用户名: 密码: 验证码:
水力化钻孔径向瓦斯渗流特性实验研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对单一低透气性突出煤层区域防突问题,人们发展了多种水力化钻孔卸压增透抽采技术,如水力冲孔、煤层注水、水力压裂等,并取得了良好的应用效果,但是对于技术措施中作用于含瓦斯煤体的水分对煤层瓦斯渗流特性的影响机制缺乏深入的研究。本文围绕多种水力化措施中水分影响作用的共性,通过实验室试验、数值模拟及现场试验与应用,系统研究了水力化钻孔径向瓦斯渗流特性,并取得以下研究成果:
     (1)自主研发了水力化钻孔径向瓦斯渗流实验系统,可实现径向稳态/非稳态渗流实验、煤层注水驱气实验、液态水润湿及高压注水煤样等温吸附实验,同时可满足不同覆压、瓦斯渗流压力、气体种类、钻孔孔径、含水率条件下径向稳态渗流实验功能,以及不同注水流量下注水口压力及边界压力的实时监测。
     (2)基于径向稳态渗流实验,研究了瓦斯压力、吸附作用、覆压及钻孔卸压对煤体渗透率的影响规律。分析了煤层注水驱气动力学过程,实验测试了煤层注水驱气过程中煤样内、外边界压力演化规律,提出了注水驱气过程的四个阶段;实验研究了覆压、原始瓦斯压力、注水流量等因素对煤层注水驱气渗流特性的影响规律,并得出了注水钻孔周围煤体含水率分布规律。
     (3)提出了水力化钻孔径向瓦斯渗流物理模型,实验研究了物理模型中水分影响区域内煤体等温吸附特性及孔隙特征;测试了水/CH4竞争吸附对煤体渗透率的影响规律,以此建立了水分影响下煤层瓦斯渗透率的实验室测定方法,最终构建了CH4在湿煤中的渗透率预测模型,并通过实验予以验证。
     (4)数值模拟了不同预抽时间、水力冲煤孔径、原始瓦斯压力、渗透率模型下钻孔径向流场分布规律,验证了水力化钻孔径向瓦斯渗流特性。
     (5)首次采用光纤光栅技术测试了不同水力冲煤孔径钻孔周围煤体径向变形规律,提出了通过径向膨胀变形量指标分析钻孔卸压效果。现场测试表明,采取水力冲煤措施10d后,距钻孔中心1.35m~4.35m处煤体膨胀变形量为40.47‰~1.92‰,煤体孔径由原来的160mm增加至579mm,钻孔卸压半径扩大了1.71m。青东煤矿水力化钻孔区域防突技术现场试验表明,采用该技术后,煤体透气性系数提高61.1~144.7倍,掘进工作面前方应力集中区移向深部,应力集中系数降低,钻屑瓦斯解吸指标均显著降低,区域防突效果显著。
For controlling the coal and gas outburst of a single coal seam with low gaspermeability, variety of hydraulic drillings such as hydraulic punching, water injectionand hydraulic fracturing etc. were developed. However, the mechanism of moistureeffecting on characteristics of Coalbed Gas Seepage (CGS) in gassy coal is still lackof in-depth study. In this paper, the properties of Gas Radial Seepage Around theHydraulic Drill of (GRSAHD) were studied by laboratory tests, numerical simulation,field tests and application. The results are as follows.
     The experimental set-up of the GRSAHD was developed. Experiments of radialsteady/unsteady flow, water injection and gas dispersing, isothermal adsorption ofcoal with wetting and high-pressure water injection can be conducted. Meantime, thisequipment can meet the experimental conditions of different overburden pressure, gasseepage pressure, gas type, borehole diameter and the moisture content, as well asmonitor the water inlet pressure and boundary pressure under different flow.
     Gas pressure, adsorption, overburden pressure and the influence of drilling reliefon coal permeability were researched based on steady radial-seepage-experiment.Kinetic processes of water injection and gas dispersing were analyzed. Inner and outerboundary pressure evolution during the water injection and gas dispersing were tested.Four stages of water injection and gas dispersing were raised. Overburden pressure,raw gas pressure, water flow and other factors on the coal seam gas seepagecharacteristics of water injection and gas dispersing were researched. In addition, themoisture content distribution of coal around the borehole was also obtained.
