [73]柳朝晖.湍流气粒两相流的SOM-PDF输运方程模型和PDPA实验研究[D].华中科技大学,2002.
    [74]Reade W C, Collins L R. A numerical study of the particle size distribution of anaerosol undergoing turbulent coagulation[J]. Fluid Mech,2000,415:45-64.
    [75]Tsuji Y, Tanaka T, Yonemura S. Cluster patterns in circulating fluidized beds predicted by numerical simulation(discrete particle model versus two-fluid model)[J]. Powder technology,1998,95(3):254-264.
    [76]张科,罗坤,樊建人.均匀人口鼓泡流化床的TFM及DEM模拟[J].工程热物理学报,2011,23(12):68-72.
    [77]Kitron A, Elperin T, Tamir A. Monte Carlo simulation of gas-solids suspension flows in impinging streams reactors[J]. International Journal of Multiphase Flow,1990,16(1):1-17.
    [78]Lun C K K. Numerical simulation of dilute turbulent gas-solid flows[J]. International Journal of Multiphase Flow,2005,26(10):1707-1736.
    [79]陈鑫蔚,樊建人.考虑颗粒碰撞的三维混合层直接数值模拟[J].工程热物理学报,2010,31(8): 1327-1330.
    [80]赵云华,何玉荣,陆慧林等.提升管内气固两相双组分颗粒流动的离散颗粒硬球模型的模拟[J].化工学报,2007,58(3):608-616.
    [81]张鑑,由长福,徐旭常.循环床内气固两相流中稠密颗粒间碰撞的数值模拟[J].工程热物理学报,1998,19(2):256-260.
    [82]刘敏,张会强,郭印诚等.稠密气固流动中的格子-确定性轨道模型[J].清华大学学报(自然科学版),2003,43(2):246-249.
    [83]何亮,姜东君,应纯同DSMC方法模拟强旋流场的初步研究[J].同位素,2011,24(1):20-23.
    [84]刘龙波,张利兴.凝并与沉降共存的直接蒙特卡罗模拟及其验证[J].计算机与应用化学,2012,29(10):1237-1240.
    [85]Pai S I. Fundamental equations of a mixture of a gas and small spherical solid particles from simple kinetic theory. Rev.Roum.Sci[J]. Tech Mech Appl,2004,19:605-621.
    [86]Tsuji Y. Activities in discrete particle simulation in Japan[J]. Powder Technology,2005, 113(3):278-286.
    [87]Ho C A, Sommerfeld M. Modeling of micro-particle agglomeration in turbulent flows[J]. Chemical Engineering Science,2006,57(15):3073-3084.
    [88]赵海波,郑楚光.离散系统动力学演变过程的颗粒群平衡模拟[M].北京:科学出版社,2008.
    [89]顾兆林.风扬粉尘—近地层湍流与气固两相流[M].北京:科学出版社.
    [90]Anderson, T.B, Jackson, R. A fluid mechanical description of fluidized beds:Equations of motion[J]. Industrial and Chemistry Engineering Fundamentals,1967(6):527-534.
    [91]Andrews M.J, O'Rourke P.J. The multiphase particle-in-cell (MP-PIC) method for dense particulate flows[J], International Journal of Multiphase Flow,1996,22(2):379-402.
    [92]Arastoopour H, P Pakdel, M Adewumi. Hydrody namic Analysis of Dilute Gas-Solids Flow in a Vertical Pipe[J], Powder Technol.1990,62(2):163-170.
    [93]Babu S.P, Shan B, Talwalkar A. Fluidization correlations for coal gasification materials-minimum fluidization velocity and fluidized bed expansion ratio[C]. AIChE Symp. 1978,74(176):176-186.
    [94]Balzer G, Simonin O. Extension of Eulerian gas-solid flow modeling to dense fluidized bed[C]. Proc 5th Int Symp On Refined Flow Modelling and Turbulent Measurements, ed.1993: 417-424.
    [95]Barreto G F, Yates J G, Rowe P N. The effect of pressure on the flow of gas in fluidized beds of fine particles[J]. Chem.1983,38(12):1935-1945.
    [96]Benyahia S, Syamlal M, O'Brien T J. Extension of the Hill-Koch-Ladd drag correlation over all ranges of Reynolds number and solids volume fraction[J]. Powder.2006,62:166-174.
