用户名: 密码: 验证码:
煤与瓦斯压出动力演化过程及机理实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤矿开采深度的增加,地应力和瓦斯压力越来越大,应力、瓦斯压力和煤体耦合作用越来越复杂,煤岩动力灾害发生越发频繁,造成的危害越来越严重,以往较少出现的煤与瓦斯压出动力灾害日趋增多,而针对其发生机理鲜见研究。本文建立煤岩动力现象模拟试验系统,试验研究不同煤岩动力现象的显现特征,分析压出过程中应力和瓦斯压力的变化规律及影响因素;研究含瓦斯煤体层裂结构的形成过程,建立煤与瓦斯压出层次破坏演化模型;分析现场煤与瓦斯压出灾害的关键因素,对现场工作面危险性进行划分,提出防治措施。全文主要取得了以下研究成果:
     建立了煤岩动力现象模拟试验系统,试验研究了不同煤岩动力现象的显现特征,并探讨了煤岩动力现象显现特征不同的原因。研究发现:煤与瓦斯压出抛出煤体距离较小,造成的动力效应不明显;煤与瓦斯突出煤体破碎程度最大,抛出距离大并且具有明显的方向性;含瓦斯煤冲击破坏煤体破裂成块状,煤体破裂面光滑。煤体弹性能和瓦斯潜能的释放比例以及煤体性质的不同是动力现象显现特征不同的主要原因。
     研究了煤与瓦斯压出的发展变化规律及影响因素。研究发现:煤体压出是一个较缓慢的力学过程,应力呈现出先升高后降低的趋势,瓦斯压力释放速度较慢,并且释放速度与其和压出口之间的距离密切相关,煤体发生层裂破坏。随着瓦斯压力和应力的升高,残留孔洞从无到有并逐渐增大,煤体破坏越发剧烈;随煤体强度的升高,残留孔洞逐渐缩小并且趋于消失;顶底板强度越大,煤体变形破裂越严重。
     通过数值模拟研究了工作面回采过程中,应力、瓦斯压力和煤体塑性变形区的变化规律,分析了埋藏深度、煤层参数和初始瓦斯压力对压出危险性的影响。研究表明随埋藏深度、瓦斯压力的升高以及煤层厚度和强度的降低,煤体发生压出的危险性逐渐升高。
     基于弹塑性断裂力学计算得到了含瓦斯煤裂纹的临界扩展角度及方位角,推导得出了考虑游离瓦斯和吸附瓦斯的煤体强度准则,分析了裂纹扩展长度与三向应力的关系;以工作面前方极限平衡区为对象,研究了煤体层裂结构形成过程以及不同外界扰动形式对煤体稳定性的影响,计算得到了含瓦斯层裂结构失稳破裂的临界载荷及压出发动的能量条件,分析了压出发动煤体破裂失稳形式。研究得到了压出发展过程煤体发生逐层破坏的形式及应力、瓦斯压力演化规律,分析了煤体破裂面形成原因,揭示了固气逐层变化的破坏失稳机理。
     研究分析了煤与瓦斯压出灾害发生的关键影响因素,基于此对工作面进行了危险区域划分,制定了有针对性的分区域动力灾害防治措施,保证了工作面的安全生产。
     研究成果对进一步认识深部回采过程中应力、瓦斯和煤体耦合作用规律,为防治煤与瓦斯压出事故提供了理论基础和科学依据。
With the increase of mining depth, stress and gas pressure is becoming higher and higher,the coupling effect of stress, gas, coal and others is more and more complicated. And the coaland rock dynamic disasters occurrences are on the rise, so does their harm. The coal and gasextrusion disaster which happened ever less is recently on the rise, but researches on itsmechanism is rare. In this paper, the coal and rock dynamic phenomenon simulation systemwas established, the behavior characteristic of different coal and rock dynamic phenomenawas studied; the variation laws of stress and gas pressure and the influence factors during theextrusion process were analyzed. The layer-crack structure formation process ofgas-containing coal was studied, and the layer-crack damage evolution model of coal and gasextrusion was established. The key influence factors of coal and gas extrusion disaster in fieldwere analyzed, rank division of the working face hazard area was carried out, so did theprevention measures. The main research achievements are as follows:
     The coal and rock dynamic phenomenon simulate testing system was established andused to study the behavior characteristics of different coal and rock dynamic phenomena. Thereason of different behavior characteristics of the dynamic phenomenon was discussed. It isfound that thrown distance of coal and gas extrusion is smaller, and the dynamic effect isunobvious. Both the coal fragmentation degree and the thrown distance of coal and gasoutburst reach the maximum with obvious directivity. As to gas-containing coal burst, the coalmass bursts into blocks without obvious directivity. The main reason the behaviorcharacteristics of dynamic phenomena are different results from the difference of coalproperties and the release ratio of coal elastic energy and gas potential energy.
     The variation rule and influence factors of coal and gas extrusion were studied. It isfound that coal extrusion is a relatively slow mechanics process, the stress deceases afterearlier increase; the release speed of gas pressure tends slower with the distance deeper fromthe extrusion outlets. The layer-crack damage happened in coal mass which makes the coalmass fracture further into blocks. With the increase of gas pressure and stress, residual cavityoccurs from nothing and becomes bigger gradually and the coal destruction is increasinglyviolent. With the increase of coal strength, the residual cavity reduces gradually and tends todisappear. The higher the roof and floor rocks’ strength is, the more serious the coaldeformation and fracture will be.