     The physical model of GRSAHD was raised. In this model, coal isothermaladsorption characteristics and pore characteristics affected by the moisture werestudied. The influence of water/CH4competitive adsorption on the permeability ofcoal was tested. Laboratory determination of coal seam gas permeability affected bythe moisture was established. Finally, the prediction model of CH4permeability in wetcoal was built and verified by experiments.
     Distribution of radial flow field around borehole under different pre-pumpingtime, borehole diameter, original gas pressure and permeability model was simulated,which also verified the GRSAHD.
     For the first time, the radial deformation of hydraulic drilling with differentborehole diameter was measured by the FBG technology. The deformation of radialexpansion was used as the indicator for evaluating the effect of drilling relief. The field test shows that expansion of deformation of coal which away from the center ofdrilling1.35m~4.35m is40.47‰~1.92‰. The diameter of coal increases from160mm to579mm. The diameter of drilling relief increases by1.71m. The fieldexperiment of regional outburst prevention technology by hydraulic drillings inQINGDONG coal mine suggested that the coal permeability coefficient increased61.1~144.7times after treated by this method. In the heading face, the stressconcentration is moving to the deep, stress concentration factor is reducing, and thegas desorption index is significantly lower. The effect of Regional outburst preventionis remarkable.
引文
[1]范维唐,21世纪的中国能源,煤矿现代化.1999,(5):4-6.
    [2]《煤炭工业发展“十二五”规划》.国家能源局,2012.
    [3]周世宁,林伯泉.煤层瓦斯赋存与流动机理[M].北京:煤炭工业出版社,1998.
    [4]于不凡,王佑安.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2000.
    [5]程远平,俞启香.中国煤矿区域性瓦斯治理技术的发展[J].采矿与安全工程学报,2007,24(4):383-390.
    [6]余海龙,刘欣.水力疏松提高煤层透气性防治煤与瓦斯突出[J].重庆大学学报(自然科学版),2000,23:32-34.
    [7]瞿涛宝.水力割缝技术处理煤层瓦斯的效果[J].西部探矿工程,1996,5(3):51-53.
    [8]宋维源,王忠峰,唐巨鹏.水力割缝增透抽采煤层瓦斯原理及应用[J].中国安全科学学报,2011,21(4):78-82.
    [9]邹忠有,白铁刚.水力冲割煤层卸压增透抽采瓦斯技术的研究[J].煤矿安全,2000,1:34-36.
    [10]叶青,李宝玉,林柏泉.高压磨料水力割缝防突技术[J].煤矿安全,2005,36(12):11-14.
    [11]王婕,林伯泉,茹阿鹏.割缝排放低透气性煤层瓦斯过程的数值试验[J].煤矿安全,2005,36(8):4-7.
    [12]杜春志,茅献彪,卜万奎.水力压裂时煤层裂缝的扩展分析[J].采矿与安全工程学报,2008,25(2):231-238.
    [13]吴银富,饶清德,李润生,等.采用高压水力裂煤技术防治煤与瓦斯突出事故[J].水力采煤与管道运输,2007(3):9-11.
    [14]李宗翔,孙广义,王继波.煤层长钻孔注水过程的数值模拟与参数的合理确定[J].煤炭学报,2001,26(4):389-393.
    [15]李宗翔,孙平,刘海义.注水煤体应力能V-f转化与释放机理研究[J].中国地质灾害与防治学报,2005,16(2):67-70.
    [16]刘明举,孔留安,郝富昌,等.水力冲孔技术在严重突出煤层中的应用[J].煤炭学报,2005,30(4):451-454.
    [17]刘明举,何志刚,魏建平,等.水力冲孔消突技术在谢桥矿的应用[J].煤炭工程,2009,8:61-63.
    [18]孔留安,郝富昌,刘明举,等.水力冲孔快速掘进技术[J].煤矿安全,2005,36(12):64-66.
    [19]张英华,倪文.穿层孔水压爆破法提高煤层透气性的研究[J].煤炭学报,2004,29(3):298-302.
    [20]魏国营,郭中海等.煤巷掘进水力掏槽防治煤与瓦斯突出技术[J].煤炭学报,2007,32(2):172-176.