    [97]Bi H T. A critical review of the complex pressure fluctuation phenomenon in gas-solid fluidized beds[J]. Chemical Engineering Sciences,2007,66:3473-3493.
    [98]Boemer A, Qi H, Renz U. Eulerian simulation of bubble formation at a jet in a two-dimensional fluidized bed[J]. International Journal of Multiphase Flow,1997,23(5):927-944.
    [99]Boemer A, Qi H, Renz U. Verification of Eulerian simulation of spontaneous bubble formation in a fluidized bed[J]. Chemical Engineering Science,1998,53(10):1835-1846.
    [100]Brown R C, Brue E. Resolving dynamical features of fluidized beds from pressure fluctuations[J]. Powder Technology,2001,119:68-80.
    [101]Syamlal M, O'brien T J. Simulation of granular layer inversion in liquid fluidized beds[J]. International Journal of Multiphase Flow,1988,14(4):473-481.
    [102]Dalla Valle. Micrometrics[M]. London:Pitman,1948.
    [103]Garside J, Al-Dibouni M R.Velocity-coidage relationship for fluidization and sedimentation[J]. I & EC Proc Des Dev,1977,16:206-214.
    [104]Wen C Y, Hashinger R F. Elutriation of solid particles from a dense phase fluidized bed[J]. AICHE Journal,1960,6:220.
    [105]Schiller L, Naumann Z. "A drag coefficient correlation", Z Ver[J]. Deutsch ING,1935,77: 328.
    [106]Di Felice. The voidage functions for fluid-particle interaction system[J]. International Journal of Multiphase,1994,20(1):153-159.
    [107]Hill R J, D L Koch, J C Ladd. Moderate Reynolds number flows in ordered and random arrays of spheres[J]. Fluid Mech,2001,448:243-278.
    [108]Malek M, Allano D, Coetmellec S. Digital in-line holography for three dimensional two components particle tracking velocimetry[J]. Measurement Science and technology,2004,15: 699-705.
    [109]Soria J, Atkinson C. Towards 3C-3D digital holographic fluid velocity vector field measurement-Topographic digital holographic PIV[J]. Measurement science and technology, 2008,19:1-12.
    [110]Li Y, McLaughlin J B, Kontomaris K. Numerical simulation of particle-laden turbulent channel flow[J]. Physics of Fluids,2001,13:2957-2967.
    [111]Nino Y, Lopez F, Garcia M. Threshold for particle entrainment into suspension[J]. Sedimentology,2003,50:247-263.
    [112]Hutter K. Geophysical granular and particle-laden flows:review of the Field[J]. Philosophical Transactions of the Royal Society A,2005,363:1497-1505.
    [113]Solazzo E, Vardoulakis S, Cai X. Evaluation of traffic-producing turbulence schemes within operational street pollution models using roadside measurements[J]. Atmos Environ,2007,41:5357-5370.
    [114]S Y Wang, X Li, H L Lu. Numerical simulations of flow behaviour of gas and particles in spouted beds using frictional-kinetic stresses model[J]. Powder Technology,2009,196: 184193.
    [115]贾惠艳.皮带输煤系统转载点粉尘析出逸散规律及数值模拟研究[D].阜新:辽宁工程技术大学,2007.
    [116]马云东,罗根华,郭昭华.转载点粉尘颗粒扩散运动规律的数值模拟[J].安全与环境学报,2006,6(2):16-18.
    [117]陈彩云.转载点粉尘扩散模式与综合治理方案研究[D].阜新:辽宁工程技术大学硕士论文,2008.
    [118]罗根华.转载点粉尘扩散模式与综合治理方案研究[D].阜新:辽宁工程技术大学,2005.
    [119]GBZ/T 192.1-2007,工作场所空气中粉尘测定第1部分:总粉尘浓度[S].
    [120]GBZ/T 192.2-2007,工作场所空气中粉尘测定第2部分:呼吸性粉尘浓度[S].
    [121]GBZ/T 192.3-2007,工作场所空气中粉尘测定第3部分:粉尘分散度[S].