     Through the numerical simulation of mining process, the variation laws of stress, gaspressure and coal plastic deformation zone were studied, the impact of burial depth, coal seam parameters and initial gas pressure on the extrusion risk was analyzed. Research shows thatwith the increasing of the burial depth, gas pressure and the decreasing of thickness, strengthof coal seam, the danger of coal extrusion gradually increased.
     Based on the elastic-plastic fracture mechanics, the critical extension angle and theazimuth angle of gas-containing coal crack were calculated. The coal strength criterionconsidering the free and adsorbed gas was derived and the relation between crack extensionlength and three directional stresses was analyzed. Take the limit equilibrium zone forwardthe working face as the study object, the coal layer-crack formation process and the differenteffects of disturbances on the stability of coal body were researched. The critical rupture loadof the layer-crack structure was calculated, and the failure form of coal extrusion wasanalyzed. The―layer by layer‖failure form and variation law of stress and gas pressure duringthe coal extrusion process were obtained in the research, the reason for cavity formation incoal body was analyzed, and the instability mechanism of―layer by layer‖failure during thecoal extrusion process was revealed.
     The key influencing factors of coal and gas extrusion disaster were analyzed, based onwhich, the working face danger zones division was made. For ensuring the safety productionof working face, specific dynamic disaster prevention measures for different danger zoneswere formulated.
     Research findings provides theoretical foundation and scientific basis for furtherunderstanding the coupling effects of stress, gas, coal mass and the others during the deepmining process, and for the prevention and controlling of coal and gas extrusion disasters.
引文
[1]林柏泉,常建华,翟成.我国煤矿安全现状及应当采取的对策分析[J].中国安全科学学报,2006,16(5):42-46.
    [2]中华人民共和国国家统计局.中华人民共和国2010年国民经济和社会发展统计公报,(2011年2月28日). http://www.gov.cn/gzdt/2011-02/28/content_1812697.htm.
    [3]中国能源中长期(2030、2050)发展战略研究节能煤炭卷.科学出版社,2011.
    [4]王超.基于未知测度理论的冲击地压危险性综合评价模型及应用研究[D].徐州:中国矿业大学,2011.
    [5]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.
    [6] Xueqiu HE, Li SONG. Status and future tasks of coal mining safety in China[J]. Safety Science,2012(50):894-898.
    [7]胡千庭,孟贤正,张永将,等.深部矿井综掘面煤的突然压出机理及其预测[J].岩土工程学报,2009,31(10):1487-1492.
    [8]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学,1992.
    [9]于不凡.谈谈煤和瓦斯突出的机理[J].煤炭科学技术,1979.
    [10]于不凡.煤和瓦斯突出与地应力的关系[J].工业安全与环保,1985.
    [11]于不凡.煤和瓦斯突出机理[M].北京:煤炭工业出版社,1985.
    [12]郑敏哲.从数量级和量纲分析看煤与瓦斯突出的机理.煤与瓦斯突出机理和预测预报第三次科研工作及学术交流会议论文集,1983:3-11.
    [13] Litwiniszyn J. A model for the initiation of coal-gas outbursts[J]. Int.J. Rock Mech. Min. Sci.&Geomech. Abstr.,1985,22(1):39–46.
    [14] Paterson L. A model for outburst in coal[J]. Int. J. Rock Mech. Min.Sci.&Geomech. Abstr.,1986,23(4):327-332.
    [15]李中成.煤巷掘进工作面煤与瓦斯突出机理探讨[J].煤炭学报.1987,3(1):17-27.
    [16]李萍丰.浅谈煤与瓦斯突出机理的假说——二相流体假说[J].煤矿安全,1989,29-35.
    [17]丁晓良,丁雁生,俞善炳.煤在瓦斯一维渗流作用下的初次破坏[J].力学学报,1990,22(2):154-162.
    [18]何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学,1995.
    [19]周世宁,何学秋.煤和瓦斯突出机理的流变假说[J].中国矿业大学学报,1990,19(2):1-8.
    [20]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [21]林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J].1986(3):9-16.
    [22]俞善炳.恒稳推进的煤与瓦斯突出[J].力学学报,1988,20(2):97-106.
    [23]俞善炳.煤与瓦斯突出的一维流动模型和启动判据[J].力学学报,1992,24(4):418-431.
    [24]俞善炳,郑哲敏,谈庆明,等.含气多孔介质的卸压破坏及突出的极强破坏准则[J].力学学报,1997,29(6):641-646.
    [25]方健之,俞善炳,谈庆明.煤与瓦斯突出的层裂—粉碎模型[J].煤炭学报,1995,20(2):149-153.
    [26]赵国景,步道远.煤与瓦斯突出的固一流两相介质力学理论及数值分析[J].工程力学,1995,12(2):1-7.
    [27]蒋承林,俞启香.煤与瓦斯突出的球壳失稳机理及防治技术[M].徐州:中国矿业大学出版社,1998.
    [28]蒋承林,郭立稳.延期突出的机理与模拟试验[J].煤炭学报,1999,24(4):373-378.
    [29]梁冰.煤和瓦斯突出固流耦合失稳理论[M].北京:地质出版社,2000.
    [30]梁冰,章梦涛,潘一山,等.煤和瓦斯突出的固流耦合失稳理论[J].煤炭学报.1995,20(5):492-496.
    [31]梁冰,章梦涛,潘一山,等.瓦斯对煤的力学性质及力学响应影响的试验研究[J].岩土工程学报,1995,17(5):12-18.
    [32]梁冰,章梦涛,王泳嘉.应力、瓦斯压力在煤和瓦斯突出发生中作用的数值试验研究[J].阜新矿业学院学报(自然科学版),1996,15(1):1-4.