    [21]李学臣,魏国营.突出煤层水力掏槽防突技术措施的应用[J].河南理工大学学报,2006,25(4):270-274.
    [22]陈学习,王佰顺.煤巷水力压挤防治瓦斯煤尘技术试验研究[J].中国安全科学学报,2008,18(5):162-166.
    [23]刘明举,潘辉,李拥军,等.煤巷水力挤出防突措施的研究与应用[J].煤炭学报,2007,32(2):168-171.
    [24]王兆丰,李青松,陈向军,等.鹤壁六矿水力挤出消突措施参数研究及应用[J].河南理工大学学报,2006,25(5):341-344.
    [25]马中飞,俞启香,朱庆华.综采工作面水力超前卸压防突技术的试验研究[J].矿业安全与环保,2005,32(3):3-5.
    [26]马中飞,俞启香,陈晓祥.工作面水力卸压防突作用的数值模拟[J].中国安全科学学报,2006,16(10):27-31.
    [27]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报,1965,2(1):24-36.
    [28]周世宁.瓦斯在煤层流动的机理[J].煤炭学报,1990,15(1):61-67.
    [29]郭勇义.煤层瓦斯一维流场流动规律的完全解[J].中国矿业学院学报,1984,2(2):19-28.
    [30]孙培德.煤层瓦斯动力学及其应用的研究[J].山西矿业学院学报,1989,7(2):126-135.
    [31]孙培德.瓦斯动力学模型的研究[J].煤田地质与勘探,1993,21(1):32-40.
    [32]孙培德.煤层瓦斯流动方程补正[J].煤田地质与勘探,1993,21(5):61-62.
    [33]余楚新,鲜学福.煤层瓦斯流动理论及渗流控制方程的研究[J].重庆大学学报,1989,12(5):1-9.
    [34]杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报,1986,11(3):62-70.
    [35]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报,1987,12(4):74-82.
    [36]彼特罗祥.煤矿沼气涌出[M].宋世钊译.北京:煤炭工业出版社,1983.
    [37]罗新荣.煤层瓦斯运移物理模型与理论分析[J].中国矿业大学学报,1991,20(3):36-42.
    [38] Harpalani S,Mopherson M J.The effect of gas evacatiom on coal permeability testspecimens[J]. International Journal of Rock Mechanics&Mining Sciences,1984,21(3):361-364.
    [39] Somerton W H. Effect of stress on permeability of coal[J]. International Journal of RockMechanics&Mining Sciences,1975,12(2):151-158.
    [40]杜云贵.地物场中煤层瓦斯渗流特性及瓦斯涌出的研究[D].重庆:重庆大学,1993.
    [41]孙培德.煤层气越流的固气耦合理论及其计算机模拟研究[D].重庆:重庆大学,1998.
    [42]夏永军,武文宾.不同掘进工艺煤巷瓦斯渗流场演化及对突出发动的作用分析[J].煤炭学报,2010,35(8):91-94.
    [43]蒋长宝,尹光志,黄启翔,等.含瓦斯煤岩卸围压变形特征及瓦斯渗流试验[J].煤炭学报,2011,36(5):802-807.
    [44]张东明,胡千庭,袁地镜.成型煤样瓦斯渗流的实验研究[J].煤炭学报,2011,36(2):288-292.
    [45]林柏泉,周世宁.煤样瓦斯渗透率的实验研究[J].中国矿业学院学报,1987,(1):21-28.
    [46] Zhu W C,Liu J,Sheng J C,et al.Analysis of coupled gas flow and deformation process withdesorption and Klingkenberg effects in coal seam[J].International Journal of Rock Mechanics&Mining Sciences,2007,44(2):263-243.
    [47]陈卫忠,杨建平,伍国军,等.低渗透介质渗透性试验研究[J].岩石力学与工程学报,2008,27(2):236-243.
    [48] WuY S,Pruess K,Persoff P. Gas flow in porous media with Klinkenberg effects[J].Transportin Porous Media,1998,32(1):117-137.
    [49] Skjetne E, Auriault J. Homogenization of wall-slip gas flowthrough porousmedia[J].Transport in Porous Media,1999,36(3):293-306.