    [122]葛少成,荆德吉,邵良杉.导料槽内煤尘爆炸危险性数值模拟与试验研究——浓度分析法[J].自然灾害学报,2010,33(5):133-136.
    [123]葛少成,邵良杉,齐庆杰.选煤厂转运点除尘方案模拟优化设计[J].辽宁工程技术大学学报,2007,31(6):136-139.
    [124]牛伟,蒋仲安,刘毅.综采工作面粉尘运动规律数值模拟及应用[J].辽宁工程技术大学学报,2010,29(3):57-60.
    [125]王辉,蒋仲安,杜翠凤等.综掘巷道粉尘体积分数分布的现场实测与数值模拟[J].辽宁工程技术大学学报,2011,33(3):133-136.
    [126]周刚,程卫民,陈连军等.综放工作面粉尘浓度空间分布规律的数值模拟及其应用[J].煤炭学报,2010,35(12):2094-2099.
    [127]刘建,姚海飞,魏传光等.掘进工作面湿式离心除尘器的结构优化及数值模拟[J].煤炭学报.2010,35(12):424-428.
    [128]Ge Shaocheng, Shao Liangshan. Simulation of flow-field interior dust removal system at a transit point and the overall technology of dust removal[J]. Journal of Coal Science & Engineering(China),2008,31(4):158-161.
    [129]张大明.输煤巷道煤尘运移规律及治理技术研究[D].阜新:辽宁工程技术大学,2010.
    [130]郭金刚,金龙哲.潞安矿区防尘技术及实践[M].北京:科学出版社,2010.
    [131]李雨成.基于风幕技术的综掘面粉尘防治研究[D].阜新:辽宁工程技术大学,2010.
    [132]张大明,马云东.矿井粉尘污染防治新技术浅析[J].辽宁工程技术大学学报:自然科学版,2009,20(2):22-24.
    [133]葛少成,荆德吉,黄莹品.基于数值模拟的高压微雾除尘原理及其技术参数确定.辽宁工程技术大学学报,2012,30(1):32-35.
    [134]张安明,郭社科.高压喷雾的原理及其应用[J].煤矿安全,1998(4):2-5.
    [135]邵化振,张广军等.高压喷雾引射降尘装置的理论与实验研究[J].煤炭学报,2001(3):299-302.
    [136]贡凯军,朱文农,章表绩.露天矿破碎站的破碎功耗仿真分析[J].煤炭学报,1992,20:55-57.
    [137]Kapur P C, Schoenert K, Energy-size relationship for breakage of single particle in a rigidly mounted roll mill[J]. International Journal of Mineral Processing,1990,29:235-248.
    [138]孙昌峰,陈光辉,范军领等.防风抑尘网研究进展[J].化工进展,2011,30(4):871-877.
    [139]李宏剑.挡风墙挡风抑尘效果数值模拟研究[D].杭州:浙江大学,2007.
    [140]荆德吉.选煤厂给料机和落料管产尘机理及控制技术[D]。阜新:辽宁工程技术大学,2009.
    [141]黄帅.露天储煤场落煤塔粉尘污染机理和控制技术数值仿真研究[D].阜新:辽宁工程技术大学,2010.
    [142]荆德吉,葛少成,邵良杉,选煤厂毛煤仓仓顶除尘方案设计[J].工业安全与环保,2009,35(6) : 7-8.
    [143]荆德吉,葛少成,刘剑.欧拉-欧拉模型的落煤塔控尘技术研究[J].中国安全科学学报,2012,22(10):126-132.
    [144]荆德吉,葛少成,刘剑.基于颗粒运动方程的输煤皮带机尾逸尘规律[J].辽宁工程技术大学学报(自然科学版),2012,31(5):678-681.
    [145]李晓豁.采煤机截割产尘的数学模型[J].辽宁工程技术大学学报,2002,21(6):776-779.
    [146]刘玉峰,丛晓春,张旭.露天堆场扬尘量分布的计算[J].环境污染与防治,2006,28(2):146-148.
    [147]赵书田.抽压混合式通风除尘系统布置方式的选择和技术参数的确定[J].中国安全科学学报,1993,3(1):33-38.
    [148]张庆芳.高压喷雾降尘系统在储煤场的应用[J].科技情报开发与经济,2007,17(30):281-282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700