    [33]梁冰,章梦涛.考虑时间效应煤和瓦斯突出的失稳破坏机理研究[J].阜新矿业学院学报(自然科学版),1997,16(2):129-133.
    [34] B. Basil Beamish, Peter J. Crosdale. Instantaneous outbursts in underground coal mines: An overviewand association with coal type[J]: International Journal of Coal Geology,1998(35):27-55.
    [35] R.M. Bustin, C.R. Clarkson. Geological controls on coalbed methane reservoir capacity and gascontent[J]. International Journal of Coal Geology,1998(38):3-26.
    [36]吕绍林,何继善.关键层—应力墙瓦斯突出机理[J].重庆大学学报(自然科学版):1999,22(6):80-84.
    [37]张我华,金荑,陈云敏.煤/瓦斯突出过程中的能量释放机理[J].岩石力学与工程学报,2000,19(增):829-835.
    [38]封富.区域地震和煤与瓦斯突出相关性研究[D].阜新:辽宁工程技术大学,2003.
    [39]郭德勇,韩德馨.煤与瓦斯突出粘滑机理研究[J].煤炭学报,2003,28(6):598-602.
    [40]丁继辉,麻玉鹏,赵国景,等.煤与瓦斯突出的固流耦合失稳理论及数值分析[J].工程力学,1999,16(4):47-53.
    [41] Choi S.K., Wold M.B.. A Coupled geomechanical-reservoir model for the modelling of coal and gasoutbursts[J]. Elsevier Geo-Engineering Book Series,2004(2):629-634.
    [42]蔡峰.煤巷掘进过程中煤与瓦斯突出机理的研究[D].淮南:安徽理工大学,2005.
    [43] CAI Feng, LIU Ze-gong. Intensified extracting gas and rapidly diminishing outburst risk using deep-hole presplitting blast technology before opening coal seam in shaft influenced by fault[J]. ProcediaEngineering,2011(46):418-423.
    [44]马中飞,俞启香.煤与瓦斯承压散体失控突出机理的初步研究[J].煤炭学报,2006,31(3):329-333.
    [45]罗新荣,夏宁宁,贾真真.掘进煤巷应力仿真和延时煤与瓦斯突出机理研究[J].中国矿业大学学报,2006,35(5):571-575.
    [46] Zhe-jun PAN, Luke D. Connell. A theoretical model for gas adsorption-induced coal swelling[J].International Journal of Coal Geology,2007(69):243-252.
    [47]王继仁,邓存宝,邓汉忠.煤与瓦斯突出微观机理研究[J].煤炭学报,2008,33(2):131-135.
    [48]陆卫东.煤与瓦斯突出微观机理的基础研究[D].阜新:辽宁工程技术大学,2009.
    [49]刘保县,鲜学福,姜德义.煤与瓦斯延期突出机理及其预测预报的研究[J].岩石力学与工程学报,2002,21(5):647-650.
    [50]鲜学福,辜敏,李晓红,等.煤与瓦斯突出的激发和发生条件[J].岩土力学,2009,30(3):577-581.
    [51]陶云奇.含瓦斯煤THM耦合模型及煤与瓦斯突出模拟研究[D].重庆,重庆大学,2009.
    [52] TAO Yun-qi, XU Jiang, LIU Dong, et al. Development and validation of THM coupling model ofmethane-containing coal[J]. International Journal of Mining Science and Technology,2012(22):879-883.
    [53] WU Shi-yue, GUO Yong-yi, LI Yuan-xing, et al. Research on the mechanism of c oal and gasoutburst and the screening of prediction indices[J]. Procedia Earth and Planetary Science,2009(1):173-179.
    [54] HUANG Wei, CHEN Zhan-qing, YUE Jian-hua, et al. Failure modes of coal containing gas andmechanism of gas outbursts[J]. Mining Science and Technology,2010(20):504–509.
    [55] LI Shu-gang, ZHANG Tian-jun. Catastrophic mechanism of coal and gas outbursts and theirprevention and control[J]. Mining Science and Technology,2010(20):209-214.
    [56] LI Shu-gang, ZHAO Peng-xiang, LIN Hai-fei, et al. Research and Development of Solid-GasCoupling Physical Simulation Experimental Platform and Its Application[J]. Procedia Engineering,2012(43):47-52.
    [57] ZHANG Tian-jun, REN Shu-xin, LI Shu-gang, et al. Application of the catastrophe progressionmethod in predicting coal and gas outburst[J]. MINING SCIENCE AND TECHNOLOGY,2009(19):430-434.
    [58]李晓泉.含瓦斯煤力学特性及煤与瓦斯延期突出机理研究[D].重庆:重庆大学,2010.
    [59]李晓泉,尹光志,蔡波,等.煤与瓦斯延期突出模拟试验及机理[J].重庆大学学报,2011,34(4):13-19.
    [60]李铁,梅婷婷,李国旗,等.―三软‖煤层冲击地压诱导煤与瓦斯突出力学机制研究[J].岩石力学与工程学报,2011,30(6):1283-1288.
    [61]李铁,蔡美峰,王金安,等.深部开采冲击地压与瓦斯的相关性探讨[J].煤炭学报,2005,30(5):562-567.
    [62] SONG Yan-jin, CHENG Guo-qiang. The Mechanism and Numerical Experiment of SpallingPhenomena in One-dimensional Coal and Gas Outburst[J]. Procedia Environmental Sciences,2012(12):885-890.
    [63] JIN Hong-wei, HU Qian-ting, LIU Yan-bao. Failure mechanism of coal and gas outburst initiation[J].Procedia Engineering,2011(26):1352-1360.