    [50]胡国忠,王宏图,范晓刚,等.低渗透突出煤的瓦斯渗流规律研究[J].岩石力学与工程学报,2009,28(12):2527-2534.
    [51]曹树刚,郭平,李勇,等.瓦斯压力对原煤渗透特性的影响[J].煤炭学报,2010,35(4):595-599.
    [52]王光荣,薛东杰,郜海莲,等.煤岩全应力-应变过程中渗透特性的研究[J].煤炭学报,2012,37(1):107-112.
    [53]李树刚,钱鸣高,石平五.煤样全应力应变中的渗透系数-应变方程[J].煤田地质与勘探,2001,29(1):22-24.
    [54]胡耀青,赵阳升,魏锦平.三维应力作用下煤体瓦斯渗透规律实验研究[J].西安科技学院学报,1996,16(4):308-311.
    [55]缪协兴,王连国.岩石渗透率与应力、应变关系的尖点突变模型[J].岩石力学与工程学报,2005,24(23):4210-4214.
    [56]尹光志,李广志,赵洪宝,等.煤岩全应力-应变过程中瓦斯流动特性试验研究[J].岩石力学与工程学报,2010,29(1):170-175.
    [57]曹树刚,李勇,郭平,等.型煤与原煤全应力一应变过程渗流特性对比研究[J].岩石力学与工程学报,2010,29(5):899-906.
    [58]李东印,王文,李化敏,等.重复加-卸载条件下大尺寸煤样的渗透性研究[J].采矿与安全工程学报,2010,27(1):121-125.
    [59]胡雄,梁为,侯厶靖,等.温度与应力对原煤、型煤渗透特性影响的试验研究[J].岩石力学与工程学报,2012,31(6):1222-1229.
    [60]尹光志,李小双,赵洪宝,等.瓦斯压力对突出煤瓦斯渗流影响试验研究[J].岩石力学与工程学报,2009,28(4):697-702.
    [61]曹树刚,郭平,李勇,等.瓦斯压力对原煤渗透特性的影响[J].煤炭学报,2010,35(4):595-599.
    [62]唐巨鹏,潘一山,李成全,等.有效应力对煤层气解吸渗流影响试验研究[J].岩石力学与工程学报,2006,25(8):1563-1568.
    [63] Enever J R E, Henning A.The relationship between permeability and effective stress foraustrlian coal and its implications with resport to coalbed methane exploration and reservoirmodeling[C]. Proceedings of the1997International Coalbed Methane Symposium,1997:13-22.
    [64] Mckee C R,Bumb AC,Koenig RA.Stress dependent permeability and porisity of coal[M],1998:143-153.
    [65]赵阳升,胡耀青,杨栋,等.三维应力下吸附作用对煤岩体气体渗流规律影响的实验研究[J].岩石力学与工程学报,1999,18(6):651-653.
    [66]覃世福,李小亮.吸附作用对原煤渗透特性的影响[J].中国矿业,2012,21(3):91-110.
    [67]隆清明,赵旭生,孙东玲,等.吸附作用对煤的渗透率影响规律实验研究[J].煤炭学报,2008,33(9):1131-1134.
    [68] Li H,Shimada S,Zhang M.Anisotropy of gaspermeability associated with cleat pattern in acoal seam of the Kushiro coalfield in Japan[J].Environmental Geology,2004,47(1):45-50.
    [69]黄学满.煤结构异性对瓦斯渗透特性影响的实验研究[J].矿业安全与环保,2012,39(2):1-3.
    [70]刘保县,鲜学福,王宏图,等.交变电场对煤瓦斯渗流特性的影响实验[J].重庆大学学报,2000,23(S):41-43.
    [71]刘保县,熊德国,鲜学福.电场对煤瓦斯吸附渗流特性的影响[J].重庆大学学报,2006,29(2):83-85.
    [72]朱步瑶,赵振国.界面化学基础[M].北京:化工工业出版社,1996.
    [73] Glass AS,Larsen J W. Surface themodynamics for nonpolar adsorption on Illinois No.6coalby inverse gas chromatography[J].Energy&Fuel,1993,7:994-1000.
    [74] Harpalani S,Pariti U M. Study of coal sorption isotherms using a multicomponentgasmixture[J]. Interational Coalbed Methane Symposium,1993,151-160.