    [64]林柏泉,何学秋.煤体透气性及其对煤与瓦斯突出的影响[J].煤炭科学技术,1991(4):50-53.
    [65] CAO Yun-xing, He Dingdong, David C. Glick. Coal and gas outbursts in footwalls of reverse faults[J].International Journal of Coal Geology.2001(48):47–63.
    [66] M.B. Wold, L.D. Connell, S.K. Choi. The role of spatial variability in coal seam parameters on gasoutburst behaviour during coal mining[J]. International Journal of Coal Geology,2008(75):1-14.
    [67] LI T., CAI M.F., CAI M.. Earthquake-induced unusual gas emission in coalmines—A km-scale in-situexperimental investigation at Laohutai mine[J]. International Journal of Coal Geology,2007(71):209-224.
    [68]韩军,张宏伟,霍丙杰.向斜构造煤与瓦斯突出机理探讨[J].煤炭学报,2008,33(8):908-913
    [69]韩军,张宏伟,宋卫华,等.煤与瓦斯突出矿区地应力场研究[J].岩石力学与工程学报,2008,27(增2):3852-3859.
    [70] J. HAN, H.W. ZHANG, S. Li, et al. The characteristic of in situ stress in outburst area of China[J].Safety Science,2012(50):878-884.
    [71] Md. Rafiqul Islam, Ryuichi Shinjo. Numerical simulation of stress distributions and displacementsaround an entry roadway with igneous intrusion and potential sources of seam gas emission of theBarapukuria coal mine, NW Bangladesh[J]. International Journal of Coal Geology,2009(78):249-262.
    [72] LEI Dong-ji, LI Cheng-wu, ZHANG Zi-min, et al. Coal and gas outburst mechanism of the―ThreeSoft‖coal seam in western Henan[J]. Mining Science and Technology,2010(20):712-717.
    [73] Rafael Rodríguez, Cristobal Lombardía. Analysis of methane emissions in a tunnel excavated throughCarboniferous strata based on underground coal mining experience[J]. Tunnelling and UndergroundSpace Technology,2010(25):456-468.
    [74]冯增朝,康健,段康廉.煤体水力割缝中瓦斯突出现象实验与机理研究[J].辽宁工程技术大学学报(自然科学版),2011,20(4):443-445.
    [75] Jing-Yu JIANG, Yuan-Ping CHENG, Lei WANG, et al. Petrographic and geochemical effects of sillintrusions on coal and their implications for gas outbursts in the Wolonghu Mine, Huaibei Coal fi eld,China[J]. International Journal of Coal Geology,2011(88):55-66.
    [76] NIE Bai-sheng, LI Xiang-chun. Mechanism research on coal and gas outburst during vibrationblasting[J]. Safety Science,2012(50):741-744.
    [77] LI Xiang-chun, WANG Chao, ZHAO Cai-hong, et al. The propagation speed of the cracks in coalbody containing gas[J]. Safety Science,2012(50):914-917.
    [78]李祥春,聂百胜,何学秋.振动诱发煤与瓦斯突出的机理[J].北京科技大学学报,2011,33(2):149-152.
    [79]欧建春,王恩元,徐文全,等.钻孔施工诱发煤与瓦斯突出的机理研究[J].2012,41(5):739-745.
    [80] GAO Jian-liang, SHANG Bin. The influence of gas storage parameters on gas emission rate fromborehole[J]. Safety Science,2012(50):869-872.
    [81] CHEN Shang-bin, ZHU Yan-ming, LI Wu, et al. Influence of magma intrusion on gas outburst in alow rank coal mine[J]. International Journal of Mining Science and Technology,2012(22):259-266.
    [82]苗法田,孙东玲,胡千庭.煤与瓦斯突出冲击波的形成机理[J].煤炭学报,2013,38(3):367-372.
    [83]赵阳升.瓦斯压力在突出中作用的数值模拟研究[J].岩石力学与工程学报,1993,12(4):328-337.
    [84]蒋承林.煤与瓦斯突出阵面的推进过程及力学条件分析[J].中国矿业大学学报,1994,23(4):1-9.
    [85]蒋承林,俞启香.煤与瓦斯突出过程中能量耗散规律的研究[J].煤炭学报,1996,21(2):173-178.
    [86]蒋承林.煤壁突出孔洞的形成机理研究[J].岩石力学与工程学报,2000,19(2):225-228.
    [87]韩颖,蒋承林.初始释放瓦斯膨胀能与煤层瓦斯压力的关系[J].中国矿业大学学报,2005,34(5):650-654.
    [88]王浩,蒋承林,杨飞龙.仿制构造煤的初始释放瓦斯膨胀能特性研究[J].采矿与安全工程学报,2012,29(2):277-282.
    [89]程五一.煤层瓦斯渗流煤体热效应机制的研究[J].煤炭学报,2000,25(5):506-509.
    [90] Huo-yin LI. Major and minor structural features of a bedding shear zone along a coal seam and relatedgas outburst, Pingdingshan coalfield, northern China[J]. International Journal of Coal Geology,2011(47):101-113.
    [91]刘明举,颜爱华,丁伟,等.煤与瓦斯突出热动力过程的研究[J].煤炭学报,2003,28(1):50-54.
    [92]牛国庆,颜爱华,刘明举.煤与瓦斯突出过程中温度变化的实验研究[J].湘潭矿业学院学报,2002,17(4):20-23.
    [93] Fa-jun ZHAO, Ming-ju LIU, Xue-wen PANG, et al. Rapid regional outburst elimination technology insoft coal seam with soft roof and soft floor[J]. Safety Science,2012(50):607-613.