    [75] S.J格雷格K.S.W辛[美].吸附、比表面积与孔隙率[M].高敬琮译.北京:化工工业出版社,1989.
    [76]近腾精一,石川达雄,安部郁夫等著[日].吸附科学[M].李国希译.北京:化工工业出版社,2006.
    [77] Gray I. Reservoir engineering in coal seams:Part I-the physical process of gas storage andmovement in coal seams[J].SPE Reservoir Engineering,1987(2):28-34.
    [78]崔永君.煤对CH4、N2、CO2及多组分气体吸附的研究[D].陕西:煤炭科学研究总院西安分院,2003.
    [79]宋世钊译.煤矿沼气涌出[M].煤炭工业出版社,1983.
    [80]钟玲文,张新民.煤的吸附能力与其煤化程度和煤岩组成间的关系[J].煤田地质与勘探,1990,18(4):29-35.
    [81] Crosdale P J,Beamish B B,Valix M.Coalbed methane sorption related to coalcomposition[J]. International Journal of Coal Geology,1998,35:147-158.
    [82]钟玲文.煤的吸附性能及影响因素[J].中国地质大学学报,2004,29(3):327-368.
    [83]张群,杨锡禄.平衡水分条件下煤对甲烷的等温吸附特性研究[J].煤炭学报,1999,24(6):566-570.
    [84] Lamberson M N,Bustin R M. Coalbed methane characteristics of Gates formation coals,northeastern British Colombia:effect of maceral composition[J]. American Association ofPetroleum Geologists Bulletin,1993,77:2062-2295.
    [85]桑树勋,朱炎铭,张时音,等.煤吸附气体的固气作用机理[J].天然气工业,2005,25(1):13-15.
    [86]钟玲文,张慧,员争荣,等.煤的比表面积、孔体积及其对煤吸附能力的影响[J].煤田地质与勘探,2002,30(3):26-28.
    [87] Gurdal G,Yalcin M N.Pore volume and surface area of the Carboniferous coals from theZonguldak basin(NW Turley)and their variations with rank and maceralcomposition[J].International Journal of Coal Geology,2001,48:133-144.
    [88]聂百胜,何学秋,王恩元,等.煤吸附水的微观机理[J].中国矿业大学学报,2004,33(4):379-383.
    [89]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,1986.
    [90]傅贵,秦凤华,阎保金.我国部分矿区煤的水润湿性研究[J].阜新矿业学院学报(自然科学版),1997,16(6):666-669.
    [91]秦跃平,傅贵.煤孔隙分形特性及其吸水性能的研究[J].煤炭学报,2000,25(1):55-60.
    [92]金龙哲,蒋仲安,任宝宏,等.煤层注水中水分蒸发现象的研究[J].中国安全科学学报,2000,10(3):58-62.
    [93]王青松,金龙哲,孙金华.煤层注水过程分析和煤体润湿机理研究[J].安全与环境学报,2004,4(1):70-72.
    [94]金龙哲,欧盛南.煤层注水中粘尘棒溶液对接触角的影响[J].北京科技大学学报,2005,27(3):264-267.
    [95]王惠宾,汪远东,卢平.煤层注水中添加湿润剂的研究[J].煤炭学报,1994,19(2):151-160.
    [96]程燕,蒋仲安,陈仲秋,等.煤层注水添加表面活性剂的研究[J].煤矿安全,2006(3):9-12.
    [97]肖普朝.表面活性剂与煤吸水率关系的研究[J].河北煤炭,1992(2):65-67.
    [98]崔永君.煤对CH4、N2、CO2及多组分气体吸附的研究[D].陕西:煤炭科学研究总院西安分院,2003.
    [99]李祥春,聂百胜.煤吸附水特性的研究[J].太原理工大学学报,2006,37(4):417-419.
    [100] Joubert J I,Grein C T,Bienstock D.Effect of moisture on the methane capacity of Americancoals[J].Fuel,1974,53:186-191.
    [101] Joubert J I,Grein C T,Bienstock D.Sorption by coal of methane at high pressure[J].Fuel,1955,34:449-462.
    [102]马东明.煤储层的吸附特征实验综合分析[J].北京科技大学学报,2003,25(4):291-294.