    [94]景国勋,张强.煤与瓦斯突出过程中瓦斯作用的研究[J].煤炭学报,2005,30(2):169-171.
    [95]徐涛,唐春安,宋力,等.含瓦斯煤岩破裂过程流固耦合数值模拟[J].岩石力学与工程学报,2005,24(10):1667-1673.
    [96]徐涛,杨天鸿,唐春安,等.含瓦斯煤岩破裂过程固气耦合数值模拟[J].东北大学学报(自然科学版),2005,26(3):293-296.
    [97]徐涛,郝天轩,唐春安,等.含瓦斯煤岩突出过程数值模拟[J].中国安全科学学报,2005,15(1):108-112.
    [98] XU T., TANG C.A., YANG T.H., et al. Numerical investigation of coal and gas outbursts inunderground collieries[J]. International Journal of Rock Mechanics and Mining Science,2006(43):905-919.
    [99]段东,唐春安,李连崇,等.煤和瓦斯突出过程中地应力作用机理[J].东北大学学报(自然科学版),2009,30(9):1326-1329.
    [100] T.H. Yang, T. Xu, H.Y. Liu, et al. Stress–damage–flow coupling model and its application topressure relief coal bed methane in deep coal seam[J]. International Journal of Coal Geology,2011(86):357-366.
    [101]张玉贵.构造煤演化与力化学作用[D].太原:太原理工大学,2006.
    [102]张玉贵,张子敏,曹运兴.构造煤结构与瓦斯突出[J].煤炭学报,2007,32(3):281-284.
    [103]李利萍,潘一山.煤与瓦斯突出瓦斯射流数值模拟[J].辽宁工程技术大学学报,2007,26(增):98-100.
    [104]唐巨鹏,潘一山,李成全,等.固流耦合作用下煤层气解吸—渗流实验研究[J].中国矿业大学学报,2006,35(2):274-278.
    [105]胡千庭,周世宁,周心权.煤与瓦斯突出过程的力学作用机理[J].煤炭学报,2008,33(12):1368-1372.
    [106] SUN Dong-ling, HU Qian-ting, MIAO Fa-tian. A Mathematical Model of Coal-gas Flow ConveyingIn the Process of Coal and Gas Outburst and Its Application[J]. Procedia Engineering,2011(26):147-153.
    [107]金洪伟,胡千庭,刘延保,等.突出和冲击地压中层裂现象的机理研究[J].采矿与安全工程学报,2012,29(5):694-699.
    [108]王振.煤岩瓦斯动力灾害新的分类及诱发转化条件研究[D].重庆:重庆大学,2010.
    [109] W.C. ZHU, J. LIU, J.C. SHENG, et al. Analysis of coupled gas flow and deformation process withdesorption and Klinkenberg effects in coal seams[J]. International Journal of Rock Mechanics andMining Science,2007(44):971-980.
    [110] ZHU W.C., BRUHNS O.T.. Simulating excavation damaged zone around a circular opening underhydromechanical condit ions[J]. International Journal of Rock Mechanics and Mining Science,2008(45):815-830.
    [111] ZHU W.C., WEI C.H., LIU J.. et al. A model of coal–gas interaction under variable temperatures[J].International Journal of Coal Geology,2011(86):213-221.
    [112] XUE Sheng, WANG Yu-cang, XIE Jun, et al. A coupled approach to simulate initiation of outburstsof coal and gas—Model development[J]. International Journal of Coal Geology,2011(86):222-230.
    [113] Jacek Sobczyk. The influence of sorption processes on gas stresses leading to the coal and gasoutburst in the laboratory conditions[J]. Fuel,2011(90):1018-1023.
    [114]王家臣,邵太升,赵洪宝.瓦斯对突出煤力学特性影响试验研究[J].采矿与安全工程学报,2011,28(3):391-394.
    [115]王刚,程卫民,谢军,等.瓦斯含量在突出过程中的作用分析[J].煤炭学报,2011,36(3):429-434.
    [116] Wei YANG, Bai-quan LIN, Yong-an QU, et al. Mechanism of strata deformation under protectiveseam and its application for relieved methane control[J]. International Journal of Coal Geology,2011(85):300-306.
    [117] Wei YANG, Bai-quan LIN, Yong-an QU, et al. Stress evolution with time and space during miningof a coal seam[J]. International Journal of Rock Mechanics&Mining Sciences,2011(48):1145-1152.
    [118] Wei YANG, Bai-quan LIN, Cheng ZHAI, et al. How in situ stresses and the driving cycle footageaffect the gas outburst risk of driving coal mine roadway[J]. Tunnelling and Underground SpaceTechnology,2012(31):139-148.
    [119] QI Li-ming, CHEN Xue-xi. Analysis on the Influence of Coal Strength to Risk of Outburst[J].Procedia Engineering,2011(26):602-607.
    [120]李成武,解北京,曹家琳,等.煤与瓦斯突出强度能量评价模型[J].煤炭学报,2012,37(9):1547-1552.
    [121]欧建春.煤与瓦斯突出演化过程模拟实验研究[D].徐州:中国矿业大学,2012.
    [122] OU Jian-chun, LIU Ming-ju, ZHANG Chun-ru, et al. Determination of indices and critical values ofgas parameters of the first gas outburst in a coal seam of the Xieqiao Mine[J]. International Journal ofMining Science and Technology,2012(22):89-93.
    [123] PENG S.J., XU J., YANG H.W., et al. Experimental study on the influence mechanism of gasseepage on coal and gas outburst disaster[J]. Safety Science,2012(50):816-821.