    [103]桑树勋,朱炎铭,张井,等.液态水影响煤吸附甲烷的实验研究:以沁水盆地南部煤储层为例[J].科学通报,2005,50(增1):70-75.
    [104]张时音,桑树勋,杨志刚.液态水对煤吸附甲烷影响的机理分析[J].中国矿业大学学报,2009,38(5):707-712.
    [105]张时音.煤储层固-液-气相间作用机理研究[D].徐州:中国矿业大学,2009.
    [106] Bustin R M, Clarkson C R. Geological controls on coalbed methane reservoir capacity andgas content[J]. International Journal of Coal Geology.1998,38:3-26.
    [107] Clarkson C R, Bustin R M. Binary gas adsorption/desorption isotherms: effect of moistureand coal composition upon carbon dioxide selectivity over methane[J]. International Journalof Coal Geology.2000,42:241-271.
    [108] Goodman A L, Favors R N, Hill M M, Larsen J W. Structure changes in Pittsburgh no.8coal caused by sorption of CO2gas[J]. Energy Fuels.2005,19:1759-1760.
    [109] Jahediesfanjani H, Civan F. Effect of resident water on enhanced coal gas recovery bysimultaneous CO2/N2injection. Soc. Petr. Eng. Annual Techn. Conf., San Antonio (TX),2006,pp1-18.
    [110] Lama R D, Bodziony J. Outburst of Gas Coal and Rock in Underground Coal Mines. R.D.Lama and associates, Wollongong.1996, pp499.
    [111] Levy J, Day S J, Killingley J S. Methane capacity of Bowen Basin coals related to coalproperties[J]. Fuel,1997,74:1-7.
    [112] Mavor M M, Owen L B, Pratt T J. Measurement and evaluation of coal sorption isothermdata. Soc. Petr. Eng. Annual Techn. Conf, New Orleans (LA).1990:157-170.
    [113] Prinz D, Littke R. Development of the micro-and ultramicroporous structure of coals withrank as deduced from the accessibility to water[J]. Fuel.2005,84:1645-1652.
    [114] Yalcin E, Durucan S. Methane capacities of Zonguldak coals and the factors affectingmethane adsorption[J]. Min. Sci. Technol.1991,13:215-222.
    [115] Yee D, Seidle J P, Hanson W B. Gas sorption on coal and measurement of gas content. In:Law, B.E., Rice, D.D.(Eds.), Hydrocarbons from Coal. AAPG studies in Geol.1993,38, pp.203-218.
    [116] Crosdale P J,Moore T A,Mares T E. Influence of moisture content and temperature onmethane adsorption isotherm analysis for coals from a low-rank, biogenically-sourced gasreservoir [J].International Journal of Coal Geology,2008,76:166-174.
    [117]傅雪海,焦宗福,秦勇,等.低煤级煤平衡水条件下的吸附实验[J].辽宁工程技术大学学报,2005,24(2):161-164.
    [118] Levy J H,Day S J,Killingley J S.Methane capacities of Bowen basin coals related to coalproperties[J]. Fuel,1997,74:1-7.
    [119] Krooss B M,Bergen F,Gensterblum Y etal. High-pressure methane and carbon dioxideadsorption on dry and moisture-equilibrated Pennsylvanian coals[J].International Journal ofCoal Geology.2002,51:69-92.
    [120] Stuart Day, Richard Sakurovs, Steve Weir. Supercritical gas sorption on moist coals [J].International Journal of Coal Geology,2008,74(3):203-214.
    [121] Busch A, Gensterblum Y, Kroos B M, Siemons N. Investigation of high pressureadsorption/desorption behaviour of CO2and CH4on coals: an experimental study[J].International Journal of Coal Geology.2006,66:53-68.
    [122] Doyle B R. Hazardous Gases Underground-Applications to Tunnel Engineering.MarcelDekker, Inc.2001.
    [123] Joubert J I, Grein C T, Bienstock D. Sorption of methane in moist coal[J]. Fuel,1973,52:181-185.
    [124] Laxminarayana C, Crosdale P J. Role of coal type and rank on methane sorptioncharacteristics of Bowen Basin, Australia coals[J]. International Journal of Coal Geology,1999,40:309-325.
    [125] Charrière D, Behra P. Water sorption on coals[J]. Journal of Colloid and Interface Science,2010,344:460-467.
    [126]肖知国.煤层注水抑制瓦斯解吸效应实验研究与应用[D].焦作:河南理工大学,2010.
    [127][苏]О.И.切尔诺夫,Е.С.罗赞采夫.瓦斯突出危险煤层井田的准备[M].宋世钊,于不凡译.北京:煤炭工业出版社,1980.
    [128] Nils Le Gal,Vincent Lagneau,Arnaud Charmoille. Experimental characterization of CH4release from coal at high hydrostatic pressure[J].International Journal of Coal Geology,2012,96:82-92.
    [129] Clarkson C R,Bustin R M. Binary gas adsorption/desorption isotherms:effect of moistureand coal composition upon carbon dioxide selectivity over methane[J].International Journalof Coal Geology,2000,42(4):241-271.
    [130] Pan Z L, Connell D, Camilleri M, et al. Effects of matrix moisture on gas diffusion and flowin coal[J]. Fuel,2010,11(89):3207-3217.
    [131]肖知国,王兆丰.阳泉3#煤干燥煤样等温吸附解吸特性实验研究[J].河南理工大学学报,2010,31(5):559-563.
    [132]王兆丰,李晓华,戚灵灵,等.水分对阳泉3号煤层瓦斯解吸速度影响的试验研究[J].煤矿安全,2010,(7):1-3.
    [133]赵东,冯增朝,赵阳升.高压注水对煤体瓦斯解吸特性影响的试验研究[J].岩石力学与工程学报,2011,30(3):547-555.
    [134]郭红玉,苏现波.煤层注水抑制瓦斯涌出机制研究[J].煤炭学报,2010,35(6):928–931.
    [135]陈向军,程远平,王林.外加水分对煤中瓦斯解吸抑制作用试验研究[J].采矿与安全工程学报,2013,30(2):296-301.
    [136]张国华,梁冰,毕业武.水锁对含瓦斯煤体的瓦斯解吸的影响[J].煤炭学报,2012,37(2):253-258.
    [137] Buckley S E, Leverett M C. Mechanism of fluid displacement in sands[J].AIME,1942(146):107-116.
    [138] Bapeн лaтт Г И,Жeлтoв Ю П.ДAH CCCP,1960,132(3):545-548.
    [139] Baкcepмaн AA,Жeлтoв Ю П,Koчeшкoв AA.ДAHCCCP,1964,155(6):1285-1285.
    [140]陈钟祥,刘慈群.双重孔隙介质中二相驱替理论[J].力学学报,1980,12(2):109-119.
    [141] King G R,Ertekin T M.A survey of mathematical models related to methane productionfrom coal seams.Part Ⅱ:nonequilibrium sorption models[C].Proceedings of the1989Coalbed Methane Symposium.The University ofAlabama/Tuscaloosa,1989:139-155.
    [142]孙超,宋维源.煤层注水水气驱替的理论分析[J].辽宁工程技术大学学报,2005,24(12):93-95.
    [143]熊俊,刘建,刘建军,等.基于Buckley-Leverett方程的水气两相渗流理论[J].辽宁工程技术大学学报,2007,26(2):213-215.
    [144] Harpalani S, Schraufnage R A. Shrinkage of coal matrix with release of gas and its impacton permeability of coal[J]. Fuel,1991,69(5):551-556.
    [145] Seidel J P, Jeansonne M W, Erickson D J. Application of matchstick geometry to stressdependent permeability in coals. Society of Petroleum Engineers SPE Rocky MountainRegional Meeting.1992.
    [146] Palmer I, Mansoori J. How permeability depends on stress and pore pressure incoalbeds:a new model. Annual Technical Conference and Exhibition Denver, Colorado.1996, SPE36737:1-7.
    [147] Shi JQ, Durucan S. Drawdown induced changes in permeability of coalbeds: A newinterpretation of the reservoir response to primary recovery[J]. Transport in Porous Media,2004,56:1-16.
    [148] Van Bergen F,Spedrs C,Floor G, et al. Strain development in unconfined coals exposed toCO2,CH4and Ar:effect of moisture[J]. Inernational Journal of Coal Geology,2009,77(1-2):43-53.