    [124] LU Cai-ping, DOU Lin-ming, LIU Hui, et al. Case study on microseismic effect of coal and gasoutburst process[J]. International Journal of Rock Mechanics and Mining Science,2012(53):101-110.
    [125] Jie-nan PAN, Quan-lin HOU, Yi-wen JU, et al. Coalbed methane sorption related to coal deformationstructures at different temperatures and pressures[J]. Fuel,2012(102):760-765.
    [126] Yan-bin YAO, Da-meng LIU. Effects of igneous intrusions on coal petrology, pore-fracture andcoalbed methane characteristics in Hongyang, Handan and Huaibei coal fi elds, North China[J].International Journal of Coal Geology,2012(96):72-81.
    [127] YAN Jiang-wei, WANG Wei, TAN Zhi-hong. Distribution characteristics of gas outburst coal bodyin Pingdingshan tenth coal mine[J]. Procedia Engineering,2012(45):329-333.
    [128] Kai WANG, Ai-tao ZHOU, Jian-fang ZHANG, et al. Real-time numerical simulations andexperimental research for the propagation characteristics of shock waves and gas flow during coal andgas outburst[J]. Safety Science,2012(50):835-841.
    [129] HU Ying-ying, HU Xiang-ming, ZHANG Qing-tao, et al. Analysis on simulation experiment ofoutburst in uncovering coal seam in cross-cut[J]. Procedia Engineering,2012(45):287-293.
    [130]王凯,俞启香,彭永周.非线性理论在煤与瓦斯突出研究中的应用[J].辽宁工程技术大学学报(自然科学版),2000,19(4):348-352.
    [131]王凯,俞启香.煤与瓦斯突出的非线性特征及预测模型[M].徐州:中国矿业大学出版社,2005.
    [132]肖福坤,秦宪礼,张娟霞,等.煤与瓦斯突出过程的突变分析[J].辽宁工程技术大学学报,2004,23(4):442-444.
    [133]高雷阜.煤与瓦斯突出的混沌动力系统演化规律[D].阜新:辽宁工程技术大学,2006.
    [134]赵志刚.煤与瓦斯突出的耦合灾变机制及非线性分析[D].泰安:山东科技大学,2007.
    [135]赵志刚,谭云亮,程国强.煤巷掘进迎头煤与瓦斯突出的突变机制分析[J].岩土力学,2008,29(6):1644-1648.
    [136]潘岳,张勇,戚云松.煤岩突出中单个煤壳失稳前兆阶段的能量分析[J].岩土力学,2008,29(6):1500-1507.
    [137]潘岳,张勇,王志强.煤与瓦斯突出中单个煤壳解体突出的突变理论分析[J].岩土力学,2009,30(3):595-612.
    [138] ZHANG S., YANG S., CHENG J., et al. Study on Relationships between Coal Fractal Characteristicsand Coal and Gas Outburst[J]. Procedia Engineering,2011(26):327-334.
    [139] YANG Xiao-bin, XIA Yong-jun, WANG Xiao-jun. Investigation into the nonlinear damage model ofcoal containing gas[J]. Safety Science,2012(50):927-930.
    [140] CHEN Peng, WANG En-yuan, OU Jian-chun, et al. Fractal characteristics of surface crack evolutionin the process of gas-containing coal extrusion[J]. International Journal of Mining Science andTechnology,2013(23):121-126.
    [141]孟贤正.综采工作面煤的突然压出危险性预测[D].重庆大学,2002.
    [142]汪长明.采煤工作面煤的突然压出机理初探[J].矿业安全与环保,2008,12(35):80-83.
    [143]窦林名,何学秋.冲击矿压防治理论与技术[D].徐州:中国矿业大学出版社,2001.
    [144] Takeo Y, Hikaru S. The experimental results on the actual measurement of energy transmission lossof magnetic field component across the tunnel[J]. Physics of the Earth and Planetary Interiors,1998,105(3-4):287-295.
    [145]煤炭部冲击地压科技情报分站.冲击地压机理研究与防治经验文集[C].(全国冲击地压会议资料).四川省德阳市天池煤矿,1985.
    [146]金立平.冲击地压的发生条件及预测方法研究[D].重庆:重庆大学,1992.
    [147] Cook N G W. A note on rock bursts considered as a problem of stability[J]. Journal of the SouthAfrican Institute of Mining and Metallurgy,1965,65:437-446.
    [148] Cook N G W. The failure of rock[J]. International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1965,2(4):389-403.
    [149] Cook N G W, Hoek E, Pretorius J P G, et al. Rock Mechanics applied to the study of rock bursts.Journal of the South African Institute of Mining and Metallurgy,1965,66:435-528
    [150] Bieniawski Z T, Denkhaus H G, Vogler U W. Failure of fractured rock[J]. International Journal ofRock Mechanics and Mining Sciences&Geomechanics Abstracts,1969,6(3):323-330.
    [151] Bieniawski Z T, Mechanism of brittle fracture of rocks. PartⅠ, Ⅱ and Ⅲ[J]. International Journalof Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1967,4(4):395-404,405-406,425-426.
    [152]李玉生.冲击地压机理探讨[J].煤炭学报,1984,9(3):1-10.
    [153]李玉生.冲击地压机理及其初步应用[J].中国矿业学院学报,1985,14(3):37-43.
    [154]章梦涛.冲击地压失稳理论与数值模拟计算[J].岩石力学与工程学报,1987,6(3):197-204.
    [155]章梦涛,徐曾和,潘一山.冲击地压和突出的统一失稳理论[J].煤炭学报,1991,16(4):48-53.