    [149]张小东,王利丽,张子戌.山西古交矿区马兰煤矿肥煤注水后煤体吸附膨胀行为[J].煤炭学报,2009,34(10):1310-1315.
    [150]魏建平,位乐,王登科.含水率对含瓦斯煤的渗流特性影响试验研究[J].煤炭学报,2014,39(1):97-103.
    [151]李宗翔,孙平,刘海义.注水煤体应力能V-f转化与释放机理研究[J].中国地质灾害与防治学报,2005,16(2):67-70.
    [152]张永兴.岩石力学[M].北京:中国建筑工业出版社,2008.
    [153]刘忠锋,康天合,鲁伟,等.煤层注水对煤体力学特性影响的试验[J].煤炭科学技术,2010,38(1):17-19.
    [154]蒋承林.煤层注水的防突机理分析[J].湘潭工学院学报,1999,14(3):1-4.
    [155]刘震,李增华,杨永良,等.下向穿层钻孔综合水力化防突技术研究[J].采矿与安全工程学报,2012,29(4):564-569.
    [156]王凯,郭灵强,俞启香,等.综采工作面水力超前卸压防突数值模拟与试验研究[J].煤炭学报,2007,32(8):832-837.
    [157] Klinkenberg L J. The permeability of porousmedia to liquids and gases [A]. Drill productionpractices [C]. NewYorkAmerican Petroleum Institute,1941:200-213.
    [158]周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91-99.
    [159]孙培德.瓦斯动力学模型研究[J].煤田地质与勘探,1993,21(1):33-39.
    [160]苏玉亮.油藏驱替机理[M].北京:石油工业出版社,2009.
    [161]王晓冬.渗流力学基础[M].石油工业出版社,2006:120-121.
    [162]程庆迎.低透煤层水力致裂增透与驱赶瓦斯效应研究[D].中国矿业大学博士学位论文,2012.
    [163]章梦涛.煤岩流体力学[M].北京:科学出版社,1995:50-53.
    [164] Palmer ID,Metcalfe RS,Yee D,etal.煤层甲烷储层评价及生产技术[M].秦勇,曾勇译.徐州:中国矿业大学出版社,1996:21~23.
    [165]张金才,刘天泉,张玉卓.裂隙岩体渗透特征的研究[J].煤炭学报,1997,22(5):481-485.
    [166]周克明,李宁,张清秀,等.气水两相渗流及封闭气的形成机理实验研究[J].天然气工业,2002,22:122-125.
    [167]海国治,秦书玉,李宗翔,等.煤层注水效果的数量化理论分析与预测[J].煤炭学报,1994,19(5):486-492.
    [168]周公度,段联运.结构化学基础(第三版)[M].北京:北京大学出版社,2002.
    [169] Walker P L, Verma S K, Rivera-Utrilla J, Davis A. Densities, porosities and surface areas ofcoal macerals as measured by their interaction with gases, vapours and liquids[J]. Fuel,1988,67:1615-1623.
    [170]刘晓丽.水、气二相渗流与双重介质变形的流固耦合数学模型[D].辽宁工程技术大学,2004.
    [171]孙可明,梁冰,王锦山.煤层气开采中两相渗流阶段的流固耦合渗流[J].辽宁工程技术大学学报,2001,20(1):36-39.
    [172]林良俊,马凤山.煤层气产出过程中气-水两相流与煤岩变形耦合数学模型研究[J].水文地质工程地质,2001,1:1-3.
    [173]杨天鸿、刘建新、唐春安,应力-损伤-渗流耦合模型及在深部煤层瓦斯卸压实践中的应用,岩石力学与工程学报,2005,24(16):2900-2905.
    [174]杨天鸿,唐春安,徐涛等.岩石破裂过程的渗流特性-理论、模型与应用[M].北京:科学出版社,2004:67-69.
    [175]张凤梅,雷振山,刘德和.光纤光栅传感技术在桥梁施工监控中的应用[J].传感器与微系统,2006,25(2):78-80.
    [176]武胜军,王宏力,敖红奎.FBG传感器在隧道锚杆支护结构监测中的应用研究[J].传感器与微系统,2007,26(12):31-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700