    [156] Vesela V. The investigation of rockburst focal mechanisms at lazy coal mine, Czech Republic[J].International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1996,33(8):380A.
    [157] Beck D A, Brady B H G. Evaluation and application of controlling parameters for seismic events inhard-rock mines[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(5):633-642.
    [158] Lippmann H. Mechanics of "bumps" in coal mines: A discussion of violet deformation in the sides ofroadways in coal seams[J]. Applied Mechanics Reviews,1987,40(8):1033-1043.
    [159] Lippmann H,程屏芬.煤矿中―突出‖的力学:关于煤层中通道两侧剧烈变形的讨论[J].力学进展,1989,19(1):100-113.
    [160]尹光志,李贺,鲜学福,等.煤岩体失稳的突变理论模型[J].重庆大学学报,1994,17(l):23-28.
    [161]潘一山,章梦涛.用突变理论分析冲击发生的物理过程[J].阜新矿业学院学报,1992,11(l):12-18.
    [162]费鸿禄,徐小荷.岩爆的动力失稳[M].上海:东方出版中心,1998.
    [163]徐曾和,徐小荷,唐春安.坚硬顶板条件下煤柱岩爆的尖点突变理论分析[J].煤炭学报,1995,20(5):485-491.
    [164]谢和平, Pariseau W G.岩爆的分形特征及机理[J].岩石力学与工程学报,1993,12(1):28-37.
    [165] Xie H P. Fractal Character and mechanism of rock bursts[J]. International Journal of Rock Mechanicsand Mining Sciences&Geomechanics Abstracts,1993,30(40):343-350.
    [166]李廷芥,王耀辉,张梅英,等.岩石裂纹的分形特性及岩爆机理研究[J].岩石力学与工程学报,2000,19(1):6-10.
    [167]邓全峰,栾永祥,王佑安.煤与瓦斯突出模拟试验[J].煤矿安全,1989:5-10.
    [168]孟祥跃,丁雁生,陈力,等.煤与瓦斯突出的二维模拟实验研究[J].煤炭学报,1996.21(1):57-62.
    [169]郭立稳,俞启香,蒋承林,等.煤与瓦斯突出过程中温度变化的实验研究[J].岩石力学与工程学报,2000,19(3):366-368.
    [170]蔡成功.煤与瓦斯突出三维模拟实验研究[J].2004,29(1):66-70.
    [171]颜爱华,徐涛.煤与瓦斯突出的物理模拟和数值模拟研究[J].中国安全科学学报,2008,18(9):37-42.
    [172]金洪伟.煤与瓦斯突出发展过程的实验与机理分析[J].煤炭学报,2012,37(增1):98-103.
    [173]许江,陶云奇,尹光志,等.煤与瓦斯突出模拟试验台的研制与应用[J].岩石力学与工程学报,2008,27(11):2354-2362.
    [174]许江,陶云奇,尹光志,等.煤与瓦斯突出模拟试验台的改进及应用[J].岩石力学与工程学报,2009,28(9):1804-1809.
    [175]尹光志,赵洪宝,许江,等.煤与瓦斯突出模拟试验研究[J].岩石力学与工程学报,2009,28(8):1674-1680.
    [176]王维忠,陶云奇,许江,等.不同瓦斯压力条件下的煤与瓦斯突出模拟实验[J].重庆大学学报,2010,33(3):82-86.
    [177]许江,刘东,彭守建,等.煤样粒径对煤与瓦斯突出影响的试验研究[J].岩石力学与工程学报,2010,29(6):1231-1237.
    [178]许江,刘东,尹光志,等.非均布荷载条件下煤与瓦斯突出模拟实验[J].煤炭学报,2012,37(5):836-842.
    [179]许江,刘东,彭守建.不同突出口径条件下煤与瓦斯突出模拟试验研[J].煤炭学报,2013,38(1):9-14.
    [180]曹树刚,刘延保,李勇,等.煤岩固—气耦合细观力学试验装置的研制[J].岩石力学与工程学报,2009,28(8):1681-1690.
    [181] Norbert Skoczylas. Laboratory study of the phenomenon of methane and coal outburst[J].International Journal of Rock Mechanics&Mining Sciences,2012(55):102-107.
    [182] Jacek Sobczyk. The influence of sorption processes on gas stresses leading to the coal and gasoutburst in the laboratory conditions [J]. Fuel,2011(90):1018-1023.
    [183]陆菜平,窦林名,谢耀社,等.煤样三轴围压钻孔损伤演化冲击实验模拟[J].煤炭学报,2004,29(6):659-663.
    [184] HE Man-chao, NIE Wen, HAN Li-qiang, et al. Microcrack analysis of Sanya grantite fragments fromrockburst tests[J]. Mining Science and Technology,2010(20):238-243.
    [185] HE Manchao, JIA Xuena, M. Coli, et al. Experimental study of rockbursts in underground quarryingof Carrara marble[J]. International Journal of Rock Mechanics&Mining Sciences,2012(52):1–8.
    [186]金佩剑.含瓦斯煤岩冲击破坏前兆及多信息融合预警研究[D].徐州:中国矿业大学,2013.
    [187] Paterson M S. Experimental deformation and faulting in Wombeyan marble[J]. Bull. Geol. Soc.Am.,1958,69:465-467.
    [188] Paterson MS, Wong T. F.. Experimental rock deformation–The brittle field [M]. New York: Springer,2005.
    [189]王绳祖.岩石的脆性—延性转变及塑性流动网络[J].地球物理学进展,1993,8(4):25-37.
    [190]姜耀东,赵毅鑫,刘文岗,等.深部开采中巷道底鼓问题的研究[J].岩石力学与工程学报,2004,23(7):2396-2401.
    [191]曹文贵,王泓华,张升,等.岩石脆延特性转化条件确定的统计损伤方法研究[J].岩土工程学报,2005,27(12):1391-1396.
    [192]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [193]郑哲敏.从数量级和量纲分析看煤与瓦斯突出机理[J].郑哲敏文集,382-392.
    [194]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    [195] CHEN Z.H., TANG C.A., HUANG R.Q.. A Double Rock Sample Model for Rockbursts[J].International Journal of Rock Mechanics and Mining Science,1997,34(6):991-1000.
    [196]李纪青,齐庆新,毛德兵,等.应用煤岩组合模型方法评价煤岩冲击倾向性探讨[J].岩石力学与工程学报,2005,24(增1):4805-4810.
    [197] Tuncay E, Hasancebi N. The effect of length to diameter ratio of test specimens on the uniaxialcompressive strength of rock [J]. Bull Eng Geol Environ,2009(68):491–497.
    [198] Wawersik WR, Fairhurst C. A study of brittle rock fracture in laboratory compression experiments [J].Int J Rock Mech Min Sci&Abstr,1970(5):561-564.
    [199] Tang C.A., Tham L.G., Lee P.K.K., et al. Numerical studies of the influence of microstructure onrock failure in uniaxial compression-Part II: constraint, slenderness and size effect [J]. Int J RockMech Min Sci,2000(37):571-583.
    [200]谭学术,鲜学福,郑道芳,等.复合岩体力学理论及其应用[J].北京:煤炭工业出版社,1994.
    [201]王登科.含瓦斯煤岩本构模型与失稳规律研究[D].重庆:重庆大学,2009.
    [202] Feng-hua AN, Yuan-ping CHENG, Liang WANG, et al. A numerical model for outburst including theeffect of adsorbed gas on coal deformation and mechanical properties [J]. Computers and Geotechnics,2013(54):222-231.
    [203]魏明尧.含瓦斯煤气固耦合渗流机理及应用研究[D].徐州:中国矿业大学,2013.
    [204]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社1994.
    [205] Drucker DC, Prager W. Soil mechanics and plastic analysis or limit design[J]. Quart Appl Math,1952(10):157–165.
    [206]张小涛,窦林名.煤层硬度与厚度对冲击矿压影响的数值模拟[J].采矿与安全工程学报,2006,23(3):277-280.
    [207]周维垣,高等岩石力学[M],水利电力出版社,1991.
    [208] JP Zuo, HT Li, HP Xie, et al. A nonlinear strength criterion for rock-like materials based on fracturemechanics [J]. International journal of rock mechanics and mining science,2008(45):594-599.
    [209] Tada H. The stress analysis of cracks handbook [M]. Hellertown, PA: Del Research Corporation,1973.
    [210] Kachanov ML. A microcrack model of rock inelasticity, Part II: propagation of microcracks [J].Mech Mater1982(1):29–41.
    [211] Cotterell B, Rice JR. Slightly curved or kinked cracks [J]. Int J Fract,1980;16(2):155–69.
    [212]范景伟,何江达.含定向闭合断续节理岩体的强度特性[J].岩石力学与工程学报,1992,11(2):190-199.
    [213] HU Shaobin, WANG Enyuan, WEI Mingyao. Effective Stress of Gas-bearing Coal and its Dual PoreDamage Constitutive Model [J]. International Journal of Damage Mechanics,2014(4):20-35.
    [214]李贺等.岩石断裂力学[M].重庆大学出版社,1988.
    [215]陈鹏.煤与瓦斯突出区域危险性的直流电法响应及应用研究[D].徐州:中国矿业大学,2013.
    [216]邹德蕴,姜福兴.煤岩体中储存能量与冲击地压孕育机理及预测方法的研究[J].煤炭学报,2004,29(2):159-163.
    [217]秦昊.巷道围岩失稳机制及冲击矿压机理研究[D].徐州:中国矿业大学,2008.
    [218]徐芝纶.弹性力学简明教程[M].北京:高等教育出版社,1983:203-206.
    [219]张敬民.孤岛工作面矿压分布特征及对动力灾害的影响[D].徐州:中国矿业大学,2013.
    [220]宋大钊.冲击地压演化过程及能量耗散特征研究[D].徐州:中国矿业大学,2012.
    [221]李小双,尹光志,赵洪宝,等.含瓦斯突出煤三轴压缩下力学性质试验研究[J].岩石力学与工程学报,2010,29(增1):3350-3358.
    [222]朱维申,程峰.能量耗散本构模型及其在三峡船闸高边坡稳定性分析中的应用[J].岩石力学与工程学报,2000,19(3):261-264.
    [223]金丰年,蒋美蓉,高小玲.基于能量耗散定义损伤变量的方法[J].岩石力学与工程学报,2004,23(12):1976-1980.
    [224]曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报,1998,17(6):628-633.
    [225]胡千庭.煤与瓦斯突出的力学作用机理及应用研究[D].北京:中国矿业大学,2008.
    [226]王振,胡千庭,文光才,等.采动应力场分布特征及其对煤岩瓦斯动力灾害的控制作用分析[J].煤炭学报,2011,36(4):623-627.
    [227] Wenquan XU, Enyuan WANG, Rongxi SHEN, et al. Distribution pattern of front abutment pressureof fully-mechanized working face of soft coal isolated island [J]. International Journal of MiningScience and Technology,2012,22(2):279-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700